Reactions of phosphines with electron deficient boranes†

Gregory C. Welch,^{*a*} Roberto Prieto,^{*a*} Meghan A. Dureen,^{*b*} Alan J. Lough,^{*b*} Oijsamola A. Labeodan,^{*a*} Thorsten Höltrichter-Rössmann^{*a*} and Douglas W. Stephan^{**b*}

Received 20th August 2008, Accepted 7th November 2008 First published as an Advance Article on the web 19th January 2009 DOI: 10.1039/b814486a

A series of classical $B(C_6F_5)_3$ -phosphine adducts are shown to be reactive molecules. Reaction of $(THF)B(C_6F_5)_3$ with phosphines are shown to effect ring-opening of THF affording the zwitterionic phosphonium-borate species of the form $R_2PH(C_4H_8O)B(C_6F_5)_3$ and $R_3P(C_4H_8O)B(C_6F_5)_3$. Alternatively, treatment of $(THF)B(C_6F_5)_3$ with a lithium phosphide $(R_2PLi, R = tBu, Ph Mes)$ affords species of the form $[Li(THF)_x][R_2P(C_4H_8O)B(C_6F_5)_3]$. Additionally, double THF ring-opening is also demonstrated to give species of the form $[Li(THF)_x][R_2P(C_4H_8O)B(C_6F_5)_3]$. In addition a series of classical borane-phosphine adducts are also shown to undergo thermal rearrangement reactions to give the zwitterionic products of aromatic substitution $R_2PH(C_6F_4)BF(C_6F_5)_2$ and $R_3P(C_6F_4)BF(C_6F_5)_2$. The mechanism of these substitutions is considered. A series of crystallographic studies of phosphine-borane adducts, THF ring-opened zwitterions and *para*-attack zwitterionic phosphonium borates are reported and discussed.

Introduction

Lewis acidic reagents play important roles in a variety of stoichiometric and catalytic reactions. In the case of polymerization catalysis, Lewis acid reagents such as the triorganoborane $B(C_6F_5)_3$ or the carbocation analog $[Ph_3C]^+$ (tritvl) are powerful co-catalysts as these species are used to generate catalytically active cationic early metal alkyl complexes as a result of the vacant 2porbitals on boron and carbon, respectively.1-3 Amines, pyridines and phosphines have been shown to form simple Lewis acidbase adducts with $B(C_6F_5)_{3}^{4-6}$ and trityl cation.⁷⁻¹⁵ In the case of trityl cation, recent work in our research group has shown that sterically demanding phosphines are too large to interact with the central carbon of the carbocation and instead effect nucleophilic aromatic substitution at a position para to the central carbon.¹⁶ While such chemistry was both unexpected and unique, the resulting cylcohexadienyl and benzylhydryl-phenyl species are robust (Scheme 1). Similarly, the unusual rearrangement of the ylide-borane adduct (Ph₃PCHPh)B(C₆F₅)₃ to give the zwitterion p-(Ph₃PCHPh)(C₆F₄)BF(C₆F₅)₂ has been reported by Erker and co-workers (Scheme 1).¹⁷ These reactions demonstrate the nonconventional reactivity of simple Lewis acid-base adducts. We have previously communicated that sterically bulky phosphines react with $(THF)B(C_6F_5)_3$ to effect the ring-opening of THF affording the zwitterions $R_3P(C_4H_8O)B(C_6F_5)_3$.¹⁸ Similarly, bulky phosphines were shown to undergo para-attack of the C₆F₅ aryl ring of $B(C_6F_5)_3$ to give zwitterionic phosphonium borates of the form $R_3P(C_6F_4)BF(C_6F_5)_2$.¹⁹ Related zwitterions of the form $p-R_2EH(C_6F_4)B(C_6F_5)_3^{20}$ and $p-R_2EH(C_6H_4)B(C_6F_5)_3^{21}$ (E = N, P) have been claimed in the patent literature as polymerization

Scheme 1 Non-conventional reactivity of the Lewis acids $B(C_6F_5)_3$ and Ph_3C^* .

catalyst activators; however, they were synthesized *via* traditional Grignard routes. In this full report of this chemistry, we broaden and explore the range of phosphines that exhibit both THF ring-opening and *para*-aromatic substitution of a phosphine for fluoride on a C_6F_5 ring on $B(C_6F_5)_3$ and other related electron deficient boranes.

Experimental

General data

All preparations were done under an atmosphere of dry, O₂-free N₂ employing both Schlenk line techniques and an Innovative Technologies or Vacuum Atmospheres inert atmosphere glove box. Solvents (pentane, hexanes, toluene, and CH₂Cl₂) were purified employing a Grubbs' type column system manufactured by Innovative Technology and stored over molecular sieves (4 Å). Molecular sieves (4 Å) were purchased from Aldrich Chemical Company and dried at 140 °C under vacuum for 24 h prior to use. Uninhibited THF was purchased from EMD and distilled from sodium/benzophenone. Deuterated solvents were dried over Na/benzophenone (C₆D₆, C₇D₈, THF-d₈) or CaH₂ (CD₂Cl₂, C₆D₅Br). All common organic reagents were purified

^aDepartment of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

^bDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada M5S 3H6. E-mail: dstephan@chem.utoronto.ca † CCDC reference numbers 698991–699003. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b814486a

by conventional methods unless otherwise noted. ¹H, ¹³C, ¹¹B, ¹⁹F and ³¹P nuclear magnetic resonance (NMR) spectra are recorded on a Bruker Avance-300 spectrometer at 300 K unless otherwise noted. 1H and 13C NMR spectra are referenced to SiMe₄ using the residual solvent peak impurity of the given solvent. ³¹P, ¹¹B and ¹⁹F NMR spectra are referenced to 85% H₃PO₄, BF₃(OEt₂), and CFCl₃, respectively. ⁷Li NMR spectra are referenced to LiCl in D₂O. Chemical shifts are reported in ppm and coupling constants in Hz as absolute values. DEPT and 2-D ¹H/¹³C correlation experiments were completed for assignment of the carbon atoms. Combustion analyses were performed in-house employing a Perkin Elmer CHN Analyzer. $B(C_6F_5)_3$ was generously donated by NOVA Chemicals Corporation. All phosphines were purchased from Aldrich or Strem and used as received unless otherwise noted. Mes₂PH²² and tBu(Mes)PH²³ were prepared as reported in the literature. Paratone-N oil was purchased from Hampton Research. (Cy₂PH)B(C₆F₅)₃ $3^{24}_{,2}$ (Ph₂PH)B(C₆F₅)₃ $6^{24}_{,2}$ (Me₃P)B(C₆F₅)₃ $8^{25-27}_{,2}$ (Ph₃P)B(C₆F₅)₃ 11,^{28,29} $tBu_2PH(C_6F_4)BF(C_6F_5)_2$ 24, $Mes_2PH(C_6F_4)BF(C_6F_5)_2$ **26**, $i Pr_3 P(C_6F_4) BF(C_6F_5)_2$ **30**, $Cy_3 P(C_6F_4) BF(C_6F_5)_2$ **32**,³⁰ and $PhB(C_6F_5)_2$ **36**³¹ were prepared by published methods.

Synthesis of (CyPH₂)B(C₆F₅)₃ 1, ((C₅H₉)₂PH)B(C₆F₅)₃ 2, (Cy₂PH)B(C₆F₅)₃ 3, (Et₂PH)B(C₆F₅)₃ 4, (Et₃P)B(C₆F₅)₃ 9, (*n*-Bu₃P)B(C₆F₅)₃ 10

These compounds were prepared in a similar fashion and thus only one preparation is detailed. To a clear solution of $B(C_6F_5)_3$ (0.100 g, 0.20 mmol) in toluene (5 mL) was added $(C_5H_9)_2$ PH (0.034 g, 0.20 mmol). The reaction was allowed to stir for 1 h at 25 °C. The solvent was removed *in vacuo* to give the product **2** as a white solid.

1. Yield 0.230 g (93%). ¹H NMR (C₆D₅Br): 4.65 (d, 2H, ¹*J*_{HP} = 393 Hz, P*H*₂), 1.68 (br s, 1H, PCy), 1.43–1.36 (br m, 5H, PCy), 0.95–0.84 (br m, 5H, PCy). ¹¹B{¹H} NMR (C₆D₅Br): -17.5 (br). ¹³C{¹H} NMR (C₆D₅Br) partial: 147.9 (dm, ¹*J*_{CF} = 242 Hz, CF), 140.3 (dm, ¹*J*_{CF} = 250 Hz, CF), 137.1 (dm, ¹*J*_{CF} = 246 Hz, CF), 114.8 (quat), 31.4 (d, ³*J*_{CP} = 6 Hz, PCy), 27.7 (d, ¹*J*_{CP} = 33 Hz PCy), 26.1 (d, ²*J*_{CP} = 12 Hz PCy), 24.8 (s, PCy). ¹⁹F NMR (C₆D₅Br): -130.5 (s, 6F, *o*-C₆*F*₅), -155.3 (t, 3F, ³*J*_{FF} = 21 Hz, *p*-C₆*F*₅), -162.3 (m, 6F, ³*J*_{FF} = 20 Hz *m*-C₆*F*₅). ³¹P NMR (C₆D₅Br): -30.0 (br t, ¹*J*_{PH} = 392 Hz).

2. Yield 95%. Crystals suitable for X-ray diffraction were grown *via* slow diffusion of pentane into a CH₂Cl₂/toluene solution at 25 °C. ¹H NMR (CD₂Cl₂): 5.60 (d, 1H, ¹J_{HP} = 408 Hz, PH), 2.16 (m, 2H, P(C₃H₉)), 1.95 (m, 2H, P(C₅H₉)), 1.69–1.35 (br m, 14H, P(C₅H₉)). ¹¹B{¹H} NMR (CD₂Cl₂): -15.9 (d, ¹J_{BP} = 80 Hz). ¹³C{¹H} NMR (CD₂Cl₂) partial: 148.7 (dm, ¹J_{CF} = 240 Hz, CF), 140.5 (dm, ¹J_{CF} = 254 Hz, CF), 138.0 (dm, ¹J_{CF} = 254 Hz, CF), 117.4 (br s, quat), 32.5 (s, P(C₅H₉)₂), 30.3 (br m, P(C₅H₉)₂), 29.8 (s, P(C₅H₉)₂), 26.2 (d, ²J_{CP} = 8 Hz, P(C₅H₉)₂), 25.7 (d, ²J_{CP} = 8 Hz, P(C₅H₉)₂). ¹⁹F NMR (CD₂Cl₂): -129.7 (s, 6F, *o*-C₆*F*₅), -157.9 (t, 3F, ³J_{FF} = 20 Hz, *p*-C₆*F*₅), -164.1 (m, 6F, ³J_{FF} = 20 Hz*m*-C₆*F*₅). ³¹P NMR (CD₂Cl₂): 11.2 (dq, ¹J_{PH} = 402 Hz, ¹J_{PB} = 80 Hz). Anal. calcd. for C₂₈H₁₉BF₁₅P: C, 49.30; H, 2.81. Found: C, 49.20; H, 2.75.

3. Yield 135 mg (97%). ¹H NMR (C_6D_5Br): 1.77 (m, 2H, CH_2), 1.34 (m, 2H, CH_2), 1.63 (m, 2H, CH_2), 0.75 (t, 3H, ³ J_{HH} =

7 Hz, Me). ¹¹B{¹H} NMR (C₆D₅Br): -13.5 (bs). ¹³C{¹H} NMR (C₆D₅Br): 148.3 (dm, ¹ $J_{CF} = 240$ Hz, *CF*), 139.5 (dm, ¹ $J_{CF} = 252$ Hz, *CF*), 136.91 (dm, ¹ $J_{CF} = 254$ Hz, *CF*), 115.93 (br, quat), 25.3 (d, ³ $J_{CP} = 5$ Hz, *CH*₂), 23.9 (d, ² $J_{CP} = 11$ Hz, *CH*₂), 20.1 (d, ¹ $J_{CF} = 30$ Hz, *CH*₂), 12.8 (s, Me). ¹⁹F NMR (C₆D₅Br): -129.3 (d, 6F, ³ $J_{FF} = 20$ Hz, o-C₆ F_5), -156.0 (t, 3F, ³ $J_{FF} = 23$ Hz, p-C₆ F_5), -163.0 (m, 6F, ³ $J_{FF} = 24$ Hz, m-C₆ F_5). ³¹P {¹H} NMR (C₆D₅Br): -0.6 (bs). Anal. calcd. for C₃₀H₂₇BF₁₅P: C, 50.44; H, 3.81. Found: C, 50.24; H, 3.75.

4. Yield 94%. Crystals suitable for X-ray diffraction were grown *via* slow evaporation of a concentrated bromobenzene solution at 25 °C. ¹H NMR (C₆D₃Br): 4.42 (dm, 1H, ¹J_{HP} = 410 Hz, P*H*), 0.90 (dm, 4H, ²J_{HP} = 132 Hz, C*H*₂), 0.45 (dt, 6H, ³J_{HP} = 16 Hz, ³J_{HH} = 18 Hz Me). ¹¹B{¹H} NMR (C₆D₅Br): -16.2 (d, ¹J_{BP} = 95 Hz). ¹³C{¹H} NMR (C₆D₅Br) partial: 148.3 (dm, ¹J_{CF} = 240 Hz, CF), 140.1 (dm, ¹J_{CF} = 240 Hz, CF), 137.1 (dm, ¹J_{CF} = 250 Hz, CF), 115.8 (br s, quat), 11.91 (d, ¹J_{CP} = 36 Hz, CH₂), 10.9 (d, ²J_{CP} = 8 Hz, Me). ¹⁹F NMR (C₆D₅Br): -130.4 (s, 6F, *o*-C₆F₅), -155.6 (t, 3F, ³J_{FF} = 20 Hz, *p*-C₆F₅), -162.9 (m, 6F, ³J_{FF} = 20 Hz *m*-C₆F₅). ³¹P NMR (C₆D₅Br): 5.7 (dq, ¹J_{PH} = 412 Hz, ¹J_{PB} = 92 Hz). Anal. calcd. for C₂₂H₁₁BF₁₅P: C, 43.98; H, 1.84. Found: C, 44.20; H, 2.05.

