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A B S T R A C T   

The introduction of heavy atoms such as iodine into organic dye molecules is known to improve the efficacy of 
photodynamic therapy (PDT) in general and antimicrobial photodynamic therapy (APDT) in particular. Such a 
phenomenon is attributed to the increasing probability of spin–orbit coupling resulting in the elevated rates of 
reactive species generation. In this work, we synthesize a series of novel, near-IR, iodinated heptamethine 
cyanine dyes containing carboxylic function and report on the unexpected effect of the increasing number of 
iodine atoms (up to six) on the photodynamic eradication of Gram-positive (Staphylococcus aureus) and Gram- 
negative (Escherichia coli and Pseudomonas aeruginosa) microbial pathogens. The efficacy of S. aureus photo- 
eradication by non-charged, zwitterionic cyanines increases with increasing the number of iodine atoms up to 
two, remains almost unchanged for the two-, three- and four-iodinated dyes, and reduces in the case of the hexa- 
iodinated cyanine. However, the mono-iodinated dye exhibits the most pronounced phototoxic effect to E. coli 
and P. aeruginosa. An additional positive charge provided by a triethylammonium group decreases photokilling of 
S. aureus but improves inactivation of E. coli and P. aeruginosa.   

1. Introduction 

Organic photosensitizing dyes are used in photodynamic antimi-
crobial therapy (APDT) [1], also called photodynamic antimicrobial 
chemotherapy (PACT) [2], for killing pathogenic bacteria [3], as well as 
in photodynamic therapy (PDT) of cancer [4,5] and for eradication of 
viruses [6] and fungi [7]. The clinically approved photosensitizers are in 
general porphyrins, which absorb light in the short wavelength range 
and to a lesser extent in the red and near-IR spectrum region [8,9]. 
Among the most potent non-porphyrin based photosensitizers are 
phthalocyanines [10–12] and cyanines [13,14]. One example of cyanine 
based photosensitizers is indocyanine green (ICG) approved by the U.S. 
Food and Drug Administration (FDA) and European Medicines Agency 
for photodynamic treatment of several kinds of cancer [15,16]. 

Due to the high extinction coefficients (up to 250,000 M− 1cm− 1) 
within the optical therapeutic window, the long-wavelength absorbing 
and emitting cyanine dyes, in particular heptamethine cyanines are 
considered promising tools for bioimaging, photodynamic therapy, and 

theranostic applications [17]. The chemical structures of cyanines can 
be relatively easy modified to adjust their absorption and emission 
maxima, solubility, hydrophobic-hydrophilic properties, and to intro-
duce reactive groups facilitating further linkage to biomolecules and 
target specific carriers [18]. Some cyanines were reported to exhibit a 
pronounced phototoxicity [19]. In recent years, there has been growing 
interest, therefore, to cyanine dyes as potential photosensitizers [20]. 

The introduction of heavy atoms such as iodine into the organic dye 
molecules is known to improve efficacy of PDT [21,22] and APDT 
[23–25], which is attributed to the increasing probability of spin-orbit 
coupling and triplet state population resulting in the elevated rates of 
reactive species generation [26,27]. This effect has recently been noted 
for cyanine dyes [28,29] among others [30]. 

Here, we synthesize a series of novel iodinated heptamethine cyanine 
dyes containing carboxylic groups (Fig. 1) that can be further utilized for 
binding to target-specific carriers. These dyes are investigated for 
photodynamic eradication of representative Gram-positive (Staphylo-
coccus aureus) and Gram-negative (Escherichia coli and Pseudomonas 
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aeruginosa) pathogens in comparison with the non-iodinated analog, 
Cy7. 

2. Experimental 

2.1. General 

All chemicals were supplied by Alfa Aesar Israel and Sigma-Aldrich. 
Solvents were purchased from Bio-Lab Israel and used as is. Chemical 
reactions were monitored by TLC (Silica gel 60 F-254, Merck) and LC/ 
MS. 

LC/MS analysis was performed using an Agilent Technologies 1260 
Infinity (LC) 6120 quadrupole (MS), column Agilent Zorbax SB-C18, 1.8 
mm, 2.1 × 50 mm, column temperature 50 ◦C, eluent water-acetonitrile 
(ACN) + 0.1% formic acid. 

HRMS was performed in ESI positive mode by using an Agilent 6550 
iFunnel Q-TOF LC/MS instrument. 

1H NMR and 13C NMR spectra were recorded on a Bruker Avance III 
HD (1H 400 MHz and 13C 100 MHz) spectrometer and a BBO probe 
equipped with a Z gradient coil. 1H NMR spectra of quaternized indo-
lenines 1a-1d and 3a-3c (all of them were recently reported) were 
measured in DMSO‑d6 at 300K. 1H NMR and 13C NMR spectra of hep-
tamethine cyanine dyes Cy7, 1ICy7–6ICy7 were measured in a CDCl3 
(80%) – CD3OD (20%) mixture at 275K. 

2.2. Synthesis 

1,2,3,3-Tetramethyl-3H-indol-1-ium iodide (1a), 5-iodo-1,2,3,3- 
tetramethyl-3H-indol-1-ium iodide (1b) and 4,5,6-triiodo-1,2,3,3- 
tetramethyl-3H-indol-1-ium iodide (1c) were synthesized by the 
reported procedures [9,10]. 

1,2,3,3-Tetramethyl-3H-indol-1-ium iodide (1a): Yield: 74%. 1H 
NMR (400 MHz, DMSO‑d6, ppm): δ 7.91 (d, J = 5.2 Hz, 1H), 7.83 (d, J =
5.4 Hz, 1H), 7.62 (t, J = 3.6 Hz, 2H), 3.98 (s, 3H), 2.77 (s, 3H), 1.53 (s, 
6H). MS m/z (ESI+) C12H16IN calculated [M-I–]+ 174.13, found m/z 
174.10. 

5-Iodo-1,2,3,3-tetramethyl-3H-indol-1-ium iodide (1b): Yield: 
73%. 1H NMR (400 MHz, DMSO‑d6, ppm): δ 8.27 (s, 1H), 7.99 (d, J =
8.5 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 3.93 (s, 3H), 2.73 (s, 3H), 1.51 (s, 
6H). MS m/z (ESI+) C12H15I2N calculated [M-I–]+ 300.02, found m/z 
300.16. 