9. Yield 86%. Crystals suitable for X-ray diffraction were grown *via* slow evaporation of a concentrated THF solution at 25 °C. ¹H NMR (THF-d₈): 1.94–1.88 (br m, 6H, CH₂), 1.24–1.14 (m, 9H, Me). ¹¹B{¹H} NMR (THF-d₈): -13.4 (d, ¹J_{BP} = 75 Hz). ¹³C{¹H} NMR (THF-d₈): 149.2 (dm, ¹J_{CF} = 239 Hz, CF), 140.92 (dm, ¹J_{CF} = 249 Hz, CF), 138.4 (dm, ¹J_{CF} = 254 Hz, CF), 117.6 (br s, quat), 14.6 (d, ¹J_{CP} = 35 Hz, CH₂), 8.6 (d, ²J_{CP} = 8 Hz, Me). ¹⁹F NMR (THF-d₈): -130.2 (d, 6F, ³J_{FF} = 22 Hz, *o*-C₆F₅), -158.7 (m, 3F, ³J_{FF} = 22 Hz, *p*-C₆F₅), -165.3 (m, 6F, ³J_{FF} = 22 Hz, *m*-C₆F₅). ³¹P {¹H} NMR (THF-d₈): 5.6 (dm, ¹J_{CP} = 80 Hz). Anal. calcd. for C₂₄H₁₅BF₁₅P: C, 45.75; H, 2.40. Found: C, 46.20; H, 2.55%.

10. Yield 97%. ¹H NMR (C_6D_5Br): 1.77 (m, 2H, CH_2), 1.34 (m, 2H, CH_2), 1.63 (m, 2H, CH_2), 0.75 (t, 3H, ${}^{3}J_{HH} = 7$ Hz, Me). ¹¹B{¹H} NMR (C_6D_5Br): -13.5 (br). ¹³C{¹H} NMR (C_6D_5Br): 148.3 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 139.5 (dm, ${}^{1}J_{CF} = 252$ Hz, CF), 136.9 (dm, ${}^{1}J_{CF} = 254$ Hz, CF), 115.9 (br s, quat), 25.3 (d, ${}^{3}J_{CP} = 5$ Hz, CH₂), 23.9 (d, ${}^{2}J_{CP} = 11$ Hz, CH₂), 20.1 (d, ${}^{1}J_{CP} = 30$ Hz, CH₂), 12.0 (s, Me). ¹⁹F NMR (C_6D_5Br): -129.3 (d, 6F, ${}^{3}J_{FF} = 20$ Hz, $o-C_6F_5$), -156.0 (t, 3F, ${}^{3}J_{FF} = 23$ Hz, $p-C_6F_5$), -163.0 (m, 6F, ${}^{3}J_{FF} = 24$ Hz, $m-C_6F_5$). ³¹P {¹H} NMR (C_6D_5Br): -0.58 (bs). Anal. calcd. for $C_{30}H_{27}BF_{15}P$: C, 50.44; H, 3.81. Found: C, 50.24; H, 3.75.

Generation of (tBu₂PH)B(C₆F₅)₃ 5

An NMR tube was charged with $B(C_6F_5)_3$ (0.050 g, 0.098 mmol) and CD_2Cl_2 (0.75 mL). The NMR tube was capped with a rubber septum, wrapped with parafilm, and cooled to -78 °C in a dry ice/acetone bath. Using a syringe, tBu_2PH (18 µL, 0.097 mmol) was added to the NMR tube. The NMR tube was then inserted into an NMR spectrometer pre-cooled to -60 °C. Crystals could only be isolated at low temperature as this species proved to be thermally unstable. ¹H NMR (CD₂Cl₂, 213 K): 5.58 (d, 1H, ¹J_{HP} = 397 Hz, PH), 1.19 (d, 18H, ¹J_{HP} = 14 Hz, PtBu}. ¹¹B{¹H} NMR (CD₂Cl₂, 213 K): -12.8 (br). ¹³C{¹H} NMR (CD₂Cl₂, 213 K) partial: 148.2 (dm, ${}^{1}J_{CF} = 250$ Hz, *C*F), 147.2 (dm, ${}^{1}J_{CF} = 245$ Hz, *C*F), 139.4 (dm, ${}^{1}J_{CF} = 245$ Hz, *C*F), 139.0 (dm, ${}^{1}J_{CF} = 250$ Hz, *C*F), 138.9 (dm, ${}^{1}J_{CF} = 245$ Hz, *C*F), 118.5 (quat), 114.9 (quat), 36.8 (d, ${}^{1}J_{CP} = 22$ Hz, *Pt*Bu), 30.3 (s, *Pt*Bu). 19 F NMR (CD₂Cl₂, 213 K): -126.4 (m, 2F, o-C₆*F*₅), -128.7 (d, 2F, ${}^{3}J_{FF} = 26$ Hz, o-C₆*F*₅), -131.3 (m, 2F, o-C₆*F*₅), -156.4 (m, 1F, ${}^{3}J_{FF} = 22$ Hz, *p*-C₆*F*₅), -158.8 (t, 2F, ${}^{3}J_{FF} = 24$ Hz, *p*-C₆*F*₅), -163.7 (m, 2F, ${}^{3}J_{FF} = 26$ Hz, *m*-C₆*F*₅), -164.1 (m, 2F, *m*-C₆*F*₅), -164.7 (m, 2F, *m*-C₆*F*₅). ³¹P NMR (CD₂Cl₂, 213 K): 17.4 (d, ${}^{1}J_{PH} = 394$ Hz, *P*H).

Synthesis of (Mes₂PH)B(C₆F₅)₃ 7

A clear yellow solution of $B(C_6F_5)_3$ (1.50 g, 2.93 mmol) and dimesityl phosphine (0.800 g, 2.96 mmol) in toluene (10 mL) was prepared. The reaction was cooled to -35 °C and allowed to stir for 12 h during which time the solution turned red and a white precipitate formed. Pentane (10 mL) was added and the mixture filtered. The resulting red filtrate was evaporated to dryness to give the product as a pink solid. Yield 0.475 g (20%). ¹H NMR (CD_2Cl_2) : 6.88 (s, 4H, $P(C_6H_2)_2$), 6.64 (bs, 1H, PH), 2.26 (s, 6H, $P(C_6H_2Me-4)_2)$, 2.15 (s, 12H, $P(C_6H_2Me-2,6)_2)$. ¹¹ $B{^1H}$ NMR (CD₂Cl₂): 23.6 (bs). ¹³C{¹H} NMR (CD₂Cl₂, partial): 148.9 (dm, ${}^{1}J_{CF} = 245$ Hz, CF), 143.0 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 142.9 (d, ${}^{2}J_{CP} = 9$ Hz, $o - C_{6}H_{2}$), 140.9 (s, $p - C_{6}H_{2}$), 138.1 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 130.3 (d, ${}^{3}J_{CP} = 5$ Hz, $m - C_{6}H_{2}$), 120.7 (d, ${}^{1}J_{CP} = 80$ Hz, $P-C_6H_2$), 23.1 (d, ${}^{3}J_{CP} = 17$ Hz, $C_6H_2Me-2,6$), 21.2 (s, C_6H_2Me-4). ¹⁹F NMR (CD₂Cl₂): -128.0 (s, 6F, o-C₆ F_5), -151.5 (s, 3F, p-C₆ F_5), -163.0 (s, 6F, m-C₆ F_5). ³¹P {¹H} NMR (CD₂Cl₂): -67.7 (br). Anal. calcd. for C₃₆H₂₃BF₁₅P: C, 55.27; H, 2.96. Found: C, 55.34; H, 3.24.

Synthesis of *t*Bu₂PH(C₄H₈O)B(C₆F₅)₃ 12, Mes₂PH(C₄H₈O)B(C₆F₅)₃ 13, Cy₃P(C₄H₈O)B(C₆F₅)₃ 15

These compounds were prepared in a similar fashion and thus only one preparation is detailed. To a faint yellow solution of $B(C_6F_5)_3$ (0.350 g, 0.684 mmol) in THF (4 mL) was added tBu_2PH (0.100 g, 0.684 mmol) *via* syringe and the reaction mixture was left to stir for 72 h at 25 °C. All volatiles were removed *in vacuo* and the resulting white solid was dried under vacuum for 12 h.

12. Yield 0.404 g (81%). Crystals suitable for X-ray diffraction were grown from a layered THF/C₆D₆/pentane solution at 25 °C. ¹H NMR (THF-d₈): 5.60 (dt, 1H, ¹J_{HP} = 453 Hz, ³J_{HH} = 4 Hz, PH), 3.24 (t, 2H, ³J_{HH} = 5 Hz, CH₂O), 2.64 (m, 2H, PCH₂), 1.99 (m, 2H, PCH₂CH₂), 1.67 (m, 2H, CH₂CH₂O), 1.45 (d, 18H, ³J_{HP} = 16 Hz, *t*Bu). ¹¹B NMR (C₆D₆): -2.9. ¹³C{¹H} NMR (C₆D₆): 149.2 (dm, ¹J_{CF} = 230 Hz, CF), 139.3 (dm, ¹J_{CF} = 244 Hz, CF), 137.4 (dm, ¹J_{CF} = 237 Hz, CF), 125.7 (quat, C₆F₅), 64.4 (s, CH₂O), 33.6 (d, ¹J_{CP} = 35.9 Hz, quat, PtBu), 32.79 (d, ³J_{CP} = 11 Hz, CH₂CH₂O), 27.1 (s, *t*Bu), 26.93 (m, PCH₂CH₂), 15.0 (d, ¹J_{CP} = 39 Hz, PCH₂CH₂). ¹⁹F NMR (C₆D₆): -133.9 (d, ³J_{FF} = 23 Hz, 6F, *o*-C₆F₅), -164.78 (t, ³J_{FF} = 11 Hz, 3F, *p*-C₆F₅), -168.02 (t, ³J_{FF} = 20 Hz, 6F, *m*-C₆F₅). ³¹P NMR (C₆D₆): 50.9 (¹J_{HP} = 453 Hz). Anal. calcd. for C₃₀H₂₇BF₁₅OP: C, 49.34; H, 3.73. Found: C, 48.85; H, 3.58.

13. Yield 0.497 g (79%). Crystals suitable for X-ray diffraction were grown from a concentrated solution in C₆D₆ at 25 °C. ¹H NMR (C₆D₆): 7.33 (dt, 1H, ¹J_{HP} = 531 Hz, ³J_{HH} = 7 Hz, PH), 6.40 (d, ⁴J_{HP} = 4 Hz, 4H, P(C₆H₂)), 3.48 (m, 2H, CH₂O), 2.85 (m, 2H, PCH₂CH₂), 1.90 (s, 6H, P(C₆H₂Me-4)₂), 1.87 (s, 12H, P(C₆H₂Me-

2,6)₂), 1.62 (m, 2H, CH₂CH₂O), 1.23 (m, 2H, PCH₂CH₂). ¹¹B NMR (C₆D₆): -2.8. ¹³C{¹H} NMR (C₆D₆): 149.0 (dm, ¹*J*_{CF} = 246 Hz, *CF*), 146.1 (s, *p*-C₆H₂), 143.36 (d, ²*J*_{CP} = 11 Hz, *o*-C₆H₂), 139.28 (dm, ¹*J*_{CF} = 252 Hz, *CF*), 137.5 (dm, ¹*J*_{CF} = 257 Hz, *CF*), 132.2 (d, ²*J*_{CP} = 11 Hz, *m*-C₆H₂), 125.0 (quat, *C*₆F₅), 112.1 (d, ¹*J*_{CP} = 80 Hz, quat, *C*₆H₂), 65.6 (s, *C*H₂O), 30.9 (s, PCH₂CH₂), 24.9 (d, ¹*J*_{CP} = 58 Hz, PCH₂CH₂), 24.0 (s, *C*H₂CH₂O), 21.8 (d, ³*J*_{CP} = 8 Hz, *C*₆H₂*Me*-2,6), 21.1 (s, *C*₆H₂*Me*-4). ¹⁹F NMR (C₆D₆): -133.9 (d, ³*J*_{FF} = 23 Hz, 6F, *o*-C₆F₅), -162.2 (s, 3F, *p*-C₆F₅), -165.9 (s, 6F, *m*-C₆F₅). ³¹P {¹H} NMR (C₆D₆): -12.0. Anal. calcd. for C₄₀H₃₁BF₁₅OP: C, 56.23; H, 3.66. Found: C, 56.48; H, 3.83.