4,5,6-Triiodo-1,2,3,3-tetramethyl-3H-indol-1-ium iodide (1c): 
Yield: 43%. 1H NMR (400 MHz, DMSO‑d6, ppm): δ 8.52 (s, 1H), 3.92 (s, 
3H), 2.76 (s, 3H), 1.59 (s, 6H). MS m/z (ESI+) C12H13I4N calculated [M- 

I–]+ 551.82, found m/z 551.80. 
5-Iodo-2,3,3-trimethyl-1-(3-(triethylammonio)propyl)-3H- 

indol-1-ium dibromide (1d): 5-Iodo-2,3,3-trimethyl-3H-indole (1.0 g, 
3.5 mmol) and 3-bromo-N,N,N-triethylpropan-1-aminium bromide 
(1.23 g, 3.9 mmol) were stirred in acetonitrile (14 mL) at reflux for 2 
days. Reaction mixture was diluted with benzene (50 mL). In 1 h the 
solvent was decanted and the viscous solid was triturated with diethyl 
ether, filtered, washed with ether, and dried to yield 1d (0.6 g, 29%). 1H 
NMR (400 MHz, DMSO‑d6, ppm): δ 8.33 (s, 1H), 8.04 (d, J = 7.8 Hz, 1H), 
7.95 (d, J = 7.6 Hz, 1H), 4.56 (t, J = 7.7 Hz, 2H), 3.25 (m, 8H), 2.91 (s, 
3H), 2.18 (m, 2H), 1.56 (s, 6H), 1.18 (t, J = 7.3 Hz, 9H). MS m/z (ESI+) 
C20H33Br2IN2 calculated [M − 2Br]+ 428.17, found m/z 428.20. 

1-(5-Carboxypentyl)-2,3,3-trimethyl-3H-indol-1-ium bromide 
(3a): 2,3,3-Trimethyl-3H-indole (1.0 g, 6.3 mmol) was mixed with 6- 
bromohexanoic acid (1.84 g, 9.4 mmol) and heated at 120 ◦C for 15 h 
in a sealed tube. The reaction mixture was cooled to RT, diluted with 
benzene (5 mL), the solvent was decanted, and the residue was tritu-
rated with benzene (3 × 5 mL), and filtered. The obtained precipitate 
was washed with acetone (1 mL) and dried to yield 3a (1.33 g, 60%). 1H 
NMR (400 MHz, DMSO‑d6, ppm): δ 7.97 (d, J = 5.1 Hz, 1H), 7.84 (d, J =
3.4 Hz, 1H), 7.62 (t, J = 4.1 Hz, 2H), 4.45 (t, J = 7.8 Hz, 2H), 2.84 (s, 
3H), 2.23 (t, J = 7.2 Hz, 2H), 1.85 (m, 2H), 1.56 (m, 2H), 1.54 (s, 6H), 
1.43 (m, 2H). MS m/z (ESI+) C17H24BrNO2 calculated [M − Br]+ 274.18, 
found m/z 274.20. 

1-(5-Carboxypentyl)-5-iodo-2,3,3-trimethyl-3H-indol-1-ium 
bromide (3b) was obtained by the same procedure as for 3a starting 
from 5-iodo-2,3,3-trimethyl-3H-indole (1.0 g, 3.5 mmol) and 6-bromo-
hexanoic acid (1.37 g, 7.0 mmol) by heating at 90 ◦C for 2 days in a 
sealed tube. Yield: 0.81 g (48%). 1H NMR (400 MHz, DMSO‑d6, ppm): δ 
8.31 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.5 Hz, 1H), 4.43 (t, J 
= 7.7 Hz, 2H), 2.82 (s, 3H), 2.20 (t, J = 6.7 Hz, 2H), 1.82 (m, 2H), 1.53 
(s, 6H), 1.42 (m, 2H), 1.34 (m, 2H). MS m/z (ESI+) C17H23BrINO2 
calculated [M − Br]+ 400.08, found m/z 400.12. 

1-(5-Carboxypentyl)-4,5,6-triiodo-2,3,3-trimethyl-3H-indol-1- 
ium bromide (3c) was obtained by the same procedure as for 3a 
starting from 4,5,6-triiodo-2,3,3-trimethyl-3H-indole (1.0 g, 1.9 mmol) 
and 6-bromohexanoic acid (0.73 g, 3.7 mmol) by heating at 90 ◦C for 3 
days in a sealed tube. Yield 0.4 g (29%). 1H NMR (400 MHz, DMSO‑d6, 
ppm): δ 8.60 (s, 1H), 4.41 (t, J = 7.7 Hz, 2H), 2.83 (s, 3H), 2.20 (t, J =
6.7 Hz, 2H), 1.79 (m, 2H), 1.60 (s, 6H), 1.51 (m, 2H), 1.44 (m, 2H). MS 
m/z (ESI+) C17H21BrI3NO2 calculated [M − Br]+ 651.87, found m/z 
651.90. 

2.2.1. General procedure for the synthesis of the dyes Cy7, 1ICy7–6ICy7 

A solution of indolenine 1a–1d (0.25 mmol, 1.1 equiv.) and N-[5- 
(phenylamino)-2,4-pentadienylidene]aniline hydrochloride (0.23 
mmol, 1.0 equiv.) in acetic anhydride (2 mL) was heated at 90 ◦C for 15 
min to form the corresponding intermediate product 2a–2d. Then, the 
second indolenine 3a–3c (0.25 mmol, 1.1 equiv.) was added and dis-
solved in the reaction mixture at 90 ◦C. The reaction mixture was then 
cooled to 50 ◦C, pyridine (1 mL) was added, heated at 90 ◦C for 5 min, 
and the obtained dye was precipitated with ether, filtered, and washed 
with ether. The raw product was column purified on Silica gel 60 using 
5–10% methanol–chloroform as eluent. 

6-(3,3-Dimethyl-2-(7-(1,3,3-trimethylindolin-2-ylidene)hepta- 
1,3,5-trien-1-yl)-3H-indol-1-ium-1-yl)hexanoate (Cy7). Dye Cy7 was 
synthesized from 1,2,3,3-tetramethyl-3H-indol-1-ium iodide (1a) (75 
mg, 0.25 mmol), N-[5-(phenylamino)-2,4-pentadienylidene]aniline hy-
drochloride (64 mg, 0.23 mmol), and 1-(5-carboxypentyl)-2,3,3-tri-
methyl-3H-indol-1-ium bromide (3a) (88.5 mg, 0.25 mmol). Yield: 119 
mg (52%). 1H NMR (400 MHz, CDCl3–CD3OD, ppm): δ 7.71 (t, J = 13.1 
Hz, 2H), 7.42 (t, J = 12.7 Hz, 1H), 7.40–7.34 (m, 2H), 7.32 (d, J = 7.5 
Hz, 2H), 7.18 (t, J = 7.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 1H), 7.06 (d, J =
8.4 Hz, 1H), 6.47 (t, J = 12.5 Hz, 2H), 6.08 (d, J = 13.4 Hz, 1H), 6.05 (d, 
J = 13.6 Hz, 1H), 3.92 (t, J = 7.4 Hz, 2H), 3.53 (s, 3H), 2.27 (t, J = 7.2 