15. Yield 302 mg (98%). Crystals suitable for X-ray diffraction were grown from a concentrated solution in CH₂Cl₂/toluene layered with pentane at 25 °C. ¹H NMR (CD₂Cl₂): 3.21 (m, 2H, CH₂O), 2.46–2.40 (br m, 2H, PCH₂), 2.23–2.15 (m, 3H, Cy), 1.89–1.80 (br m, 12H, Cy), 1.72–1.66 (m, 2H, PCH₂CH₂), 1.65 (m, 2H, CH₂CH₂O), 1.50–1.41 (br m, 6H, Cy), 1.36–1.26 (br m, 12H, Cy). ¹¹B{¹H} NMR (CD₂Cl₂): -2.1. ¹³C{¹H} NMR (CD₂Cl₂) partial: 148.6 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 138.8 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 137.0 (dm, ${}^{1}J_{CF} = 245$ Hz, CF), 125.9 (br s, quat), 63.8 (s, CH₂CH₂O), 32.8 (d, ${}^{3}J_{CP} = 17$ Hz, CH₂CH₂O), 30.5 (d, ${}^{1}J_{CP} =$ 42 Hz, Cy), 27.5 (s, Cy), 27.2 (d, ${}^{3}J_{CP} = 11$ Hz, Cy), 25.9 (s, Cy). 21.9 (s, PCH₂CH₂), 16.2 (d, ${}^{1}J_{CP} = 44$ Hz, PCH₂CH₂). ${}^{19}F$ NMR (CD_2Cl_2) : -134.5 (d, 6F, ${}^{3}J_{FF} = 23$ Hz, o-C₆F₅), -163.8 (t, 3F, ${}^{3}J_{\text{FF}} = 23$ Hz, $p - C_{6}F_{5}$), -167.4 (t, 6F, ${}^{3}J_{\text{FF}} = 20$ Hz, $m - C_{6}F_{5}$). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂): 32.1. Anal. calcd. for C₄₀H₄₁BF₁₅OP: C, 55.57; H, 4.78. Found: C, 56.10; H, 4.98. Mp: 200-205 °C.

Synthesis of Et₃P(C₄H₈O)B(C₆F₅)₃ 14

 $(Et_3P)B(C_6F_5)_3$ (0.100 g, 0.16 mmol) was dissolved in THF (10 mL) and transferred to a 50 mL reaction bomb. The solution was heated to 80 °C for 5 h. Upon cooling all volatiles were removed in vacuo to give the ring-opened product as a white solid. Yield 90 mg (81%). Crystals suitable for X-ray diffraction were grown from a concentrated solution in CH2Cl2/toluene layered with pentane at 25 °C. ¹H NMR (CD₂Cl₂): 3.23 (m, 2H, CH₂CH₂O), 2.59–2.49 (br m, 2H, PCH₂CH₂), 2.11–1.99 (dq, 6H, ${}^{3}J_{HP} = 12$ Hz, ${}^{3}J_{HH} =$ 8 Hz, CH₂), 1.83 (m, 2H, PCH₂CH₂), 1.66 (m, 2H, CH₂CH₂O), 1.32–1.23 (dt, 9H, ${}^{3}J_{HP} = 18$ Hz, ${}^{3}J_{HH} = 8$ Hz, Me). ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂): -2.9. ¹³C{¹H} NMR (CD₂Cl₂): 148.5 (dm, ¹ J_{CF} = 240 Hz, CF), 138.7 (dm, ${}^{1}J_{CF} = 246$ Hz, CF), 137.2 (dm, ${}^{1}J_{CF} =$ 250 Hz, CF), 124.9 (br s, quat), 63.1 (s, CH_2CH_2O), 31.9 (d, ${}^{3}J_{CP} =$ 14 Hz, CH_2CH_2O), 20.2 (d, ${}^{2}J_{CP} = 7$ Hz, PCH_2CH_2), 17.8 (d, ${}^{1}J_{CP} =$ 47 Hz, PCH₂CH₂), 12.3 (d, ${}^{1}J_{CP} = 50$ Hz, CH₂), 5.7 (s, Me). ${}^{19}F$ NMR (CD₂Cl₂): -134.8 (d, 6F, ${}^{3}J_{FF} = 20$ Hz, $o-C_{6}F_{5}$), -163.5 (m, 3F, ${}^{3}J_{FF} = 20$ Hz, $p-C_{6}F_{5}$), -167.3 (m, 6F, ${}^{3}J_{FF} = 20$ Hz, $m-C_{6}F_{5}$). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂): 38.7. Anal. calcd. for C₂₈H₂₃BF₁₅OP: C, 47.89; H, 3.30. Found: C, 48.11; H, 3.52. Mp: 165-170 °C.

Generation of [Li(THF)₂][tBu₂P(C₄H₈O)B(C₆F₅)₃] 16

Method A. The species **12** (0.207 g, 0.283 mmol) was dissolved in THF (5 mL) and cooled to -35 °C. To this reaction mixture was added *t*BuLi in hexanes (0.18 mL, 0.301 mmol) *via* syringe. The mixture became pale yellow and then colorless and was allowed to warm to room temperature over 30 min, during which time the solution again became pale yellow. The reaction was stirred for a further 2 h. All volatiles were removed *in vacuo* and the resulting white solid was dried under vacuum for 12 h. Yield 0.180 g (73%).

Method B. LiPtBu₂ (0.100 g, 0.657 mmol) was dissolved in THF (4 mL) and cooled to -78 °C in a dry ice/acetone bath. A solution of $B(C_6F_5)_3$ (0.340 g, 0.664 mmol) in THF (2 mL) was then added to the phosphide via syringe over the course of 15 min. The vellow solution was warmed to room temperature over the course of 6 h and then further stirred at room temperature overnight. All volatiles were removed in vacuo to give a white sticky solid. The residue was triturated with hexanes (10 mL), the solvent decanted and the residual solvent removed in vacuo three times. The resulting off-white solid was dried under vacuum overnight. Yield 0.350 g (65%).¹H NMR (THF-d₈): 4.02 (m, 2H, CH₂CH₂O), 3.60 (s, 8H, THF), 2.18 (m, 2H, PCH₂CH₂), 1.84 (m, 2H, CH₂CH₂O), 1.90 (s, 8H, THF), 1.75 (m, 2H, PCH₂CH₂), 1.46 (d, 18H, ${}^{3}J_{HP} =$ 11 Hz, tBu). ¹H NMR (C₆D₆): 3.55 (s, 8H, THF), 3.45 (m, 2H, CH₂CH₂O), 1.75 (s, 8H, THF), 1.40 (m, 2H, PCH₂CH₂), 1.29 (m, 2H, CH₂CH₂O), 1.08 (m, 2H, PCH₂CH₂), 0.96 (d, 18H, ${}^{3}J_{HP} =$ 11 Hz, *t*Bu). ¹¹B NMR (THF-d₈): -2.9. ¹³C{¹H} NMR (THF-d₈): 149.3 (dm, ${}^{1}J_{CF} = 235$ Hz, CF), 139.2 (dm, ${}^{1}J_{CF} = 242$ Hz, CF), 137.2 (dm, ${}^{1}J_{CF} = 244$ Hz, CF), 126.61 (quat, PC₆F₅), 64.5 (s, CH₂CH₂O), 35.4 (d, ${}^{1}J_{CP} = 30$ Hz, quat, tBu), 31.8 (d, ${}^{3}J_{CP} =$ 20 Hz, CH_2CH_2O), 30.42 (d, ${}^{2}J_{CP} = 9$ Hz, tBu), 28.31 (d, ${}^{1}J_{CP} =$ 26 Hz, PCH₂CH₂), 22.38 (d, ${}^{2}J_{CP} = 20$ Hz PCH₂CH₂). ¹⁹F NMR $(THF-d_8)$: -136.7 (m, 6F, o-C₆F₅), -159.6 (t, ${}^{3}J_{PF} = 20$ Hz, 3F, $p-C_6F_5$), -164.1 (s, 6F, $m-C_6F_5$). ³¹P NMR (THF-d₈): 27.4. Anal. calcd. for C₄₀H₄₂BF₁₅O₃PLi: C, 53.12; H, 4.68. Found: C, 53.00; H, 4.83.

Generation of [Li][tBu₂P(C₄H₈O)B(C₆F₅)₃] 17

The species 12 (0.200 g, 0.274 mmol) was slurried in toluene (8 mL) and cooled to -35 °C. To this mixture was added *t*BuLi in hexanes (0.16 mL, 0.274 mmol) via syringe. The reaction was allowed to warm to 25 °C over 30 min. at which time all solids dissolved. The reaction was stirred for a further 2 h. All volatiles were removed in vacuo and the resulting solid was dried under vacuum for 12 h, giving the product as an off-white solid. Yield 0.180 g (89%). ¹H NMR (toluene-d₈): $\delta 3.18$ (br s, 2H, CH₂CH₂O), 1.35 (m, 2H, PCH₂CH₂), 1.30 (m, 2H, PCH₂CH₂CH₂CH₂O), 0.95 (m, 2H, PCH₂CH₂), 0.88 (d, 18H, ${}^{3}J_{HP} = 11.60$ Hz, tBu). ¹¹B NMR (toluene- d_8): -2.9. ¹³C{¹H} NMR (toluene- d_8): 148.9 (dm, ${}^{1}J_{CF} = 235$ Hz, CF), 140.11 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 137.98 (dm, ${}^{1}J_{CF} = 238$ Hz, CF), 126.0 (quat, CF), 64.1 (s, CH₂CH₂O), 31.7 (d, ${}^{1}J_{CP} = 32$ Hz, quat, tBu), 30.9 (d, ${}^{3}J_{CP} = 7$ Hz, CH₂CH₂O), 29.5 (d, ${}^{2}J_{CP} = 10$ Hz, tBu), 22.7 (d, ${}^{1}J_{CP} = 17$ Hz, PCH₂CH₂), 19.6 (s, PCH₂CH₂). ¹⁹F NMR (toluene-d₈): -139.2 (s, 6F, o-C₆F₅), -158.3 (t, ${}^{3}J_{FF} = 20$ Hz, 3F, *p*-C₆*F*₅), -163.3 (t, ${}^{3}J_{FF} = 20$ Hz, 6F, $m-C_6F_5$). ⁷Li NMR (toluene-d₈): 1.3–0.5 (dm, $J_{LiP} = 75$ Hz). ³¹P NMR (toluene- d_8): 26.7 (q, $J_{PLi} = 75$ Hz).

Synthesis of $[Li(THF)_2][Ph_2P(C_4H_8O)B(C_6F_5)_3]$ 18, $[Li(THF)_2][Mes_2P(C_4H_8O)B(C_6F_5)_3]$ 19

These compounds were prepared in a similar fashion and thus one preparation is detailed. To a faint yellow solution of $B(C_6F_5)_3$ (0.200 g, 0.391 mmol) in toluene (2 mL) was added THF (0.16 mL, 1.97 mmol). LiPPh₂ (0.075 g, 0.390 mmol) in toluene (2 mL) and THF (0.16 mL, 1.97 mmol) was added and the reaction mixture was left to stir for 24 h at 25 °C. All volatiles were removed *in* vacuo and the resulting cream-colored solid was washed with Et_2O (2 mL) and pentane (2 mL) and then dried under vacuum for 24 h.

18. Yield 0.188 g (62%). ¹H NMR (C_6D_6): 7.28 (m, 4H, PPh₂), 7.05 (m, 6H, PPh₂), 3.38 (t, ³ $J_{HH} = 7$ Hz, 2H, CH₂CH₂O), 3.25 (m, 8H, THF), 1.85 (t, ³ $J_{HH} = 7$ Hz, 2H, PCH₂CH₂), 1.42 (m, 2H, CH₂CH₂O), 1.26 (m, 2H, PCH₂CH₂), 1.19 (s, 8H, THF). ¹¹B NMR (C_6D_6): -2.7. ¹³C{¹H} NMR (C_6D_6) partial: 148.7 (dm, ¹ $J_{CF} = 232$ Hz, CF), 139.59 (dm, ¹ $J_{CF} = 237$ Hz, CF), 137.22 (dm, ¹ $J_{CF} = 249$ Hz, CF), 133.41, 132.75, 131.57, 128.81 (quat, C_6H_5), 68.37 (s, THF), 65.13 (s, CH₂CH₂O), 31.96 (d, ³ $J_{CP} = 10$ Hz, CH₂CH₂O), 27.59 (d, ¹ $J_{CP} = 10$ Hz, PCH₂CH₂), 25.15 (s, THF), 22.56 (d, ² $J_{CP} = 15$ Hz, PCH₂CH₂). ¹⁹F NMR (C_6D_6): -137.5 (d, ³ $J_{FF} = 14$ Hz, 6F, *o*- C_6F_5), -159.1 (t, ³ $J_{FF} = -20$ Hz, 3F, *p*- C_6F_5), -164.2 (t, ³ $J_{FF} = 20$ Hz, 6F, *m*- C_6F_5). ³¹P NMR (C_6D_6): -18.9. Anal. calcd. for C₄₂H₃₂BF₁₅LiO₃P: C, 54.81; H, 3.72. Found: C, 54.77; H, 4.01.

19. Yield 0.844 g (80%). Crystals suitable for X-ray diffraction were grown from a layered CH₂Cl₂/pentane solution at 25 °C. ¹H NMR (CD₂Cl₂): 6.75 (s, 4H, C₆H₂), 3.72 (s, 8H, THF), 3.22 (m, 2H, CH₂CH₂O), 2.33 (m, 2H, PCH₂CH₂), 2.20 (s, 18H, Me), 1.85 (s, 8H, THF), 1.49 (m, 2H, CH₂CH₂O), 1.14 (m, 2H, PCH₂CH₂). ¹¹B NMR (CD₂Cl₂): -3.1. ¹³C{¹H} NMR (CD₂Cl₂): 148.4 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 142.2 (d, ${}^{2}J_{CP} = 13$ Hz, $o-C_{6}H_{2}$), 139.7 (dm, ${}^{1}J_{CF} = 240$ Hz, *CF*), 138.1 (s, *p*-C₆H₂), 137.3 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 130.4 (s, m-C₆H₂), 122.5, 118.0 (quat, C₆F₅, C₆H₂), 68.9 (s, THF), 65.6 (s, CH_2CH_2O), 33.4 (d, ${}^{2}J_{CP} = 14$ Hz, PCH_2CH_2), 28.2 $(d, {}^{1}J_{CP} = 14 \text{ Hz}, \text{PCH}_2\text{CH}_2), 25.9 \text{ (s, THF)}, 23.9 \text{ (s, CH}_2\text{CH}_2\text{O}),$ 23.2 (d, ${}^{3}J_{CP} = 14$ Hz, C₆H₂Me-2,6), 21.0 (s, C₆H₂Me-4). ${}^{19}F$ NMR (CD_2Cl_2) : -137.6 (d, ${}^{3}J_{FF} = 20$ Hz, 6F, o-C₆F₅), -161.0 (t, ${}^{3}J_{FF} =$ 20 Hz, 3F, p-C₆ F_5), -165.6 (t, ${}^{3}J_{FF} = 20$ Hz, 6F, m-C₆ F_5). ${}^{31}P$ NMR (CD₂Cl₂): -21.4. Anal. calcd. for C₄₈H₄₆BF₁₅LiO₃P: C, 57.39; H, 4.62. Found: C, 57.57; H, 5.25.