Fig. 1. Heptamethine cyanine dyes synthesized and investigated in this work.  
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Hz, 2H), 1.84–1.67 (m, 2H), 1.62 (s, 12H), 1.67–1.53 (m, 2H), 1.50–1.35 
(m, 2H). 13C NMR (100 MHz, CDCl3–CD3OD, ppm): δ 175.63 (COOH), 
171.14 (CN Ind), 170.56 (CN Ind) 155.75 (CH), 150.53 (2CH), 141.67 
(Ar), 141.00 (Ar), 139.80 (Ar), 139.63 (Ar), 127.84 (2CH Ar), 124.76 
(2CH), 124.26 (2CH Ar), 121.36 (CH Ar(, 121.23 (CH Ar), 109.50 (CH 
Ar), 109.40 (CH Ar), 102.68 (CH), 102.42 (CH), 48.47 (2C(CH3)2), 43.09 
(CH2), 32.98 (CH2), 30.23 (CH3), 26.83 (4CH3), 26.19 (CH2), 25.45 
(CH2), 23.58 (CH2). HRMS m/z (ESI+) C34H40N2O2 calculated [M+H]+

509.3090 (509.3163), found m/z: 509.3168. 
6-(2-(7-(5-iodo-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5- 

trien-1-yl)-3,3-dimethyl-3H-indol-1-ium-1-yl)hexanoate (1ICy7). 
Dye 1ICy7 was synthesized from 5-iodo-1,2,3,3-tetramethyl-3H-indol-1- 
ium iodide (1b) (106.75 mg, 0.25 mmol), N-[5-(phenylamino)-2,4- 
pentadienylidene]aniline hydrochloride (64 mg, 0.23 mmol), and 1-(5- 
carboxypentyl)-2,3,3-trimethyl-3H-indol-1-ium bromide (3a) (88.5 mg, 
0.25 mmol). Yield: 74 mg (45%). 1H NMR (400 MHz, CDCl3–CD3OD, 
ppm): δ 7.76 (t, J = 13.1 Hz, 1H), 7.61 (t, J = 13.1 Hz, 1H), 7.59 (d, J =
8.5 Hz, 1H), 7.54 (s, 1H), 7.40 (t, J = 12.7 Hz, 1H), 7.37 (t, J = 7.9 Hz, 
1H), 7.36 (d, J = 7.8 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 7.9 
Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.53 (t, J = 13.3 Hz, 1H), 6.44 (t, J =
13.3 Hz, 1H), 6.20 (d, J = 13.5 Hz, 1H), 5.92 (d, J = 13.3 Hz, 1H), 3.99 
(t, J = 7.4 Hz, 2H), 3.42 (s, 3H), 2.24 (t, J = 7.2 Hz, 2H), 1.77 (m, 2H), 
1.64 (m, 2H), 1.63 (s, 6H), 1.58 (s, 6H), 1.44 (m, 2H). 13C NMR (100 
MHz, CDCl3–CD3OD, ppm): δ 176.41 (COOH), 172.48 (CN Ind), 168.14 
(CN Ind), 155.64 (CH), 152.05 (2CH), 148.66 (CH), 141.83 (Ar), 141.46 
(Ar), 140.63 (Ar), 140.16 (Ar), 136.45 (CH Ar), 130.15 (CH Ar), 128.06 
(CH Ar), 125.46 (CH Ar), 125.20 (CH), 122.42 (CH Ar), 110.53 (CH Ar), 
110.27 (CH Ar), 104.14 (CH), 101.49 (CH), 86.19 (CI Ar), 48.73 (C 
(CH3)2), 47.05 (C(CH3)2), 43.54 (CH2), 33.74 (CH2), 29.95 (CH3), 26.86 
(2CH3), 26.67 (2CH3), 26.35 (CH2), 25.42 (CH2), 23.80 (CH2). HRMS m/ 
z (ESI+) C34H39IN2O2 calculated [M+H]+ 635.2056 (635.2129), found 
m/z: 635.2134. 

6-(5-Iodo-2-(7-(5-iodo-1,3,3-trimethylindolin-2-ylidene)hepta- 
1,3,5-trien-1-yl)-3,3-dimethyl-3H-indol-1-ium-1-yl)hexanoate 
(2ICy7). Dye 2ICy7 was synthesized from 5-iodo-1,2,3,3-tetramethyl- 
3H-indol-1-ium iodide (1b) (106.5 mg, 0.25 mmol), N-[5-(phenyl-
amino)-2,4-pentadienylidene]aniline hydrochloride (64 mg, 0.23 
mmol), and 1-(5-carboxypentyl)-5-iodo-2,3,3-trimethyl-3H-indol-1-ium 
bromide (3b) (120 mg, 0.25 mmol). Yield: 65 mg (38%). 1H NMR (400 
MHz, CDCl3–CD3OD, ppm): δ 7.71 (t, J = 13.0 Hz, 2H), 7.63 (d, J = 8.3 
Hz, 2H), 7.60 (s, 2H), 7.45 (t, J = 12.7 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 
6.85 (d, J = 8.1 Hz, 1H), 6.51 (t, J = 12.1 Hz, 2H), 6.08 (d, J = 12.7 Hz, 
1H), 6.06 (d, J = 13.5 Hz, 1H), 3.90 (t, J = 7.2 Hz, 2H), 3.49 (s, 3H), 2.23 
(t, J = 7.2 Hz, 2H), 1.72 (m, 2H), 1.64 (m, 2H), 1.60 (s, 12H), 1.42 (m, 
2H). 13C NMR (100 MHz, CDCl3–CD3OD, ppm): δ 176.74 (COOH), 
170.26 (CN Ind), 169.74 (CN Ind), 156.26 (CH), 150.81 (CH), 150.69 
(CH), 142.00 (Ar), 141.75 (Ar), 141.53 (Ar), 140.86 (Ar), 136.73 (2CH 
Ar), 130.45 (CH Ar), 130.31 (CH Ar), 125.65 (2CH), 111.38 (CH Ar), 
111.25 (CH Ar), 103.08 (CH), 102.86 (CH), 87.63 (CI Ar), 88.52 (CI Ar), 
48.2 (2C(CH3)2), 43.18 (CH2), 33.48 (CH2), 30.34 (CH3), 26.78 (4CH3), 
26.12 (CH2), 25.43 (CH2), 23.73 (CH2). HRMS m/z (ESI+) C34H38I2N2O2 
calculated [M+H]+ 761.1023 (761.1095), found m/z: 761.1101. 