Synthesis of [Li][*t*Bu₂P(C₄H₈OB(C₆F₅)₃)₂] 20

To a faint yellow solution of $B(C_6F_5)_3$ (0.673 g, 1.314 mmol) in THF (2 mL) was added LiPtBu₂ (0.100 g, 0.657 mmol) in THF (4 mL) and the reaction mixture was left to stir for 12 h at 25 °C. All volatiles were removed in vacuo and the resulting white solid was dried under vacuum for 24 h. Yield 0.776 g (89%). Crystals suitable for X-ray diffraction were grown from a layered THF/pentane solution at 25 °C. ¹H NMR (THF-d₈): 3.22 (t, 4H, ${}^{3}J_{\rm HH} = 5$ Hz, CH₂CH₂O), 2.51 (m, 4H, PCH₂CH₂CH₂CH₂O), 1.92 (m, 4H, PCH₂CH₂), 1.65 (m, 4H, CH₂CH₂O), 1.35 (d, 18H, ${}^{3}J_{\rm HP} = 14$ Hz, tBu). ¹¹B NMR (THF-d₈): -2.9. ¹³C{¹H} NMR (THF-d₈): 149.2 (dm, ${}^{1}J_{CF} = 246$ Hz, CF), 139.2 (dm, ${}^{1}J_{CF} =$ 244 Hz, CF), 137.5 (dm, ${}^{1}J_{CF} = 245$ Hz, CF), 126.22 (quat, $C_{6}F_{5}$), 64.5 (s, CH₂CH₂O), 35.3 (d, ${}^{1}J_{CP}$ = 38 Hz, quat, PtBu), 33.4 (d, ${}^{3}J_{CP} = 12 \text{ Hz}, CH_{2}CH_{2}O), 27.5 \text{ (s, } tBu), 26.6 \text{ (m, } PCH_{2}CH_{2}), 17.8 \text{ (s)}$ $(d, {}^{1}J_{CP} = 40 \text{ Hz}, PCH_2CH_2). {}^{19}\text{F} \text{ NMR} (THF-d_8): -133.9 (d,$ ${}^{3}J_{\text{FF}} = 23$ Hz, 12F, $o - C_{6}F_{5}$), -165.2 (t, ${}^{3}J_{\text{FF}} = 11$ Hz, 6F, $p - C_{6}F_{5}$), -168.2 (t, ${}^{3}J_{FF} = 20$ Hz, 12F, $m \cdot C_{6}F_{5}$). ${}^{31}P$ NMR (THF-d₈): 45.3. Anal. calcd. for C₅₂H₃₄B₂F₃₀LiO₂P: C, 47.30; H, 2.60. Found: C, 47.58; H, 2.89.

Synthesis of [Li(THF)₄][Mes₂P(C₄H₈OB(C₆F₅)₃)₂] 21

To a faint yellow solution of $B(C_6F_5)_3$ (0.200 g, 0.391 mmol) in THF (5 mL) was added dropwise an orange solution of LiPMes₂ (0.054 g, 0.195 mmol) in THF (5 mL). The reaction mixture immediately went colorless followed by a gradual color change to red. The reaction mixture was allowed to stir for 12 h, at which time all volatiles were remove in vacuo. Pentane (5 mL) was added and the reaction stirred for 10 min. All volatiles were removed in vacuo and the residue dried under vacuum for 24 h yielding the product as a tan solid. Yield 0.844 g (80%). ¹H NMR (CD₂Cl₂): 6.99 (d, ${}^{4}J_{\rm HP} = 4$ Hz, 4H, C₆H₂), 3.69 (s, 16H, THF), 3.15 (m, 4H, CH₂CH₂O), 2.75 (m, 4H, PCH₂CH₂), 2.32 (s, 6H, C₆H₂Me-4), 2.17 (s, 12H, C₆H₂Me-2,6), 1.85 (s, 16H, THF), 1.48 (m, 4H, CH₂CH₂O), 1.36 (m, 4H, PCH₂CH₂). ¹¹B NMR (CD₂Cl₂): -3.0. ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂): 148.4 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 145.8 (s, $p-C_6H_2$), 142.2 (d, ${}^2J_{CP} = 10$ Hz, $o-C_6H_2$), 139.3 (dm, ${}^1J_{CF} =$ 240 Hz, CF), 137.3 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 133.5 (d, ${}^{3}J_{CP} =$ 10 Hz, m- C_6 H₂), 123.4 (quat, C_6 F₅), 117.1 (d, ${}^1J_{CP} = 88$ Hz, quat, C_6H_2), 68.7 (s, THF), 64.8 (s, CH₂CH₂O), 32.3 (d, ²J_{CP} = 13 Hz, PCH_2CH_2), 27.2 (d, ${}^{1}J_{CP} = 44$ Hz, PCH_2CH_2), 25.9 (s, THF), 23.5 (d, ${}^{3}J_{CP} = 14$ Hz, C₆H₂Me-2,6), 21.2 (s, C₆H₂Me-4), 21.0 (s, CH₂CH₂O). ¹⁹F NMR (CD₂Cl₂): -136.1 (s, 12F, o-C₆F₅), -161.8 (s, 6F, *p*-C₆*F*₅), -166.0 (m, 12F, *m*-C₆*F*₅). ³¹P NMR (CD₂Cl₂): 30.9. Anal. calcd. for C₇₈H₇₀B₂F₃₀LiO₆P: C, 54.06; H, 4.07. Found: C, 53.58; H, 3.89.

Synthesis of $(C_5H_9)_2$ PH (C_6F_4) BF $(C_6F_5)_2$ 22, Cy_2 PH (C_6F_4) BF $(C_6F_5)_2$ 23, (*t*Bu)(Ph)PH (C_6F_4) BF $(C_6F_5)_2$ 27, (*t*Bu)(Mes)PH (C_6F_4) BF $(C_6F_5)_2$ 28, *n*Bu₃P (C_6F_4) BF $(C_6F_5)_2$ 31, Ph₃P (C_6F_4) BF $(C_6F_5)_2$ 33, (*p*-F $C_6H_4)_3$ P (C_6F_4) BF $(C_6F_5)_2$ 34, (*o*-C₆H₄OMe)₃P (C_6F_4) BF $(C_6F_5)_2$ 35

These compounds were prepared in a similar fashion and thus one preparation is detailed. Minor modifications are indicated. To a clear yellow solution of $B(C_6F_5)_3$ (0.556 g, 1.09 mmol) in toluene (20 mL) was added $(C_5H_9)_2PH$ (0.199 g, 1.18 mmol) in toluene (5 mL) *via* syringe. The reaction was heated to 130 °C in a sealed glass bomb with a Teflon cap for 24 h. During such time the reaction turned yellow in color and a white precipitate formed. Pentane (40 mL) was added and the mixture filtered, washed with pentane (3 × 10 mL), and dried *in vacuo* for 1 h. The product was collected as a white solid. Yield 0.560 g (76%). Crystals suitable for X-ray diffraction were grown from a layered dichloromethane/benzene/pentane solution at 25 °C.

22. ¹H NMR (THF-d₈): 7.24 (d, 1H, ¹J_{HP} = 508 Hz, PH), 3.11 (m, 2H, P(C₅H₉)), 2.25 (m, 2H, P(C₅H₉)), 2.07 (m, 2H, P(C₅H₉)), 1.86–1.68 (br m, 12H, P(C₅H₉)). ¹¹B{¹H} NMR (THF-d₈): -0.1 (d, ¹J_{BF} = 54 Hz). ¹³C{¹H} NMR (THF-d₈) partial: 148.8 (dm, ¹J_{CF} = 255 Hz, CF), 148.1 (dm, ¹J_{CF} = 240 Hz, CF), 146.3 (dm, ¹J_{CF} = 255 Hz, CF), 138.9 (dm, ¹J_{CF} = 252 Hz, CF), 136.6 (dm, ¹J_{CF} = 252 Hz, CF), 123.3 (br m, quat), 92.1 (m, ¹J_{CP} = 70 Hz, quat), 30.6 (d, ¹J_{CP} = 45 Hz, P(C₅H₉)₂), 29.9 (s, P(C₅H₉)₂), 29.7 (s, P(C₅H₉)₂), 27.2 (d, ³J_{CP} = 12 Hz, P(C₅H₉)₂), 26.4 (d, ³J_{CP} = 12 Hz, P(C₅H₉)₂), ¹⁹F NMR (THF-d₈): -129.8 (s, 2F, C₆F₄), -133.5 (s, 2F, C₆F₄), -135.3 (m, 4F, *o*-C₆F₅), -163.4 (t, 2F, ³J_{FF} = 20 Hz, *p*-C₆F₅), -167.9 (t, 4F, ³J_{FF} = 20 Hz, *m*-C₆F₅), -193.3 (br m, 1F, BF). ³¹P{¹H} NMR (THF-d₈): 12.7 (m). Anal. calcd. for C₂₈H₁₉BF₁₅P: C, 49.30; H, 2.81. Found: C, 48.76; H, 2.93.

23. Yield 0.510 g (73%). ¹H NMR (CD₂Cl₂): 6.50 (d, 1H, ¹ J_{HP} = 480 Hz, PH), 3.80 (m, 2H, PCy₂), 2.09–1.27 (br m, 20H, PCy₂). ¹¹B{¹H} NMR (CD₂Cl₂): -0.2 (br). ¹³C{¹H} NMR (CD₂Cl₂) partial: 149.3 (dm, ¹ J_{CF} = 250 Hz, CF), 148.37 (dm, ¹ J_{CF} = 240 Hz, CF), 146.3 (dm, ¹ J_{CF} = 250 Hz, CF), 139.4 (dm, ¹ J_{CF} = 250 Hz, CF), 137.2 (dm, ¹ J_{CF} = 250 Hz, CF), 129.1, 122.7, 87.1 (quat), 33.3 (d, ¹ J_{CP} = 41 Hz, PCy₂), 28.3 (s, PCy₂), 27.2 (s, PCy₂), 26.4 (s, PCy₂), 26.2 (d, ³ J_{CP} = 15 Hz, PCy₂), 25.2 (s, PCy₂). ¹⁹F NMR (CD₂Cl₂): -129.2 (s, 2F, C₆F₄), -131.9 (s, 2F, C₆F₄), -135.8 (d, 4F, ³ J_{FF} = 19 Hz, *o*-C₆F₅), -161.6 (t, 2F, ³ J_{FF} = 20 Hz, *p*-C₆F₅), -166.6 (t, 4F, ³ J_{FF} = 20 Hz, *m*-C₆F₅), -191.5 (br, 1F, BF). ³¹P {¹H} NMR (CD₂Cl₂): 11.5 (m). Anal. calcd. for C₃₀H₂₃BF₁₅P: C, 50.73; H, 3.26. Found: C, 50.65; H, 3.22.

27. Heated to reflux in toluene for 24 h. Yield 0.510 g (77%). ¹H NMR (CD₂Cl₂): 7.98–7.89 (m, 3H, P(C₆H₅)), 7.76–7.69 (m, 2H, P(C₆H₅)), 7.39 (d, 1H, ¹J_{HP} = 487 Hz, PH), 1.54 (d, 9H, ¹J_{HP} = 21 Hz, PtBu). ¹¹B NMR (CD₂Cl₂): 0.4 (d, ¹J_{BF} = 63 Hz). ¹³C{¹H} NMR (CD₂Cl₂) partial: 149.9 (dm, ¹J_{CF} = 246 Hz, C₆F₄), 147.9 (dm, ¹J_{CF} = 240 Hz, C₆F₅), 145.5 (dm, ¹J_{CF} = 246 Hz, C₆F₅), 140.0 (dm, ¹J_{CF} = 240 Hz, C₆F₄), 137.0 (dm, ¹J_{CF} = 246 Hz, C₆F₅), 136.9 (s, Ph), 134.4 (d, ³J_{CP} = 11 Hz, Ph), 131.3 (d, ²J_{CP} = 12 Hz, Ph), 112.41 (d, ¹J_{CF} = 82 Hz, PPh), 35.0 (d, ¹J_{CP} = 40 Hz, PtBu), 26.0 (s, tBu). ¹⁹F NMR (CD₂Cl₂): -128.7 (s, 2F, C₆F₄), -130.3 (m, 2F, C₆F₄), -135.8 (m, 4F, o-C₆F₅), -161.5 (t, 2F, ³J_{FF} = 20 Hz, p-C₆F₅), -166.6 (t, 4F, ³J_{FF} = 22 Hz, m-C₆F₅), -191.4 (br s, 1F, BF). ³¹P {¹H} NMR (CD₂Cl₂): 14.7 (m). Anal. calcd. for C₂₈H₁₅BF₁₅P: C, 49.59; H, 2.23. Found: C, 49.50; H, 2.33.