6-(5-Iodo-2-(7-(5-iodo-3,3-dimethyl-1-(3-(triethylammonio) 
propyl)indolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3,3-dimethyl-3H- 
indol-1-ium-1-yl)hexanoate trifluoroacetate (2ICy7þ). Dye 2ICy7þ
was synthesized from 5-iodo-2,3,3-trimethyl-1-(3-(triethylammonio) 
propyl)-3H-indol-1-ium dibromide (1d) (147 mg, 0.25 mmol), N-[5- 
(phenylamino)-2,4-pentadienylidene]aniline hydrochloride (65 mg, 
0.23 mmol), and 1-(5-carboxypentyl)-5-iodo-2,3,3-trimethyl-3H-indol- 
1-ium bromide (3b) (120 mg, 0.25 mmol). The product was purified on a 
RP18 column (acetonitrile–water + 0.05% TFA). Yield: 34 mg (15%). 1H 
NMR (400 MHz, CDCl3–CD3OD, ppm): δ 7.74 (t, J = 13.0 Hz, 1H), 7.70 
(d, J = 8.3 Hz, 1H), 7.68 (t, J = 13.0 Hz, 1H), 7.66 (s, 1H), 7.64 (d, J =
8.1 Hz, 1H), 7.59 (s, 1H), 7.40 (t, J = 12.8 Hz, 1H), 7.01 (d, J = 8.3 Hz, 
1H), 6.91 (d, J = 8.3 Hz, 1H), 6.60 (t, J = 12.7 Hz, 1H), 6.55 (t, J = 12.8 
Hz, 1H), 6.28 (d, J = 13.2 Hz, 1H), 6.15 (d, J = 13.5 Hz, 1H), 4.08 (t, J =

7.0 Hz, 2H), 3.95 (t, J = 6.8 Hz, 2H), 3.43 (t, J = 7.9, 2H), 3.26 (m, 6H) 
2.30 (t, J = 7.2 Hz, 2H,), 2.04 (m, 2H), 1.77 (m, 2H), 1.66 (m, 2H), 1.64 
(s, 6H), 1.61 (s, 6H), 1.45 (m, 2H), 1.27 (t, J = 7.1 Hz, 9H). HRMS m/z 
(ESI+) C44H56F3I2N3O4 calculated [M–CF3COO]+ 888.2451 (888.2445), 
found m/z: 888.2462. 

6-(3,3-Dimethyl-2-(7-(4,5,6-triiodo-1,3,3-trimethylindolin-2- 
ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium-1-yl)hexanoate 
(3ICy7). Dye 3ICy7 was synthesized from 4,5,6-triiodo-1,2,3,3-tetra-
methyl-3H-indol-1-ium iodide (1c) (170 mg, 0.25 mmol), N-[5-(phe-
nylamino)-2,4-pentadienylidene]aniline hydrochloride (65 mg, 0.23 
mmol), and 1-(5-carboxypentyl)-2,3,3-trimethyl-3H-indol-1-ium bro-
mide (3a) (88.0 mg, 0.25 mmol). Yield: 75 mg (37%). 1H NMR (400 
MHz, CDCl3–CD3OD, ppm): δ 7.82 (t, J = 12.4 Hz, 1H), 7.54 (t, J = 13.0 
Hz, 1H), 7.50 (s, 1H), 7.40 (d, J = 7.7 Hz, 2H), 7.40 (t, J = 12.6 Hz, 1H), 
7.31 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 6.59 (t, J = 12.6 Hz, 
1H), 6.43 (t, J = 12.5 Hz, 1H), 6.36 (d, J = 13.5 Hz, 1H), 5.77 (d, J =
13.1 Hz, 1H), 4.07 (t, J = 7.2 Hz, 2H), 3.31 (s, 3H), 2.22 (t, J = 7.2 Hz, 
2H), 1.79 (m, 2H), 1.69 (s, 6H), 1.65 (s, 6H), 1.64 (m, 2H), 1.45 (m, 2H). 
13C NMR (100 MHz, CDCl3–CD3OD, ppm): δ 177.20 (COOH), 174.33 
(CN Ind), 166.58 (CN Ind), 155.22 (CH), 153.27 (CH), 146.81 (CH), 
144.47 (Ar), 141.28 (Ar), 140.59 (Ar), 140.34 (Ar), 128.28 (CH Ar), 
126.34 (CH), 126.11 (CH), 125.57 (CH Ar), 121.54 (CH Ar), 118.83 
(2CH Ar), 116.77 (CI Ar), 111.04 (2CI Ar), 105.96 (CH), 101.98 (CH), 
50.51 (C(CH3)2), 49.30 (C(CH3)2), 44.03 (CH2), 34.28 (CH2), 28.73 
(CH3), 26.58 (CH2), 26.50 (2CH3), 25.42 (CH2), 23.98 (CH2), 23.29 
(2CH3). HRMS m/z (ESI+) C34H37I3N2O2 calculated [M+H]+ 886.9989 
(887.0062), found m/z: 887.0067. 

6-(5-Iodo-3,3-dimethyl-2-(7-(4,5,6-triiodo-1,3,3-trimethylindo-
lin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium-1-yl)hex-
anoate (4ICy7). Dye 4ICy7 was synthesized from 4,5,6-triiodo-1,2,3,3- 
tetramethyl-3H-indol-1-ium iodide (1c) (170 mg, 0.25 mmol), N-[5- 
(phenylamino)-2,4-pentadienylidene]aniline hydrochloride (65 mg, 
0.23 mmol), and 1-(5-carboxypentyl)-5-iodo-2,3,3-trimethyl-3H-indol- 
1-ium bromide (3b) (120 mg, 0.25 mmol). Yield: 116 mg (50%). 1H 
NMR (400 MHz, CDCl3–CD3OD, ppm): δ 7.78 (t, J = 12.8 Hz, 1H), 7.68 
(d, J = 8.3 Hz, 1H), 7.66 (s, 1H), 7.63 (t, J = 13.0 Hz, 1H), 7.57 (s, 1H), 
7.43 (t, J = 12.7 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.58 (t, J = 12.6 Hz, 
1H), 6.48 (t, J = 12.6 Hz, 1H), 5.23 (d, J = 13.4 Hz, 1H), 5.88 (d, J =
13.3 Hz, 1H), 3.98 (t, J = 7.8 Hz, 2H), 3.37 (s, 3H), 2.24 (t, J = 7.2 Hz, 
2H), 1.74 (m, 2H), 1.70 (s, 6H), 1.62 (s, 6H), 1.52 (m, 2H), 1.42 (m, 2H). 
13C NMR (100 MHz, CDCl3–CD3OD, ppm): δ 177.01 (COOH), 172.11 
(CN Ind), 168.49 (CN Ind), 156.17 (CH), 152.62 (CH), 148.84 (CH), 
144.13 (Ar), 142.34 (Ar), 141.45 (Ar), 140.42 (Ar), 137.03 (CH Ar), 
130.63 (CH Ar), 126.44 (2CH), 119.32 (CH Ar), 118.06 (CI Ar), 112.19 
(CH Ar), 105.56 (CI Ar), 104.78 (CH), 102.10 (CI Ar), 101.18 (CH), 
89.21 (CI Ar), 50.99 (C(CH3)2), 48.72 (C(CH3)2), 43.70 (CH2), 33.48 
(CH2), 28.42 (CH3), 26.60 (2CH3), 26.38 (CH2), 25.32 (CH2), 23.66 
(CH2), 23.16 (2CH3). HRMS m/z (ESI+) C34H36I4N2O2 calculated 
[M+H]+ 1012.8956 (1012.9028), found m/z: 1012.9034. 

6-(4,5,6-Triiodo-3,3-dimethyl-2-(7-(4,5,6-triiodo-1,3,3-trime-
thylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium-1-yl) 
hexanoate (6ICy7). Dye 6ICy7 was synthesized from 4,5,6-triiodo- 
1,2,3,3-tetramethyl-3H-indol-1-ium iodide (1c) (170 mg, 0.25 mmol), 
N-[5-(phenylamino)-2,4-pentadienylidene]aniline hydrochloride (65 
mg, 0.23 mmol), and 1-(5-carboxypentyl)-4,5,6-triiodo-2,3,3-trimethyl- 
3H-indol-1-ium bromide (3c) (183 mg, 0.25 mmol). Yield: 78 mg (27%). 
1H NMR (400 MHz, CDCl3–CD3OD, ppm): δ 7.73 (t, J = 13.0 Hz, 2H), 
7.65 (s, 1H), 7.62 (s, 1H), 7.45 (t, J = 12.6 Hz, 1H), 6.57 (m, 2H), 6.06 
(d, J = 13.5 Hz, 2H), 3.86 (t, J = 7.6 Hz, 2H), 3.47 (s, 3H), 2.26 (t, J =
7.1 Hz, 2H), 1.72 (s, 12H), 1.68 (m, 2H), 1.63 (m, 2H), 1.42 (m, 2H). 13C 
NMR (100 MHz, CDCl3–CD3OD, ppm): 177.05 (COOH), 170.80 (2CN 
Ind), 156.82 (CH), 151.90 (CH), 151.50 (CH), 143.68 (Ar), 142.93 (Ar), 
141.94 (Ar), 141.70 (Ar), 120.03 (2CH), 119.95 (2CH Ar), 119.54 (2CI 
Ar), 105.95 (CI Ar), 105.75 (CI Ar), 102.86 (2CI Ar), 102.45 (CH), 
102.22 (CH), 51.72 (C(CH3)2), 51.57 (C(CH3)2), 43.08 (CH2), 33.57 
(CH2), 28.72 (CH3), 25.81 (CH2), 25.22 (CH2), 23.68 (CH2), 23.01 
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(4CH3). HRMS m/z (ESI+) C34H34I6N2O2 calculated [M+H]+ 1264.6888 
(1264.6961), found m/z: 1264.6967. 

2.3. Absorption and fluorescence measurements 

The absorption spectra were recorded on a Jasco V-730 UV–Vis 
spectrophotometer and the fluorescence spectra were taken on an 
Edinburgh FS5 spectrofluorometer. The absorption and fluorescence 
spectra were measured at 25 ◦C in standard 1-cm quartz cells at ~1 μM 
dye concentrations in DMSO and 0.9% aqueous saline. The excitation 
wavelength (λ*) was 680 nm. 

To determine the absolute fluorescence quantum yields (FF), the 
integrated relative intensities of the dyes were measured vs. the 
commercially available disulfonated Cy7 (Zy7, SETA BioMedicals, htt 
ps://www.setabiomedicals.com) in phosphate buffer pH 7.4 as the 
reference (FF = 13%) [8]; and the quantum yields were calculated ac-
cording to Equation (1) [31].  

ΦF = ΦFRef × (F / FRef) × (ARef / A) × (nD(media)
2 / nD(Ref)

2),                 (1) 

where ΦFRef is the quantum yield of the reference, FRef and F are the 
areas (integral intensities) of the emission spectra (F =

∫
I(λ)dλ) of the 

reference dye and the dye under examination, ARef and A, are the ab-
sorbances at the excitation wavelength of the reference dye and the dye 
under examination, and nD(Ref) and nD(media) are the refractive indices of 
the solvents used for the reference dye and the dye under examination. 

The quantum yield for each dye was independently measured three 
times and the average value was taken. 

2.4. Quantum yield of singlet oxygen formation 

The quantum yields of the singlet oxygen formation were measured 
according to the known procedure [32]. A solution of 1,3-diphenyliso-
benzofuran (DPBF, c ~ 1.4 × 10− 5 M) and a dye under investigation 
(c ~ 5− 7 × 10− 6 M) in methanol was prepared. The obtained solution 
(3.0 mL) was light irradiated by a 747 nm 1 W LED in a standard 1 cm 
quartz cell with stirring (LED was located in 1 mm distance from the cell 
wall) and the absorption spectra were recorded over time. The total 
irradiation time was in the range of 20–120 min. During this time the 
absorbance of DPBF reduced to about 10% of its initial value. The cor-
responding plot representing the absorbance of DPBF at 411 nm versus 
time was drawn and fitted by first-order exponential decay function. 
Then, the singlet oxygen formation quantum yield ΦΔ was calculated 
relative to 1,1′,3,3,3′,3′-hexamethylindotricarbocyanine iodide (HITC) 
(ΦΔ = 0.0089 [32]) according to Equation (2).  

ΦΔ = ΦΔRef × (k / kRef) × (ARef / A),                                                 (2) 

where ΦΔRef is the quantum yield of the singlet oxygen formation for the 
reference dye (HITC), kRef and k are the rates of DPBF degradation ob-
tained from the corresponding fitting curves of the reference dye and the 
dye under examination, and ARef and A are the absorbances at the 
excitation wavelength (747 nm) of the reference dye and the dye under 
examination. Each experiment was carried out in triplicate and the 
average ΦΔ was taken. The reproducibility in the determination of ΦΔ 
was no worse that 5%. 

2.5. Antimicrobial studies 

Cultures of S. aureus (ATCC 25923), E. coli (ATCC 25922) and 
P. aeruginosa (ATCC 25668) were grown on Brain Heart agar plates 
(BHA, Acumedia, Lansing, MI, USA) for 24 h, transferred into Brain 
Heart broth (BH, Acumedia, Lansing, MI, USA), grown at 37 ± 1 ◦C with 
shaking at 170 rpm until reaching the absorbance A = 0.10 ± 0.02 at 
660 nm, which corresponded to a final concentration of 108 cells/mL, 
and diluted with commercially available sterile 0.9% saline solution to 
the final concentration of 103–104 cells/mL. 

All preparatory operations with photosensitizers were carried out in 
the dark to avoid their activation and photobleaching. The stock solu-
tions of the dyes in DMSO (3–8 mM, spectrophotometrical control by 
known dilutions) were prepared and the desirable final concentrations 
were prepared in up to three dilutions. Then, each dye solution in DMSO 
(7 μL) was added to bacterial suspensions (1 mL) in 0.9% saline (Fal-
con® 24-well polystyrene clear flat bottom plate was used). Thus, the 
amount of DMSO added to the bacterial suspensions was always 0.7% 
(7% was used in several experiments, as noted below). The bacterial 
suspensions were then incubated in the dark at RT for 30 min and then 
exposed to light with shaking (or kept in the dark for the control) for 
certain periods of time according to the experimental conditions. The 
light exposure was carried out by a 730-nm, 30 W LED equipped with a 
60◦ lens from the distance of 8 cm (light power density 56 mW/cm2). 