28. Heated to reflux in toluene for 24 h. Yield 0.450 g (64%). Crystals suitable for X-ray diffraction were grown via slow diffusion of pentane into a CH2Cl2/toluene solution of the product at 25 °C (open to air in wet solvents). ¹H NMR (THF-d₈): 8.21 (d, 1H, ${}^{1}J_{HP} = 505$ Hz, PH), 7.17 (d, ${}^{4}J_{HP} = 7$ Hz, 2H, P(C₆H₂)), 2.47 (br s, 6H, P(C₆H₂Me-2,6)), 2.32 (s, 3H, P(C₆H₂Me-4)), 1.61 (d, 9H, ${}^{3}J_{\rm HP} = 21$ Hz, PtBu). 11 B NMR (THF-d₈): 0.4 (d, ${}^{1}J_{\rm BF} = 59$ Hz). ¹³C{¹H} NMR (THF-d₈) partial: 149.9 (dm, ${}^{1}J_{CF} = 230$ Hz, CF), 149.0 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 148.1 (s, p-C₆H₂), 146.6 (dm, ${}^{1}J_{CF} = 240$ Hz, *CF*), 145.1 (d, ${}^{2}J_{CP} = 11$ Hz, *o*-*C*₆H₂), 139.8 (dm, ${}^{1}J_{CF} = 245$ Hz, CF), 137.3 (dm, ${}^{1}J_{CF} = 275$ Hz, CF), 132.6 (d, ${}^{3}J_{CP} = 10$ Hz, $m - C_{6}H_{2}$), 110.6 (d, ${}^{1}J_{CP} = 77$ Hz, $P - C_{6}H_{2}$), 37.8 (d, ${}^{1}J_{CP} = 40$ Hz, PtBu), 26.4 (s, tBu), 22.7 (d, ${}^{3}J_{CP} = 7$ Hz, C₆H₂Me-2,6), 21.0 (s, C₆H₂Me-4). ¹⁹F NMR (THF-d₈): -123.0 (br s, 4F, C_6F_4), -135.2 (m, 4F, o- C_6F_5), -163.4 (t, 2F, ${}^3J_{FF} = 20$ Hz, p- C_6F_5 , -167.8 (t, 4F, ${}^{3}J_{FF} = 23$ Hz, m- C_6F_5), -193.2 (br s, 1F, BF). $^{31}P \{^{1}H\}$ NMR (THF-d₈): -2.9 (m). Anal. calcd. for C₃₁H₂₁BF₁₅P: C, 51.69; H, 2.94. Found: C, 51.36; H, 3.20.

31. Heated at 125 °C for 2 days. Yield 205 mg (74%). Crystals suitable for X-ray diffraction were grown *via* slow diffusion of pentane into a CH₂Cl₂/toluene solution at 25 °C. ¹H NMR (C₆D₅Br): 2.22 (m, 6H, CH₂), 1.25 (m, 12H, CH₂CH₂), 0.74 (m, 9H, Me). ¹¹B{¹H} NMR (C₆D₅Br): -0.8 (bs). ¹³C{¹H} NMR (C₆D₅Br) partial: 149.2 (dm, ¹J_{CF} = 250 Hz, CF), 148.2 (dm, ¹J_{CF} = 240 Hz, CF), 146.5 (dm, ¹J_{CF} = 250 Hz, CF), 139.2 (dm, ¹J_{CF} = 245 Hz, CF), 137.0 (dm, ¹J_{CF} = 250 Hz, CF), 92.4 (dt, ¹J_{CP} = 50 Hz, CH₂), 13.0 (s, Me). ¹⁹F NMR (C₆D₅Br): -129.2 (s, 2F, C₆F₄), -133.5 (m, 2F, C₆F₄), -135.1 (m, 4F, *o*-C₆F₅), -160.5 (t, 2F, ³J_{FF} = 20 Hz, *p*-C₆F₅), -166.0 (m, 4F, *m*-C₆F₅), -190.3

(br s, 1F, BF). ³¹P {¹H} NMR (C_6D_5Br): 33.1 (br). Anal. calcd. for $C_{30}H_{27}BF_{15}P$: C, 50.44; H, 3.81. Found: C, 50.24; H, 3.63.

33. Heated at 125 °C for 2 days. Yield 110 mg (73%). Crystals suitable for X-ray diffraction were grown *via* slow evaporation of a concentrated bromobenzene solution at 25 °C. ¹H NMR (C₆D₅Br): 7.44–7.14 (m, 3H, Ph), 7.28–7.23 (m, 12H, Ph). ¹¹B{¹H} NMR (C₆D₅Br): -0.3 (br s). ¹³C{¹H} NMR (C₆D₅Br) partial: 149.5 (dm, ¹J_{CF} = 245 Hz, CF), 148.5 (dm, ¹J_{CF} = 240 Hz, CF), 146.4 (dm, ¹J_{CF} = 250 Hz, CF), 139.3 (dm, ¹J_{CF} = 245 Hz, CF), 136.5 (dm, ¹J_{CF} = 250 Hz, CF), 135.5 (d, ⁴J_{CP} = 3 Hz, Ph), 133.5 (d, ³J_{CP} = 11 Hz, Ph), 130.2 (d, ²J_{CP} = 14 Hz, Ph), 117.0 (d, ¹J_{CF} = 92 Hz, quat Ph). ¹⁹F NMR (C₆D₅Br): -127.9 (m, 2F, C₆F₄), -128.0 (m, 2F, C₆F₄), -133.6 (m, 4F, *o*-C₆F₅), -160.7 (t, 2F, ³J_{FF} = 20 Hz, *p*-C₆F₅), -165.5 (m, 4F, *m*-C₆F₅), -193.0 (br s, 1F, BF). ³¹P{¹H} NMR (C₆D₅Br): 15.1. Anal. calcd. for C₃₆H₁₅BF₁₅P: C, 55.84; H, 1.95. Found: 55.65; H, 1.87.

34. Heated at 125 °C for 12 h. Yield 122 mg (75%). Crystals suitable for X-ray diffraction were grown via slow evaporation of a concentrated bromobenzene solution at 25 °C. ¹H NMR (C_6D_5Br) : 7.25–7.15 (ddd, 6H, ${}^{3}J_{HF} = 13$ Hz, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HP} =$ 5 Hz, Ph), 6.85–6.78 (ddd, 6H, ${}^{3}J_{HP} = 8$ Hz, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HF} =$ 3 Hz, Ph). ${}^{11}B{}^{1}H{}$ NMR (C₆D₅Br): -0.2 (br s). ${}^{13}C{}^{1}H{}$ NMR $(C_6 D_5 Br)$ partial: 167.3 (d, ${}^1J_{CF} = 260$ Hz, CF), 149.9 (dm, ${}^1J_{CF} =$ 245 Hz, CF), 148.7 (dm, ${}^{1}J_{CF} = 235$ Hz, CF), 139.9 (dm, ${}^{1}J_{CF} =$ 246 Hz, CF), 137.1 (dm, ${}^{1}J_{CF} = 247$ Hz, CF), 137.0 (dd, ${}^{2}J_{CP} =$ 13 Hz, ${}^{3}J_{CF} = 11$ Hz, Ph), 118.6 (dd, ${}^{2}J_{CF} = 16$ Hz, ${}^{3}J_{CP} = 13$ Hz, Ph), 113.04 (d, ${}^{1}J_{CP} = 97$ Hz, quat Ph). ${}^{19}F$ NMR (C₆D₅Br): -97.8 (s, 3F, $F-C_6H_4$), -128.1 (m, 4F, C_6F_4), -134.9 (m, 4F, $o-C_6F_5$), -160.4 (t, 2F, ${}^{3}J_{FF} = 20$ Hz, $p-C_{6}F_{5}$), -165.4 (m, 4F, $m-C_{6}F_{5}$), -192.3 (br s, 1F, BF). ³¹P {¹H} NMR (C₆D₅Br): 14.1 (s). Anal. calcd. for C₃₆H₁₂BF₁₈P: C, 52.21; H, 1.46. Found: C, 53.05; H, 2.10.

35. Heated to reflux in toluene for 6 h. Yield 400 mg (76%). Crystals suitable for X-ray diffraction were grown from a layered dichloromethane/pentane solution at 25 °C. ¹H NMR (CD₂Cl₂): 7.77-7.72 (m, 3H, Ph), 7.50-7.45 (m, 3H, Ph), 7.19-7.09 (m, 3H, Ph), 7.06–7.01 (m, 3H, Ph), 3.52 (br s, 9H, OMe). ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂): -0.5 (br). ¹³C{¹H} NMR (CD₂Cl₂) partial: 162.1 (quat *Ph*OMe), 149.4 (dm, ${}^{1}J_{CF} = 250$ Hz, *CF*), 148.5 (dm, ${}^{1}J_{CF} =$ 240 Hz, CF), 148.9 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 139.5 (dm, ${}^{1}J_{CF} =$ 250 Hz, CF), 137.8 (Ph), 135.8 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 135.1 (d, ${}^{3}J_{CP} = 11$ Hz, Ph), 122.39 (d, ${}^{2}J_{CP} = 16$ Hz, Ph), 113.2 (d, ${}^{3}J_{CP} =$ 5 Hz, Ph), 106.4 (d, ${}^{1}J_{CP} = 106$ Hz, quat Ph), 56.4 (s, OMe). ${}^{19}F$ NMR (CD₂Cl₂): -127.9 (br, 1F, C₆F₄), -131.4 (br s, 2F, C₆F₄), $-136.0 \text{ (m, 5F, C}_{6}F_{4}, o-C_{6}F_{5}), -162.2 \text{ (t, 2F, }^{3}J_{FF} = 20 \text{ Hz}, p-C_{6}F_{5}),$ -165.5 (m, 4F, ${}^{3}J_{FF} = 20$ Hz, m-C₆ F_{5}), -192.8 (br m, 1F, BF). ³¹P {¹H} NMR (CD₂Cl₂): 10.9. Anal. calcd. for $C_{39}H_{21}O_3BF_{15}P$: C, 54.91; H, 2.45. Found: C, 54.85; H, 2.10. Preliminary X-ray: triclinic $P\bar{1}$, a = 12.041 Å, b = 12.245 Å, c = 14.757 Å, $\alpha =$ 99.370°, $\beta = 111.626^{\circ}$, $\gamma = 90.521^{\circ}$.

Generation of Ph₂PH(C₆F₄)BF(C₆F₅)₂ 25

In a re-sealable J.Young NMR tube the adduct $Ph_2PH-B(C_6F_5)_3$ (0.050 mg, 0.072 mmol) was dissolved in C_6D_5Br (0.75 mL) and heated to 140 °C for 24 h. Near quantitative product formation was observed by NMR. NMR resonances for the major product are reported. Other minor products were observed (>15%) and were unidentified. ¹H NMR (CD₂Cl₂): 7.9–7.4 (m, 10H, Ph), 7.5 (d, 1H, PH). ¹¹B{¹H} NMR (CD₂Cl₂): -1.0 (br s). ¹⁹F NMR (CD₂Cl₂): -129.3 (m, 2F, C₆F₄), -132.5 (m, 2F, C₆F₄), -135.8 (m, 4F, *o*-C₆F₅), -160.7 (m, 2F, *p*-C₆F₅), -166.1 (m, 4F, *m*-C₆F₅), -194.8 (br s, 1F, BF). ³¹P {¹H} NMR (CD₂Cl₂): 6.5.

Generation of Et₃P(C₆F₄)BF(C₆F₅)₂ 29

In a re-sealable J.Young NMR tube $(Et_3P)B(C_6F_5)_3$ (0.050 mg, 0.056 mmol) was dissolved in C₆D₅Br (0.75 mL) and heated to 120 °C for 24 h. Quantitative product formation was observed by NMR spectroscopy although this species was not isolated in analytically pure form. ¹H NMR (C₆D₅Br): 2.04–1.93 (m, 6H, ${}^{2}J_{\rm HP} = 20$ Hz, ${}^{3}J_{\rm HH} = 7$ Hz, CH₂), 0.85–0.76 (dt, 9H, ${}^{3}J_{\rm HP} = 21$ Hz, ${}^{3}J_{\rm HH} = 7$ Hz, Me). ${}^{11}B{}^{1}H{}$ NMR (C₆D₅Br): 0.5 (br). ${}^{13}C{}^{1}H{}$ NMR (C₆D₅Br) partial: 149.7 (dm, ${}^{1}J_{CF} = 248$ Hz, CF), 148.21 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 146.3 (dm, ${}^{1}J_{CF} = 255$ Hz, CF), 139.3 (dm, ${}^{1}J_{CF} = 248$ Hz, CF), 137.0 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 91.0 $(dt, {}^{1}J_{CP} = 80 \text{ Hz}, {}^{2}J_{CF} = 18 \text{ Hz}, \text{ quat}), 13.7 (d, {}^{1}J_{CP} = 48 \text{ Hz},$ CH_2), 5.3 (d, ${}^{2}J_{CP} = 5$ Hz, Me). ${}^{19}F$ NMR (C₆D₅Br): -129.8 (m, 2F, C₆ F_4), -134.0 (m, 2F, C₆ F_4), -135.8 (m, 6F, ${}^{3}J_{FF} = 20$ Hz, o- C_6F_5 , -161.1 (m, 3F, ${}^{3}J_{FF} = 21$ Hz, $p-C_6F_5$), -166.2 (m, 6F, ${}^{3}J_{FF} =$ 20 Hz, m-C₆ F_5), -192.2 (br s, 1F, BF). ³¹P {¹H} NMR (C₆D₅Br): 39.1.