After the light exposure, aliquots of each sample (100 μL) were 
spread over BHA plates with a Drigalsky spreader, incubated at 37 ◦C for 
24 h, and the colony forming units (CFU) were counted using a colony 
counter Scan 500 (Interscience, Saint-Nom-la-Bretèche, France). 

To verify the dark toxicity of the dyes, the same experiments were 
carried out in parallel without light exposure. As the control we utilized 
the samples of bacteria without dye: (i) in the dark and without DMSO, 
(ii) in the dark in the presence of DMSO, (iii) exposed to light without 
DMSO, and (iv) exposed to light in the presence of DMSO. 

All the experiments with bacteria were carried out in triplicate 4–5 
times in different days and the average values were taken. 

3. Results and discussion 

3.1. Overview of the dye structures 

We synthesized a series of indolenine based heptamethine cyanine 
dyes of asymmetric structure containing no iodine (Cy7) as well as one 
(1ICy7), two (2ICy7), three (3ICy7), four (4ICy7) and six (6ICy7) 
iodine atoms. These dyes possess a carboxypentyl group attached to the 
nitrogen of one indolenine moiety and methyl group at the second 
indolenine nitrogen. When the carboxylic group is deprotonated, these 
dyes exist in zwitterionic form. Furthermore, one of the dyes (2ICy7þ) 
bears an additional positive charge provided by the quaternized propyl 
triethylaminium group substituting N-methyl. 

3.2. Synthesis 

All the dyes were synthesized by the same approach consisted in a 
one-pot sequential reaction of N-[5-(phenylamino)-2,4-pentadienyli-
dene]aniline hydrochloride with the first and then the second quater-
nized indolenine (Scheme 1). In the first step, the starting aniline was 
condensed in acetic anhydride with the first indolenine molecule 1a–1d 
to form a corresponding N-phenylacetamide derivative 2a–2d, which 
was further reacted with the second molecule, N-carboxypentyl indo-
lenine 3a–3c in the presence of pyridine to give the dyes Cy7, 1ICy7-
–6ICy7, and 2ICy7þ, respectively, in moderate yields (15–52%). 

3.3. Spectral properties and quantum yields of singlet oxygen formation 

The absorption and emission spectra and the extinction coefficients 
(ε) of the obtained heptamethine cyanines were measured at the dye 
concentration cDye ~ 1 μM in DMSO and aqueous saline (Figs. S1 and S2) 
and the corresponding characteristics are given in Table 1. These dyes 
absorb in the near-IR, biologically transparent spectral region with the 
high extinction coefficients (ε ~ 144,000–176,000 M− 1cm− 1), which is 
beneficial for applications in the body. The difference in the extinction 
coefficients between the dyes does not exceed ~20%. There is a ten-
dency that the iodination of the parent dye Cy7 results in a moderate 
red-shift in the absorption (up to 18 nm for hexa-iodinated 6ICy7 in 
DMSO) and a slight increase in the extinction coefficients. 

The fluorescence quantum yield (ΦF) of the dyes measured in DMSO 
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(~48–55%) is substantially reduced in aqueous saline (0.02–13%), 
which can be attributed to the dye aggregation [33–35]. The aggrega-
tion bands are well recognized in the absorption spectra (Fig. S2). In the 

saline solutions, a drastic (~650-fold) decrease of the quantum yield 
with increasing the number of iodine atoms is observed. In general, such 
an effect is known to be connected with the increasing probability of 

Scheme 1. Synthesis of heptamethine cyanine dyes.  

Table 1 
Spectral characteristics of cyanine dyes measured at cDye ~1 μM.  

Dye Structure DMSO 0.7% DMSO in saline MeOH 

λmaxAb, nm ε, 
M− 1cm− 1 

λmaxFl, nm ΦF, % λmaxAb,nm λmaxFl, nm ΦF, % ΦΔ, 
% 

Cy7 753 143,300 786 55 739 768 13 1.1 

1ICy7 759 168,000 792 53 746 776 12 1.9 

2ICy7 766 173,000 801 55 754 783 4 2.3 

2ICy7þ 766 176,000 801 48 752 785 10 2.3 

3ICy7 760 148,000 794 49 677a, 744 774 0.8 2.4 

4ICy7 768 144,000 803 48 688a 779 0.1 3.7 

6ICy7 771 166,000 804 52 718a, 777a 779 0.02 7.8  

a Aggregation band. 
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spin–orbit coupling caused by heavy atoms, which results in the growing 
population of the triplet state and the fluorescence quenching. However, 
for the investigated cyanine dyes, the decrease of the quantum yield is 
observed only in the aqueous solutions but not in DMSO. That is, the 
decrease is associated with the dye aggregation rather than with the 
heavy atom effect. 

All the dyes except 2ICy7þ contain a delocalized positive charge and 
a localized negative charge on the deprotonated carboxylic group. 
Therefore, due to the slightly polar structure, these dyes are only a little 
soluble in saline. The introduction of iodine atoms in the organic com-
pounds is known to reduce their solubility in aqueous media. Thus, the 
solubility of dimethylaniline in water at 25 ◦C is 1 g/L [36] while for 
4-iodo-dimethylaniline it is 34.64 mg/L [37]. The solubility of benzoic 
acid in water is 3.44 g/L [38] while for 4-iodobenzoic acid it is 0.04 g/L 
[39] and only 0.036 × 10− 3 g/L for 2,3,5-triiodobenzoic acid [40]. 
Hereby, the solubility of the investigated dyes decreases with the 
increasing the number of iodine atoms and the aggregation accordingly 
increases (Figs. S2 and a). At the same time, due to the presence of an 
additional positive charge, dye 2ICy7þ is less aggregative compared to 
2ICy7 containing the same number of iodines. 

The quantum yields of the singlet oxygen formation (ΦΔ) was 
measured in methanol solutions by the decrease of the DPBF dye, as 
described in [32], under the light exposure (747 nm 1 W LED). As 
anticipated, the ΦΔ were found to increase with increasing the number 
of iodine atoms (Table 1). Dyes 2ICy7 and 2ICy7þ both containing two 
iodines exhibited about the same ΦΔ. In the dark, no pronounced gen-
eration of singlet oxygen was detected: the decrease in the DPBF 
absorbance did not exceed 2% during 15 h. According to the absorption 
spectra (Fig. S3), almost no aggregation was noted in methanol at the 
investigated dye concentrations (c ~ 5− 7 × 10− 6 M). 

3.4. Toxicity and phototoxicity of the dyes 

All experiments with bacteria were carried out in aqueous saline 
solution. Commercial 0.9% saline solution, used in this work, is known 
to be acidic (pH ~ 5.5), which is mostly due to the presence of CO2 [41]. 
On the other side, the carboxypentyl group existing in all the investi-
gated dye molecules is more acidic (e.g. the pKa for pentanoic and 
hexanoic acids are 4.84 [42] and 4.88 [43], respectively). It means that 
the carboxylic group is basically deprotonated and the dyes Cy7, 1ICy7, 
2ICy7, 3ICy7, 4ICy7, and 6ICy7 exist in saline solution in the 
non-charged zwitterion form. In contrast, 2ICy7þ has a charge of +1 
that is localized on the quaternized triethylammonium group. 

To investigate the effect of the dyes on bacteria, stock solutions of the 
dyes were prepared in DMSO and added to the bacterial suspension in 
saline in such a way that the concentration of DMSO in the sample was 
0.7%. Then the bacterial suspensions were incubated with each dye in 
the dark for 30 min (pre-irradiation incubation), exposed to light and 
grown in the dark for 24 h at 37 ◦C followed by the calculation of the 
number of bacterial colonies. The dye concentrations and the exposure 
time were varied for each dye. To verify the dark toxicity of the dyes, the 
same experiments were carried out in parallel without the light 
exposure. 

As the control, the bacterial suspensions containing no dye were 
utilized. These controls were kept (i) in the dark without DMSO, (ii) in 
the dark in the presence of DMSO, (iii) exposed to light without DMSO, 
and (iv) exposed to light in the presence of DMSO. The amount of DMSO 
in these control samples was the same as for the dye-stained bacteria. 
The number of bacterial colonies in each experiment was utilized to 
calculate the survival percentage as compared to the control. Impor-
tantly, no detectable bacteria inhibition was registered for all the above 
controls (i–iv) and the survival for these samples was taken as 100%. 

Then, we found that the investigated dyes have no detectable dark 
toxicity to Gram-positive (S. aureus) and Gram-negative (E. coli and 
P. aeruginosa) bacteria at least up to the 1 μM and 50 μM dye concen-
trations, respectively. The dark toxicities at higher dye concentrations 

were not studied. In the next step, the experiments were performed with 
light irradiation at different exposure time using a 730-nm 30 W LED 
(power density 55 mW/cm2). 

3.4.1. Photodynamic eradication of S. aureus 
In our study, the effect on phototoxicity of the three following pa-

rameters was investigated: the number of iodine atoms in the dye mol-
ecules, the concentration of the dyes, and the light doses. The 
methodological approach was as follows: The effect of the number of 
iodine atoms in the dyes was first investigated on Gram-positive bacteria 
S. aureus: (i) at the "medium" (100 J/cm2) and (ii) "low" (3 J/cm2) light 
dose vs. the dye concentrations, and (iii) at the constant dye concen-
trations vs. the light dose. The "high" light dose (400 J/cm2) was not 
applied in the initial research stage because it caused complete killing of 
S. aureus by all the investigated dyes and, therefore, it was not possible 
to compare efficacies of these dyes. 

Following this approach, the impact of the number of iodine atoms 
and the dye concentration (cDye = 0.01–1 μM) on the S. aureus survival 
was first investigated at the constant light dose of 100 J/cm2. The most 
pronounced and nearly equal phototoxicity was observed for 2ICy7, 
3ICy7 and 4ICy7 that contained 2–4 iodine atoms, while Cy7, 1ICy7, 
2ICy7þ, and, surprisingly, 6ICy7 were less effective (Fig. 2). These 
results allow us to draw several conclusions. 

First, the introduction of iodine atoms in the Cy7 molecule, which is 
the parent structure for all the iodinated dyes, elevates phototoxicity, 
which is an anticipated result: one iodine atom in 1ICy7 causes a distinct 
increase of the phototoxicity but this increase is less pronounced as for 
the 2–4 iodinated dyes (Fig. 2). Thus, the dyes with 2–4 iodines afford 
almost total bacteria killing (survival 0–2.1%) at 0.01–1 μM, while 
1ICy7 at 0.01 μM is much less phototoxic exhibiting the percentage of 
survival of 60.8%. Obviously, this result is connected with increasing the 
number of heavy atoms. 

The second conclusion is that increasing the number of iodines from 
2 to 4 has almost no effect on the photokilling while the hexa-iodinated 
dye 6ICy7 surprisingly exhibits a reduced activity (the percentage of 
survival is 35.6% at 0.01 μM) compared to the 2–4 iodinated dyes 
(survival 0–2.1%). 

Third, the non-delocalized positive charge produced by the triethy-
lammonium group (2ICy7þ vs. 2ICy7) noticeably decreases the 
phototoxicity (Fig. 2). 

We assume that the above phenomena, i.e. "saturation" and reduc-
tion of the bacteria photo-eradication with increasing the number of 
iodine atoms from 2 to 6, can be attributed to the increasing dye ag-
gregation in aqueous media (Fig. S2) resulting in the decreasing dye 
uptake (the aggregation reduces both the phototoxicity [17,44] and the 
above mentioned fluorescence quantum yields [17,18,19]). This 
conclusion contradicts, however, recently reported findings that iodin-
ation of small organic molecules such as 4-amino naphthalimides vice 
versa causes the increase of the dye uptake by several mammalian cells 
[45]. 

To check our assumption that increasing the number of iodine atoms 
(as well as the positive charge) in the series of the investigated cyanines 
reduces the dye uptake by S. aureus and thus decreases the photokilling 
effect, we measured the dye uptake and correlated it with the survival 
percentage. For this purpose, S. aureus suspensions in saline (103–104 

cells/mL) were incubated with the dyes (1 μM) for 30 min and the 
fluorescence intensities of these suspensions were measured. Then, the 
bacteria were separated from the solvent by centrifugation (10 min, 
4,000 rpm), resuspended in saline and the fluorescence intensities were 
again measured. In these experiments, the effect of light scattering on 
the relative fluorescence intensities was minimized because the samples 
contained the same number of cells before and after staining. The dye 
uptakes quantified as the ratios between the fluorescence intensities for 
the resuspended bacteria and for the initial suspensions were as follows: 
Cy7 (0.85), 1ICy7 (0.28), 2ICy7 (0.98), 2ICy7þ (0.21), 3ICy7 (0.99), 
4ICy7 (0.97), and 6ICy7 (0.73). These data indicate that 2ICy7, 3ICy7 
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and 4ICy7 exhibited the most pronounced uptake while uptake for 
6ICy7 and especially for 2ICy7þwas noticeably reduced. The uptake of 
Cy7 is lower compared to 2ICy7 but much higher than for 1ICy7. 

The obtained uptake values are in good agreement with the photo-
toxicities (Fig. 3). Thus, for the iodinated dyes, there is a clear correla-
tion between the uptake and the cell survival (r = 0.98). At the same 
time, the non-iodinated dye Cy7 exhibits a substantially reduced 
phototoxicity (elevated survival) compared to the value anticipated 
from the correlation curve (Fig. 3). More likely, this is due to the fact 
that the correlation curve takes into account also the contribution of the 
heavy atom effect. 