Synthesis of Cy₃P(C₆F₄)BF(C₆F₅)(Ph) 37

A clear yellow solution of 36 (0.100 g, 0.237 mmol) and Cy₃P (0.067 g, 0.240 mmol) in toluene (20 mL) was allowed to stir for 12 h at 25 °C during which time a white precipitate formed. Pentane (10 mL) was added and the mixture filtered and dried in vacuo for 1 h. The product was collected as a white solid. Yield 0.110 g (80%). Crystals suitable for X-ray diffraction were grown from a layered dichloromethane/pentane solution at 25 °C. ¹H NMR (CD₂Cl₂): 7.40 (d, 2H, ${}^{3}J_{HH} = 7$ Hz, Ph), 7.16 (d, 2H, ${}^{3}J_{HH} = 7$ Hz, Ph), 7.10 (m, 1H, ${}^{3}J_{HH} = 7$ Hz, Ph), 2.92 (m, 3H, ${}^{3}J_{HH} = 12$ Hz, PCy), 1.95–1.27 (br m, 30H, PCy). ¹¹B{¹H} NMR (CD₂Cl₂): 2.2 (br). ¹³C{¹H} NMR (CD₂Cl₂) partial: 145.0 (dm, ${}^{1}J_{CF} = 250$ Hz, CF), 148.5 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 147.6 (dm, ${}^{1}J_{CF} = 255$ Hz, CF), 139.2 (dm, ${}^{1}J_{CF} = 240$ Hz, CF), 137.6 (dm, ${}^{1}J_{CF} = 245$ Hz, CF), 131.98 (s, Ph), 127.17 (s, Ph), 125.41 (s, Ph), 88.73 (dm, ${}^{1}J_{CP} =$ 70 Hz, PC_6F_4), 33.2 (d, ${}^{1}J_{CP} = 40$ Hz, PCy_3), 28.0 (s, PCy_3), 27.5 $(d, {}^{3}J_{CP} = 14 \text{ Hz}, \text{PCy}_{3}), 25.9 (s, \text{PCy}_{3}). {}^{19}\text{F} \text{ NMR} (\text{CD}_{2}\text{Cl}_{2}): -126.9$ (m, 2F, C_6F_4), -132.1 (m, 2F, C_6F_4), -133.6 (d, 2F, ${}^{3}J_{FF} = 16$ Hz, $o-C_6F_5$, -162.9 (t, 1F, ${}^{3}J_{FF} = 20$ Hz, $p-C_6F_5$), -166.8 (t, 2F, ${}^{3}J_{FF} =$ 20 Hz, m-C₆ F_5), -193.4 (br s, BF). ³¹P{¹H} NMR (CD₂Cl₂): 41.2. Anal. calcd. for C₃₆H₃₈BF₁₀P: C, 54.91; H, 2.45. Found: C, 54.55; H, 2.45.

X-Ray data collection, reduction, solution and refinement

Single crystals were mounted in thin-walled capillaries either under an atmosphere of dry N₂ in a glove box and flame sealed or coated in paratone-N oil. The data were collected using the SMART software package³² on a Siemens SMART System CCD diffractometer using a graphite monochromator with MoK α radiation ($\lambda = 0.71073$ Å). A hemisphere of data was collected in 1448 frames with 10 second exposure times unless otherwise noted. Data reduction was performed using the SAINT software package³³ and an absorption correction applied using SADABS.³⁴ The structures were solved by direct methods using XS and refined by full-matrix least-squares on F^2 using XL as implemented in the SHELXTL suite of programs.³⁵ All non-hydrogen atoms were refined anisotropically. Carbon-bound hydrogen atoms were placed in calculated positions using an appropriate riding model and coupled isotropic temperature factors. Phosphorus-bound hydrogen atoms were located in the electron difference map and their positions refined isotropically. In the case of compound **5**, constraints were imposed on the disordered toluene solvate. Disordered CH₂Cl₂ solvent molecules were removed using the 'squeeze' command in PLATON for compounds **28** and **34**. In the case of compound **37** the disordered CH₂Cl₂ was modelled.

Crystal data and structure refinement parameters are given in Table 1.†

Results and discussion

Classical Lewis adducts

Following published procedures, a range of phosphines were combined in toluene with $B(C_6F_5)_3$ and stirred for 1 hour at 25 °C. Concentration of the solvent afforded the series of adducts, $(CyPH_2)B(C_6F_5)_3$ 1, $((C_5H_9)_2PH)B(C_6F_5)_3$ 2, $(Cy_2PH)B(C_6F_5)_3$ 3,²⁴ (Et₂PH)B(C₆F₅)₃ 4, (Ph₂PH)B(C₆F₅)₃ 6,²⁴ (Mes₂PH)B(C₆F₅)₃ 7, (Me₃P)B(C₆F₅)₃ 8,²⁵⁻²⁷ (Et₃P)B(C₆F₅)₃ 9, (*n*-Bu₃P)B(C₆F₅)₃ 10 and (Ph₃P)B(C₆F₅)₃ 11^{28,29} (Scheme 2). All products were readily characterized by ¹H, ¹¹B,¹³C{¹H}, ¹⁹F and ³¹P NMR spectroscopy (Table 2). These adducts exhibit a gap in the ¹⁹F NMR resonances attributable to the *meta* and *para* fluorine atoms and a ¹¹B chemical shift that is characteristic of a four-coordinate boron center.³⁶⁻⁴¹ In addition, the solid state structures of 4, 5, 6 and 9 were determined

Scheme 2 Synthesis of compounds 1–35.

	4^b	$5.0.5C_7H_8$	9	6	14	15 ^b	27	28	31	$33 \cdot C_6 H_5 Br$	34	36	37.CH2Cl2
Formula	$C_{22}H_{11}BF_{15}P$	C _{29.5} H ₂₃ B F15P	$C_{30}H_{11}BF_{15}P$	$\mathrm{C}_{24}\mathrm{H}_{15}\mathrm{BF}_{15}\mathrm{P}$	$C_{28}H_{23}BF_{15}OF$	C40H41BF15OP	$\mathrm{C}_{28}\mathrm{H}_{15}\mathrm{BF}_{15}\mathrm{P}$	$C_{31}H_{21}BF_{15}P$	$\mathrm{C}_{30}\mathrm{H}_{27}\mathrm{BF}_{15}\mathrm{P}$	$\mathrm{C}_{42}\mathrm{H}_{20}\mathrm{BBrF}_{15}\mathrm{P}$	$C_{36}H_{12}BF_{18}P$	$C_{18}H_5BF_{10}$	$C_{37}H_{40}BCl_2F_{10}$
Formula wt	602.09	704.26	698.17	630.14	702.2	864.5	678.18	720.26	714.30	931.27	828.24	422.03	787.37
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Triclinic	Orthorhom bic	Monoclinic	Triclinic	Monoclinic	Triclinic	Triclinic	Orthorhombic	Triclinic
Space group	$P2_1$	$P\bar{1}$	$P2_1/c$	$P2_1/n$	$P\bar{1}$	$P2_12_12_1$	C2/c	$P\overline{1}$	$P2_1/c$	$P\bar{I}$	$P\bar{I}$	Pbca	$P\bar{1}$
a/Å	8.2030(16)	9.3182(19)	16.064(2)	13.197(2)	10.3288(17)	12.2670(39)	23.155(5)	11.819(5)	9.2247(16)	12.9407(16)	12.9545(15)	10.6539(13)	11.635(3)
b/Å	16.295(3)	10.374(2)	8.3163(11)	10.5908(18)	12.0825(20)	13.0763(42)	10.399(2)	12.003(6)	16.029(3)	13.0760(16)	13.2370(16)	16.736(2)	12.659(3)
c/Å	8.4244(17)	15.635(3)	21.102(3)	18.211(3)	13.0835(21)	24.4486(78)	23.014(5)	14.964(7)	21.638(4)	13.2779(16)	13.5614(16)	19.095(2)	13.371(3)
α/o	90	88.96(3)	90	90	94.234(2)	90.0	90	66.442(5)	90	68.326(2)	66.727(2)	90	73.387(3)
β/°	97.57(3)	85.90(3)	102.364(2)	93.850(2)	105.527(2)	90.0	93.67(3)	69.594(5)	100.781(2)	65.310(2)	63.9130(10)	90	77.620(3)
0/ <i>1</i>	90	78.03(3)	90	90	106.696(2)	90.0	90	74.705(6)	90	72.050(2)	72.990(2)	90	82.653(3)
$V/Å^3$	1116.3(4)	1474.7(5)	2753.8(6)	2539.6(7)	1486.64(17)	3921.73(22)	5530.4(19)	1772.1(14)	3143.0(9)	1865.3(4)	1898.7(4)	3404.7(7)	1838.7(7)
Z	2	2	4	4	2	4	8	5	4	2	2	8	5
$d(\text{calc})/\text{g cm}^{-3}$	1.791	1.586	1.684	1.648	1.57	1.46	1.629	1.350	1.507	1.658	1.449	1.647	1.422
μ/cm^{-1}	0.260	0.209	0.224	0.232	0.210	0.174	0.220	0.176	0.197	1.253	0.186	0.172	0.298
Data collected	6659	13 213	25 561	23727	14171	37 516	25 443	16895	29420	18 019	18 290	36 577	17839
Rint	0.0364	0.1255	0.0311	0.0766	0.0451	0.1140	0.1158	0.0389	0.0287	0.0210	0.0210	0.0401	0.0262
Data $F_0^2 > 3\sigma(F_0^2)$	3553	4977	4837	4463	5216	0069	4840	6214	5502	6552	6999	4098	6441
Variables	356	412	428	386	409	523	410	437	424	541	505	262	464
R	0.0400	0.0744	0.0378	0.0479	0.0742	0.0470	0.0685	0.0486	0.0557	0.0448	0.0445	0.0484	0.0687
R_{W}	0.1007	0.1808	0.0892	0.0968	0.1973	0.0737	0.1469	0.1078	0.1483	0.1185	0.1216	0.1241	0.1954
GOF	1.030	0.988	1.045	1.014	1.011	0.985	1.027	0.907	1.032	0.957	1.019	1.002	1.046
^a Data collected a	t 20 °C with N	Mo Kα rad	liation ($\lambda = 0$.	.71073Å). R =	$=\sum(F_{\rm o}-F_{\rm c})$	$//\sum F_{ m o}, R_{ m w} =$	$\left\{\sum \left[w\left(F_{o}^{2}-i\right)\right]$	$F_c^2)^2]/\sum[w(F_c)^2]$.) ²]} ^{1/2} . ^b Flack	parameters: 4: –	0.08(12), 15 :	0.19(14).	

Ē

Phosphine		$B(C_6F_5)_3$ adduct				$R_2 PR'(C_6F_4)BF(C_6F_5)_2$		
	${}^{31}{ m P}({}^{1}J_{ m PH})$	Cmpd	${}^{31}{ m P}({}^{1}J_{ m PH})$	¹¹ B	P–B/Å	Cmpd	${}^{31}{ m P}({}^{1}J_{ m PH})$	¹¹ B
H ₃ P					2.046(8)59			
tBuPH ₂					2.015(3)60			
PhPH ₂					$2.039(3)^{61}$			
CvPH ₂ ^a	-110.1(184)	1	-30.0(392)	-17.5				
$(\dot{C}_{5}H_{0})_{2}PH^{b}$	-35.2(191)	2	11.2(408)	-15.9	2.0243(3)	22	12.7(508)	-0.1
$Cv_2PH^{c,27}$	-27.5(192)	3	9.3(406)	-13.5	2.0270(14)24	23	11.5(480)	-0.2
Et ₂ PH ^{c,24}	-55.5(190)	4	5.7(412)	-16.2	2.036(4)		· · · ·	
$tBu_{2}PH^{c}$	20.1(199)	5	17.4(394)	-12.8	2.094(7)	24	34.2(465)	0.8
Ph ₂ PH	-40.1(215)	6	0.9(411)	-9.4	2.098(3)	25	6.5(500)	-1.0
Mes ₂ PH ^c	-92.7(229)	7	-67.7	23.6		26	-37.7(503)	0.4
tBuPhPH ^b	-5.3(208)					27	14.7(487)	0.4
tBuMesPH ^d	-49.1(214)					28	-2.9(505)	0.4
$Me_{3}P^{24}$	-63.3	8	-6.1	-14.7	$2.061(4)^{25}$			
Et ₃ P ^c	-19.1	9	5.6	-13.4	2.081(4)	29	39.1	0.5
$i Pr_3 P^{24}$	19.3					30	53.2	-0.9
nBu_3P^c	-31.6	10	-0.6	-13.5		31	33.1	-0.8
Cv_3P^c	11.1					32	41.6	-0.7
Ph ₃ P ^c	-4.6	11	-5.2	-2.5	2.180(6)17	33	15.1	-0.3
$(p-C_6H_4F)_3P^c$	-9					34	14.1	-0.2
$(o-C_6H_4OMe)_3P^c$	-29.3					35	10.9	-0.5

Table 2 Chemical shifts and structural data for free phosphine, (phosphine)B(C_6F_5)₃ adducts and $R_2PR'(C_6F_4)BF(C_6F_5)_2$

by X-ray crystallography (Fig. 1, Table 1), while those of **2**, **3**,²⁴ **8**²⁵ and **10**²⁹ had been previously determined. As expected the geometries at the B and P atoms are both pseudo-tetrahedral in each case. In the present compounds, the P–B bond distances range from 2.024(3) to 2.180(6) Å (Table 2) and appear to vary with both the relative steric bulk and basicity of the phosphine. The bulky phosphine adduct 7 was isolated, but only as a minor product. The ³¹P and ¹¹B NMR spectra of 7 are very broad signals at –67 and 23 ppm, respectively, while the ¹⁹F NMR spectrum exhibits three broad resonances for the *ortho, meta* and *para* fluorine atoms of the C₆F₅ rings. Upon cooling to –70 °C, the three broad fluorine resonances split into 13 sharp peaks with 2 of double intensity, corresponding to 15 inequivalent fluorine atoms.