Furthermore, we studied the effect of the light dose on the dyes’ 
phototoxicity towards S. aureus at constant dye concentration of 0.05 μM 
(Fig. 4). It can be seen that the phototoxicity increases with increasing 
the light dose from 3 J/cm2 (1 min) to 400 J/cm2 (120 min). However, 
the dyes with two (2ICy7) and three (3ICy7) iodines almost totally 
eradicate bacteria even at 3 J/cm2 and 4ICy7 at 17 J/cm2. The data 
presented in Fig. 4 confirm also that the dyes with 2–4 iodines bearing a 
delocalized positive charge cause the more pronounced bacteria eradi-
cation while 1ICy7, 6ICy7, 2ICy7þ, and especially Cy7 are less 
phototoxic. 

It can be seen from Fig. 4 that dyes 2ICy7 and 3ICy7 entirely erad-
icate S. aureus even at a low dye concentration (0.05 μM) and at a very 
low light dose of 3 J/cm2. Therefore, we investigated the impact of the 

dye concentrations on the phototoxicity at this low light dose. Fig. 5 
demonstrates that 0.05 μM is, actually, the minimal concentration at 
which 2ICy7 and 3ICy7 almost completely eradicate S. aureus while the 
dyes with fewer or more iodine atoms are less phototoxic. Thus, the non- 
charged (zwitterionic) dyes with two and three iodine atoms (2ICy7 and 
3ICy7) were found to be the most effective against S. aureus. They are 
more effective against this pathogen compared to other dyes at low 
concentrations and low light doses. 

3.4.2. Photodynamic eradication of E. coli and P. aeruginosa 
In the next step, we studied phototoxicity of the dyes towards Gram- 

negative pathogens E. coli and P. aeruginosa. The data in Figs. 6–10 show 
that these bacteria are much more resistant towards photodynamic 
treatment compared to the Gram-positive S. aureus. Thus, all the 
investigated dyes do not cause a sufficient phototoxic effect to E. coli 
even at 50 μM and light dose of 100 J/cm2 (Fig. 6). There is a trend, 
however, that the mono-iodinated 1ICy7 is more active compared to 
other dyes at 100 J/cm2 and this tendency is even more pronounced at 
200–400 J/cm2 (Fig. 7). Surprisingly, the dyes containing four and six 
iodines are less phototoxic than Cy7. The increase of the positive charge 
(2ICy7þ vs. 2ICy7) has almost no effect on the dye phototoxicity at 100 
J/cm2 (Fig. 6) but noticeably improves the toxic effect at higher light 
dose of 200–400 J/cm2 (Fig. 7). Therefore, the mono-iodinated 1ICy7 
and positively charged 2ICy7þ are considered more effective against 
E. coli compared to other cyanines. 

Similar to S. aureus, the decrease in the phototoxicity towards Gram- 
negative bacteria with increasing the number of iodine atoms between 2 
and 6 is supposedly connected with the increasing dye aggregation 
(Fig. S2) and decreasing dye uptake. The aggregation effect is, however, 
even more pronounced for Gram-negative bacteria because the dyes are 
used at much higher concentrations. To diminish the aggregation, we 
increased the content of DMSO in saline to 10 times, from 0.7% (as in all 
the above experiments) to 7%. The obtained data in Fig. 8 show that the 
efficacy of Cy7, 1ICy7, and 2ICy7 to eradicate E. coli was noticeably 
improved. Thus, the survival percentage for these three dyes at 50 μM 
and 400 J/cm2 was decreased from 27.6%, 15.4% and 50.0%, respec-
tively, to zero. Nevertheless, the addition of even 7% DMSO to the saline 
solutions was insufficient to overcome the aggregation and improve the 
phototoxicity of 3ICy7, 4ICy7, and 6ICy7. 

P. aeruginosa was found to be even more resistant towards the 
investigated dyes than E. coli but the same tendency as for E. coli was 
observed: The most phototoxic dyes are mono-iodinated 1ICy7 and 
positively charged 2ICy7þ (Figs. 9 and 10), which is different from 
S. aureus, where the most phototoxic are the diiodinated (2ICy7) and 
triiodinated (3ICy7) cyanines. 

Fig. 2. Survival of S. aureus in 0.7% DMSO in saline, when exposed to 100 J/cm2 light dose (56 mW/cm2, 30 min) vs. the dye concentrations.  

Fig. 3. S. aureus survival vs. the dye uptake. The uptake was estimated as the 
ratio between the fluorescence intensities of the stained bacteria after and 
before washing. 
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Fig. 4. Survival of S. aureus at 0.05 μM dye concentrations in 0.7% DMSO in saline, when exposed to 3 J/cm2 (1 min), 17 J/cm2 (5 min), 50 J/cm2 (15 min), 100 J/ 
cm2 (30 min), 200 J/cm2 (60 min), and 400 J/cm2 (120 min) light doses. 

Fig. 5. Survival of S. aureus in 0.7% DMSO in saline, when exposed to 3 J/cm2 light dose (56 mW/cm2, 1 min) vs. the dye concentrations.  

Fig. 6. Survival of E. coli in 0.7% DMSO in saline, when exposed to 100 J/cm2 light dose (56 mW/cm2, 30 min) vs. the dye concentrations.  
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4. Conclusions 

A series of near-IR heptamethine cyanine dyes containing up to six 
iodine atoms and an aliphatic carboxylic group was synthesized; their 

spectral properties and ability for photodynamic eradication of S. aureus, 
E. coli and P. aeruginosa pathogens were investigated. 

The increasing of the number of iodine atoms has an unexpected and 
ambiguous phototoxic effect on these bacteria, which is connected with 

Fig. 7. Survival of E. coli at 50 μM dye concentrations in 0.7% DMSO in saline, when exposed to 100 J/cm2 (30 min), 200 J/cm2 (60 min), and 400 J/cm2 (120 min) 
light doses. 

Fig. 8. Survival of E. coli in 7% DMSO in saline, when exposed to 400 J/cm2 light dose (56 mW/cm2, 120 min) vs. the dye concentrations.  

Fig. 9. Survival of P. aeruginosa in 0.7% DMSO in saline, when exposed to 100 J/cm2 light dose (56 mW/cm2, 30 min) vs. the dye concentrations.  
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two opposite factors: (i) increasing the spin–orbit coupling and the rates 
of reactive species generation and (ii) dye aggregation causing the 
reduced dye uptake (such a correlation was also noted in Ref. [46]) that, 
supposedly, is followed by decreased rates of reactive species genera-
tion. As a result, the increase of the number of iodine atoms up to two in 
the series of zwitterionic cyanines increases the efficacy of S. aureus 
eradication; then the efficacy remains almost unchanged for the two-, 
three- and four-iodinated dyes and diminishes in the case of the 
hexa-iodinated cyanine. At the same time, the mono-iodinated hepta-
methine cyanine causes the most pronounced phototoxic effect to E. coli 
and Ps. aeruginosa. An additional positive charge contributed by a trie-
thylammonium group decreases efficacy of the dye towards S. aureus but 
improves eradication of E. coli and Ps. aeruginosa. 

We believe that the developed dyes will be effective for treatment of 
other bacteria, viruses and cancer cells. The presence of carboxylic 
function potentially enables further binding of these dyes to various 
carriers. 
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