Fig. 1 POV-ray drawings of (a) 4 (b) 5 (c) 6 (d) 9.

These NMR data support the notation that Mes_2PH forms a weak adduct with $B(C_6F_5)_3$ at 25 °C and at low temperatures exhibits $PH \cdots FC$ interactions rendering the inequivalence of fluorine atoms. A similar phenomenon has been previously observed for amine- $B(C_6F_5)_3$ adducts.⁴² Similarly, weak P–B interactions were observed between tBu(Mes)PH and $B(C_6F_5)_3$ and thus an adduct was not isolated. In such crowded systems, the steric interactions have been rationalised in terms of the sum of repulsive Pauli and attractive electrostatic and van der Waals interactions by Erker, Grimme and co-workers.⁴³

In the case of tBu_2PH , evidence of formation of adduct $(tBu_2PH)(B(C_6F_5)_3 5 \text{ was observed on cooling of solutions of the phosphine in the presence of <math>B(C_6F_5)_3$ to $-60 \,^{\circ}C$. Such solutions gave rise to a broad ³¹P NMR resonance at 17.4 ppm and a ¹¹B NMR signal at -12.8 ppm. The ¹⁹F NMR spectrum of **5** shows eight signals consistent with inequivalent C_6F_5 ring environments. Nonetheless, the adduct **5** was not stable as alternate chemistry occurs on warming to 25 $^{\circ}C$ (*vide infra*).

Larger phosphines such as $(o-C_6H_3Me_2)_3P$, $(o-C_6H_4Me)_3P$, $(C_6H_2Me_3)_3P$ or tBu_3P appear to effect no reaction with $B(C_6F_5)_3$ in toluene-d₈ or CD_2Cl_2 in the temperature range of 25 °C to -70 °C as evidenced by ¹H, ³¹P, ¹¹B, and ¹⁹F NMR spectroscopy. Such mixtures of Lewis acids and Lewis bases, where steric demands preclude quenching of the Lewis acidity and basicity, have been described as 'frustrated Lewis pairs' and have been shown to exhibit unique reactivity with small molecules.⁴⁴⁻⁴⁸ As noted previously, the combination of Mes₃P and $B(C_6F_5)_3$ gave rise to a violet solution; in contrast to combinations of Ph₂MeN and $B(C_6F_5)_3$ where formal electron transfer is proposed,⁴ reaction mixtures of Mes₃P and $B(C_6F_5)_3$ were found to be EPR silent.

THF ring-opening

Intuitively an alternative to the procedure above to generate $B(C_6F_5)_3$ adducts involves the displacement of THF from

 $(THF)B(C_6F_5)_3$. Indeed this approach has been employed to obtain 3 and 6.24 However, the analogous reactions employing tBu₂PH, Mes₂PH and Cy₃P do not proceed in this fashion; rather, reaction of $(THF)B(C_6F_5)_3$ with these phosphine effects the ring-opening of THF affording the products 12, 13, and 15 in 81, 79 and 98% yields, respectively. The ¹¹B NMR spectra revealed single resonances at ca. -2.1 to -2.8 ppm indicative of four-coordinate boron centers, while the ³¹P NMR spectra gives rise to downfield resonances. The ¹H NMR data are consistent with the presence of four methylene resonances. These NMR data are consistent with the formulation of the products as the THF ring-opened phosphonium borates $tBu_2PH(C_4H_8O)B(C_6F_5)_3$ 12, $Mes_2PH(C_4H_8O)B(C_6F_5)_3$ 13 and $Cv_3P(C_4H_8O)B(C_6F_5)_3$ 15 (Scheme 2). In a similar fashion, the adduct 9 was dissolved in THF and heated to 80 °C for 6 hours to give a white solid formulated as $Et_3PC_4H_8OB(C_6F_5)_3$ 14 in 81% yield. It is noteworthy that prolonged heating of 4 in THF to 80 °C showed no such rearrangement. This presumably reflects the stronger P-B bond in 4 relative to that in 9. The formulations of the zwitterions above were also supported by X-ray data for 12, 13,¹⁸ 14 and 15 (Fig. 2). The THF ring-opening reaction products exhibit B-O bond lengths of 1.415(18)-1.459(4) Å, which are in the range seen for the related compound $tBuNTe(\mu$ - $NtBu_{2}TeN(tBu)(CH_{2})4OB(C_{6}F_{5})_{3}$ (1.444(4) Å)⁴⁹ and are shorter than that found in the anion $[HOB(C_6F_5)_3]^-$ (B–O = 1.480(11) Å).⁵⁰ The remaining metric parameters are unexceptional.

Fig. 2 POV-ray drawings of (a) 14 (b) 15.

Related anionic phosphine-borates are readily derived from 12 via treatment with *t*BuLi or, alternatively, by treating $B(C_6F_5)_3$ with a lithium phosphide (R_2PLi , R = tBu, Ph Mes) to afford 16–19 in THF. These approaches, depending on the solvent used, afford the species [Li(THF)₂][$tBu_2P(C_4H_8O)B(C_6F_5)_3$] 16, [Li][$tBu_2P-(C_4H_8O)B(C_6F_5)_3$] 17, [Li(THF)₂][Ph₂P(C₄H₈O)B(C₆F₅)₃] 18 and [Li(THF)₂][Mes₂P(C₄H₈O)B(C₆F₅)₃] 19 as confirmed by NMR data (Scheme 2). Indeed this latter approach can be extended to a 2 : 1 reaction, as treatment of (THF)B(C₆F₅)₃ with two equivalents of a lithium phosphide affords the species [Li][$tBu_2P(C_4H_8OB(C_6F_5)_3)_2$] **20** and [Li(THF)_4][Mes_2P-(C_4H_8OB(C_6F_5)_3)_2] **21**. The X-ray structures of **19** and **20** have been previously communicated.¹⁸ It should be noted that **20** is observed in preparations of **16** performed at room temperature, while **16** is generated cleanly at -78 °C, consistent with the ability of **16** to effect also THF ring-opening.

Aromatic substitution

In the majority of cases, the classical borane-phosphine adducts were found to undergo rearrangement reactions, yet requiring prolonged heating in some cases. For example, heating 2 in a sealed reaction bomb to 125 °C for 24 h in toluene resulted in the formation of a white precipitate. Subsequent workup afforded 22 as a white solid in 73% yield (Scheme 2). The ¹¹B NMR signal for 22 was observed at -0.2 ppm, which is shifted dramatically from that seen for 2 (-13.5 ppm). Similarly, the ³¹P NMR resonance shifted downfield slightly to 11.5 ppm and notably exhibited a ${}^{1}J_{PH}$ coupling constant of 480 Hz typical of a phosphonium salt. A new ¹⁹F NMR signal was observed at -191.5 ppm attributable to a B-F unit, while resonances at -129.2 and -131.9 ppm confirmed the presence of a 1,4-disubstituted C_6F_4 aryl ring. Collectively, these data are consistent with the formulation of 22 as $(C_5H_9)_2PH(C_6F_4)BF(C_6F_5)_2$. In a similar fashion, the adducts 3, 6, 8, 9, 10 and 11 underwent similar thermal rearrangements to give the corresponding zwitterionic species $Cy_2PH(C_6F_4)BF(C_6F_5)_2$ 23, $Ph_2PH(C_6F_4)BF(C_6F_5)_2$ **25**, $Mes_2PH(C_6F_4)BF(C_6F_5)_2$ **26**, $Et_3P(C_6F_4)BF(C_6F_5)_2$ **29**, $nBu_{3}P(C_{6}F_{4})BF(C_{6}F_{5})_{2}$ **31** and $Ph_{3}P(C_{6}F_{4})BF(C_{6}F_{5})_{2}$ **33**, in near quantitative yields, respectively (Scheme 2). Although such rearrangements of Lewis acid-base adducts have only rare precedent,17 the nucleophilic substitution of at the para-position of a pentafluorophenyl ring is well known.51,52

In the case of bulky basic phosphine, the attack of the fluorinated aromatic rings is even more facile. For example and as mentioned above, isolation of the B(C₆F₅)₃ adduct of tBu₂PH is challenging; however, on stirring at room temperature, attack at a para-carbon atom proceeds easily to give $tBu_2PH(C_6F_4)BF(C_6F_5)_2$ 24. Similarly, monitoring the reaction of Cy_3P and $B(C_6F_5)_3$ showed no evidence of the formation of the adduct, but rather the rapid formation of $Cy_3P(C_6F_4)BF(C_6F_5)_2$ **32**. In the same fashion, the species $(tBu)(Ph)PH(C_6F_4)BF(C_6F_5)_2$ **27**, $(tBu)(Mes)PH(C_6F_4)BF(C_6F_5)_2$ **28**, $iPr_3P(C_6F_4)BF(C_6F_5)_2$ **30** and $(o-C_6H_4OMe)_3P(C_6F_4)BF(C_6F_5)_2$ 35, were prepared and isolated (Scheme 2). The spectral data for these zwitterionic species are all similar to those described above for 22, each exhibiting the characteristic ³¹P, ¹¹B, ¹⁹F and ¹H NMR resonances (Table 2). In each case, the sterically congested environment about the phosphorus atom disfavors coordination to boron thus prompting nucleophilic aromatic substitution at the electrophilic para-carbon atom of an arene ring followed by fluoride transfer to boron.

X-Ray structural data for **27**, **28**, **31**, **33** and **34** are reported herein (Fig. 3 and 4) confirming the zwitterionic nature of these species. In each species the phosphorus and boron centers are pseudo-tetrahedral. The B–F bond lengths range from 1.413(4) Å to 1.436(6) Å and compare well to those found in the zwitterions 1,4-Ph₃PCH₂(C₆F₄)BF(C₆F₅)₂ (1.392(12) Å),¹⁷ 1,4-Ph₂MeP(C₆H₄)BF(Mes)₂ (1.467(4) Å),⁵³ and the anions (C₆F₅)₃BF (1.428 Å),⁵⁴ and (o-(C₆F₅)C₆F₄)₃BF (1.472 (11) Å),⁵⁵ while they are

Fig. 3 POV-ray drawings of two adjacent molecules of **28**. The dashed lines indicate the close approach of the BF and PH fragments.

longer than those found in the diarylboranes Mes₂BF (1.339(2) Å) and $(o,p-C_6H_3(CF_3)_2)_2BF$ (1.313(3) Å).⁵⁶ In the solid state, the molecules of 28, like 24, pack in a head-to-tail fashion accommodating intermolecular P-H···F-B interactions of 2.55(3) Å and 2.20(2) Å respectively (Fig. 4). This orientation also provides parallel yet offset π -stacking of the phosphorus and boron substituted (PC_6F_4B) arene rings. Additionally the PH moiety is oriented parallel to an o-fluorine of the bridging $C_6 F_4$ unit resulting in intramolecular P–H \cdots F–C contacts of 2.50(3) Å and 2.47(2) Å for 24 and 28, respectively.⁵⁷ The remaining metric parameters were unexceptional and similar to those communicated for 22, 24, 26, 30 and 32. It should be noted that recently, Royo and co-workers have reported the formation of a related zwitterion $Ph_3P(C_6F_4)BMe(C_6F_5)_2$ as a by-product of a mixture of Ph_3P and the ion pair $[Zr{C_5H_3[SiMe_2(\eta^1-NtBu)]_2}][RB(C_6F_5)_3]$ left at 80 °C for one week.58

While the aromatic substitution seems to tolerate a variety of substituents on phosphorus, it is noteworthy that no reaction was observed with prolonged heating of the solutions of adducts 1, 4 and 8 to 140 °C for several days.⁶² The inability of these adducts to undergo thermal rearrangement demonstrates that small, highly basic phosphines form strong P–B bonds with $B(C_6F_5)_3$ that are thermally stable. This notion is consistent with the relatively short P-B bond lengths seen in 4 and 8 in comparison to those determined for 6 to 9 for which thermal rearrangement does proceed (Table 2). In the case of 1 and 4, secondary $H \cdots F$ contacts analogous to those seen for amine adducts²⁴ also strengthen the Lewis acid-base interaction. Short inter- and intra-molecular $CH \cdots F$ contacts have been described for 7^{25} and are thought to contribute to its poor solubility in organic solvents. Short intramolecular $CH \cdots F$ and $PH \cdots F$ and intermolecular $CH \cdots F$ contacts less than the sum of the van der Waals radii (<2.55 Å) are found in 4.57 Bradley et al.60 have attributed the strength of the adduct $(tBuPH_2)B(C_6F_5)_3$ vs. $(H_3P)B(C_6F_5)_3$ to both short interand intra-molecular $H \cdots F$ interactions present in the former. In each case, the $CH \cdots F$ and/or $PH \cdots F$ interactions are not retained in solution as determined using ¹⁹F NMR spectroscopy, indicating that such interactions are significantly weaker than similar NH ··· F contacts, which are typically observed in solution.²⁴

Fig. 4 POV-ray drawings of (a) 27 (b) 31 (c) 33 (d) 34.

Interestingly, the solid state structure of the adduct **6** exhibits a short intramolecular PH \cdots F contact of 2.27(2) Å,⁵⁷ yet it still thermally rearranges to give the zwitterions **25**, albeit only at a higher temperature. Hence while such secondary interactions may play a role, clearly the sterics and basicity of the phosphine dominate in determining the strength of the P–B bond.

To examine the impact of alternative substitution at the boron atom the species PhB(C₆F₅)₂ **36**,³¹ known to have a diminished degree of Lewis acidity^{63,64} compared to B(C₆F₅)₃, was prepared. Crystals of PhB(C₆F₅)₂ were obtained and the solid-state structure determined by X-ray diffraction (Fig. 5(a)). The structure is planar at B ($\sum_{C-B-C} = 360^{\circ}$) and exhibits a propeller shape with the two C₆F₅ rings turned 43° and 50° out of the BC₃ plane and the C₆H₅ ring rotated 24° out of the BC₃ plane as is typical for related triarylboranes.^{56,65–71} Upon addition of Cy₃P to a toluene solution of PhB(C₆F₅)₂ at 25°C, a white solid precipitated and was identified as the phosphonium borate Cy₃P(C₆F₄)BF(Ph)(C₆F₅) **37** (Fig. 5(b)). The ³¹P NMR spectrum is very similar to that of **32**, while the ¹¹B NMR resonance is shifted downfield 3 ppm from

Fig. 5 POV-ray drawings of (a) 36 (b) 37.

that of **32**, while the gap between the *meta*- and *para*-resonances $(\Delta_{p-m} = 4 \text{ ppm})$ is slightly smaller than in **32** $(\Delta_{p-m} = 5 \text{ ppm})$. The solid-state structure of **37** was determined by X-ray diffraction. While the metric parameters are as expected and unexceptional, the structure confirms the preferential attack of the phosphine at the electron deficient C₆F₅ ring. This is consistent with experiments where mixtures of Ph₃B and Cy₃P or *t*Bu₂PH showed no evidence of aromatic substitution at 125 °C by ¹¹B or ³¹P NMR spectroscopy. In line with this, no reactivity was observed between Cy₃P and the borane B(*m*-C₆H₃(CF₃)₂)₃.

Mechanistic insights

Dissociation of (phosphine) $B(C_6F_5)_3$ adducts permits attack at the para-carbon of a C_6F_5 ring on $B(C_6F_5)_3$ to give zwitterions of the form $R'R_2P(C_6F_4)BF(C_6F_5)_2$. Mechanistically it is thought that the first step in the reaction involves nucleophilic attack by phosphine at a para-carbon atom forming a dearomatized intermediate. This step is followed by fluoride transfer to the boron atom. The strength of the newly formed P-C and B-F bonds renders the reaction irreversible. A similar mechanism was described by Erker and co-workers¹⁷ for the generation of $(Ph_3PCHPh)C_6F_4BF(C_6F_5)_2$. Similarly, the reaction of tertiary phosphines with trityl cation proceeds in a similar fashion, initially giving the (4-benzhydrylidene-cyclohexa-2,5dienyl)phosphonium cations $[R_3P(C_6H_5)=CPh_2]^+$ and subsequent (*p*-benzhydryl)phenylphosphonium cations $[R_3P(C_6H_4)CHPh_2]^+$ (Scheme 1).¹⁶ Efforts to observe a dearomatized intermediate in the reaction of phosphine and $B(C_6F_5)_3$ by NMR spectroscopy were unsuccessful. Nonetheless, the general trend in reactivity seems to parallel steric bulk, consistent with the proposed mechanism; small phosphines form robust adducts, larger phosphines rearrange to give aromatic substitution under thermal duress, larger still phosphines form weak adducts and effect aromatic substitution rapidly, while very large phosphines show no reactivity at all towards $B(C_6F_5)_3$.

In summary, it has been demonstrated that the reactivity between Lewis basic phosphines and the Lewis acid $B(C_6F_5)_3$

is not limited to simple adduct formation. Instead, novel phosphonium borate zwitterions derived from THF ring-opening and nucleophilic aromatic substitution are accessible depending on the conditions. Extremely bulky tertiary phosphines do not react at all with $B(C_6F_5)_3$ thus yielding 'frustrated Lewis pairs'. We continue to examine the chemistry of each class of these products. While we are currently exploring the potential of these two classes of zwitterions as ligands, we also continue to explore the fundamental reactivity of Lewis acids and bases and in particular that of 'frustrated Lewis pairs'.

Acknowledgements

Financial support from NSERC of Canada and NOVA Chemicals Corporation is gratefully acknowledged. G. C. W. is grateful for the award of an NSERC-postgraduate scholarship. M. A. D. is grateful for the award of an Ontario graduate scholarship.

References

- 1 W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345-354.
- 2 E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391-1434
- 3 J. C. W. Chien, W. M. Tsai and M. D. Rausch, J. Am. Chem. Soc., 1991, 113, 8570–8571.
- 4 W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1-76.
- 5 F. Focante, P. Mercandelli, A. Sironi and L. Resconi, Coord. Chem. Rev., 2006, 250, 170–188.
- 6 G. Erker, Dalton Trans., 2005, 1883-1890.
- 7 X. G. Fang, B. L. Scott, K. D. John, G. J. Kubas and J. G. Watkin, New J. Chem., 2000, 24, 831–833.
- 8 J. B. Lambert and J. H. So, J. Org. Chem., 1991, 56, 5960-5962.
- 9 G. Bidan and M. Genies, Tetrahedron Lett., 1978, 2499-2502.
- 10 R. A. Jones, G. Wilkinson, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Perkin Trans. 2, 1980, 117–120.
- 11 J. R. Sanders, J. Chem. Soc., Dalton Trans., 1973, 743-747.
- 12 Y. Okamoto and Y. Shimakaw, J. Org. Chem., 1970, 35, 3752.
- 13 H. Hoffmann and P. Schellen, Chem. Ber. Recl., 1966, 99, 1134.
- 14 R. Damico and C. D. Broaddus, J. Org. Chem., 1966, 31, 1607.
- 15 G. Briegleb, W. Ruttiger and W. Jung, Angew. Chem., Int. Ed. Engl., 1963, 2, 545–546.
- 16 L. Cabrera, G. C. Welch, J. D. Masuda, P. Wei and D. W. Stephan, *Inorg. Chim. Acta*, 2006, **359**, 3066–3071.
- 17 S. Döring, G. Erker, R. Fröhlich, O. Meyer and K. Bergander, Organometallics, 1998, 17, 2183–2187.
- 18 G. C. Welch, J. D. Masuda and D. W. Stephan, *Inorg. Chem.*, 2006, 45, 478–480.
- 19 G. C. Welch, R. R. San Juan, J. D. Masuda and D. W. Stephan, *Science*, 2006, **314**, 1124–1126.
- 20 G. Rodriguez, Fluorinated Zwitterionic Cocatalysts for Olefin Polymerization, US Pat., WO 02/36639 A2, 2002.
- 21 M. W. Holtcamp and T. H. Pham, Catalyst system and its use in a polymerization process, US Pat., WO 02/102857, 2002.
- 22 R. A. Bartlett, M. M. Olmstead, P. P. Power and G. A. Sigel, *Inorg. Chem.*, 1987, 26, 1941–1946.
- 23 W. McFarlane and C. T. Regius, Polyhedron, 1997, 16, 1855-1861.
- 24 S. J. Lancaster, A. J. Mountford, D. L. Hughes, M. Schormann and M. Bochmann, J. Organomet. Chem., 2003, 680, 193–205.
- 25 P. A. Chase, M. Parvez and W. E. Piers, *Acta Crystallogr., Sect. E*, 2006, 62, O5181–O5183.
- 26 L. H. Doerrer, A. J. Graham and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1998, 3941–3946.
- 27 G. S. Hair, R. A. Jones, A. H. Cowley and V. Lynch, *Organometallics*, 2001, 20, 177–181.
- 28 A. G. Massey and A. J. Park, J. Organomet. Chem., 1964, 2, 245-250.
- 29 H. Jacobsen, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich and O. Meyer, *Organometallics*, 1999, 18, 1724–1735.
- 30 G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. R. Wei and D. W. Stephan, *Dalton Trans.*, 2007, 3407–3414.
- 31 A. Sundararaman and F. Jäkle, J. Organomet. Chem., 2003, 681, 134–142.

- 33 SAINT, Bruker AXS Inc., Madison, WI, 2003.
- 34 SADABS, Bruker AXS Inc., Madison, WI, 2003
- 35 G. M. Sheldrick, Bruker AXS Inc., Madison, WI, 2000.
- 36 P. A. Chase, L. D. Henderson, W. E. Piers, M. Parvez, W. Clegg and M. R. J. Elsegood, Organometallics, 2006, 25, 349-357.
- 37 P. A. Chase, P. E. Romero, W. E. Piers, M. Parvez and B. O. Patrick, Can. J. Chem., 2005, 83, 2098-2105.
- 38 J. M. Blackwell, W. E. Piers and R. McDonald, J. Am. Chem. Soc., 2002, 124, 1295-1306.
- 39 J. M. Blackwell, W. E. Piers and M. Parvez, Org. Lett., 2000, 2, 695-698.
- 40 A. D. Horton and J. deWith, Organometallics, 1997, 16, 5424-5436. 41 A. D. Horton, J. de With, A. J. Van Der Linden and H. van de Weg,
- Organometallics, 1996, 15, 2672-2674. 42 A. J. Mountford, S. J. Lancaster, S. J. Coles, P. N. Horton, D. L. Hughes,
- M. B. Hursthouse and M. E. Light, Inorg. Chem., 2005, 44, 5921-5933. 43 P. Spies, R. Fröhlich, G. Kehr, G. Erker and S. Grimme, Chem.-Eur. J.,
- 2008, 14, 333-343. 44 P. A. Chase, T. Jurca and D. W. Stephan, Chem. Commun., 2008, 1701-
- 1703
- 45 P. A. Chase, G. C. Welch, T. Jurca and D. W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 8050-8053.
- 46 J. S. J. McCahill, G. C. Welch and D. W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 4968-4971.
- 47 D. W. Stephan, Org. Biomol. Chem., 2008, 6, 1535-1539
- 48 G. C. Welch and D. W. Stephan, J. Am. Chem. Soc., 2007, 129, 1880-1881
- 49 T. Chivers and G. Schatte, Eur. J. Inorg. Chem., 2003, 3314-3317.
- 50 A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, L. H. Doerrer, S. Cafferkey and M. B. Hursthouse, Chem. Commun., 1998, 2529-2560. 51 G. M. Brooke, J. Fluorine Chem., 1997, 86, 1.
- 52 C. E. Smith, P. S. Smith, R. L. Thomas, E. G. Robins, J. C. Collings, C. Y. Dai, A. J. Scott, S. Borwick, A. S. Batsanov, S. W. Watt, S. J. Clark, C. Viney, J. A. K. Howard, W. Clegg and T. B. Marder, J. Mater. Chem., 2004, 14, 413-420.
- 53 M. H. Lee, T. Agou, J. Kobayashi, T. Kawashima and F. P. Gabbai, Chem. Commun., 2007, 1133-1135.
- 54 R. Taube, S. Wache and J. Sieler, J. Organomet. Chem., 1993, 459, 335-347.
- 55 M. H. Hannant, J. A. Wright, S. J. Lancaster, D. L. Hughes, P. N. Horton and M. Bochmann, Dalton Trans., 2006, 2415-2426.

- 56 S. M. Cornet, K. B. Dillon, C. D. Entwistle, M. A. Fox, A. E. Goeta, H. P. Goodwin, T. B. Marder and A. L. Thompson, Dalton Trans., 2003, 4395-4405.
- 57 The P-H bond distances reported were experimentally determined. X-Ray data are known to underestimate these distances and thus the intramolecular distances P-H···F-C are over estimated (see refs 72 and 73).
- 58 J. Cano, M. Sudupe, P. Royo and M. E. G. Mosquera, Angew. Chem., Int. Ed., 2006, 45, 7572-7574.
- 59 D. C. Bradley, M. B. Hursthouse, M. Motevalli and D. H. Zheng, J. Chem. Soc., Chem. Commun., 1991, 7-8.
- 60 D. C. Bradley, I. S. Harding, A. D. Keefe, M. Motevalli and D. H. Zheng, J. Chem. Soc., Dalton Trans., 1996, 3931-3936.
- 61 J.-M. Denis, H. Forintos, H. Szelke, L. Toupet, T.-N. Pham, P.-J. Madec and A.-C. Gaumont, Chem. Commun., 2003, 54-55.
- 62 Prolonged heating above 150 °C in the presence of excess phosphine results in partial decomposition of the adduct to give a mixture of unidentifiable species with some exhibiting characteristic P-F coupling. The nature of these products is currently under investigation.
- 63 D. J. Morrison and W. E. Piers, Org. Lett., 2003, 5, 2857-2860
- 64 R. F. Childs, D. L. Mulholland and A. Nixon, Can. J. Chem., 1982, 60, 801 - 808.
- 65 S. A. Cummings, M. Iimura, C. J. Harlan, R. J. Kwaan, I. V. Trieu, J. R. Norton, B. M. Bridgewater, F. Jäkle, A. Sundararaman and M. Tilset, Organometallics, 2006, 25, 1565-1568
- 66 G. J. P. Britovsek, J. Ugolotti and A. J. P. White, Organometallics, 2005, 24, 1685-1691.
- 67 L. Li, C. L. Stern and T. J. Marks, Organometallics, 2000, 19, 3332-3337.
- 68 S. Toyota, M. Asakura, M. Oki and F. Toda, Bull. Chem. Soc. Jpn., 2000, 73, 2357-2362.
- 69 W. V. Konze, B. L. Scott and G. J. Kubas, Chem. Commun., 1999, 1807 - 1808
- 70 F. Zettler, H. D. Hausen and H. Hess, J. Organomet. Chem., 1974, 72, 157 - 162
- 71 M. Hutching, C. Maryanof and K. Mislow, J. Am. Chem. Soc., 1973, 95, 7158-7159
- 72 P. S. Bryan and R. L. Kuczkowski, Inorg. Chem., 1972, 11, 553.
- 73 T. L. Clark, J. M. Rodezno, S. B. Clendenning, S. Aouba, P. M. Brodersen, A. J. Lough, H. E. Ruda and I. Manners, Chem.-Eur. J., 2005, 11, 4526-4534.