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ABSTRACT: Herein we report a streamlined, gram-scale total
synthesis of (−)-colchicine that takes only 7 easy steps, with an
overall yield of 27−36%. To warrant the synthetic efficiency and
practicality of (−)-colchicine, we tactically utilized a modified
version of a powerful Ir-catalyzed amidation reported by Carreira
to install the key chiral C-7 acetamido group, Suzuki and
biomimetic phenol oxidative coupling, and Banwell-inspired
cyclopropane ring cleavage to construct (−)-colchicine precisely
and rapidly. Remarkably, a described strategy also can shorten the
synthesis of allocolchicinoid to 4 steps.

Colchicine (1), one of the major alkaloid constituents of
the autumn crocus, is a well-known drug used for the

treatment of gout and familial Mediterranean fever.1 While
colchicine is not clinically approved for cancer treatment due
to toxicity, it exerts remarkable antimitotic activity induced by
interaction with tubulin, for which it can still be used as a lead
compound for the generation of potential anticancer drugs. In
recent years, numerous analogues of colchicine have been
synthesized in the hope of developing less toxic anticancer
drugs.2 Given that the published synthetic routes to colchicine
are lengthy and far from ideal, using the natural colchicine as a
starting material is the regular or only means of acquiring the
colchicine-based derivatives. In this way, the problems of how
to achieve sustainable and reliable access to natural isolate and
diminish the ecological impact could not be ignored if a
promising anticancer drug is discovered and the ensuing
commercial production is essential. Furthermore, unlike total
synthesis, which has a powerful flexibility in making molecules,
semisynthesis based on natural colchicine has its limitations
when a greater analog diversity is needed.
Allocolchicinoids (2−5), a new type of synthetic derivatives

of colchicine in which the tropolone ring is replaced by a
benzene ring, have promising anticancer bioactivities but with
reduced toxicity (Figure 1).3 Of note, ZD6126 (5), developed
by AstraZeneca,4 is a novel vascular-targeting agent that causes
selective destruction of tumor vasculature. Although they are
void of the exotic tropolone nucleus, allocolchicinoids still pose
a surprisingly great synthetic obstacle in previous synthetic
routes that normally require 10−20 steps.3 Taken together,
despite being deceptively straightforward in the structures,
colchicine (1) and allocolchicinoids are synthetic challenging
targets; especially for colchicine (1) much attention has been
oriented to its total synthesis in recent decades. Although
several elegant routes have emerged,5 there was no genuinely
practical synthesis of 1 for the past 60 years.5a

In the first synthesis reported by Eschenmoser5b and
Schreiber in 1959, two key problems associated with colchicine
synthesis were disclosed, which to date still have not been
completely and simultaneously resolved. The first issue is site-
selective and stereoselective introduction of the C-7 acetamido
group in 1, although solutions have been advanced by
Nakamura,5c Woodward,5d Evans,5e Banwell,5f,g Cha,5h,i

Schmalz,5j,k and Li.5l,m The second issue is regiocontrolled
synthesis of the tropolone nucleus. For this issue, before
Banwell’s work, 10-demethylcolchicine was used as a final
intermediate, which experiences tautomerism that results in a
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Figure 1. Structures of colchicine (1) and representative allocolchi-
cinoids 2−5. .
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mixture of colchicine (1) and isocolchicine.5a,o In 1996,
Banwell reported an elegant solution of biomimetic ring
expansion of cyclopropane to generate the tropolone nucleus
in 1 (Figure 2).5g Later, Cha,5h,i Schmalz,5j,k and Li5l,m adopted

an alternative strategy based on a ring opening reaction of an
oxa bridge intermediate, prepared through cycloaddition from
a furan or a carbonyl ylide. Unlike Banwell’s solution, the latter
strategy could not provide the tropolone ring immediately and
required additional steps. Despite those advances, efficiently
addressing the above two problems simultaneously remains a
challenging goal, as demonstrated by the extremely low
yielding syntheses in earlier studies and poor yielding syntheses
of 1996−2005 (Figure 2). Notably, at the beginning of our
synthesis, Li and co-workers reported an elegant synthesis of
colchicine (1) that needed 8 or 9 steps with an improved
overall yield.5l,m After careful examination, we found there
were approximately 15 reactions in Li’s route. It was the
execution of several one-pot reactions that contributed
remarkably to the step economy.6 Although a one-pot reaction
can be counted as one step, time economy and the use of
multiple concession reactions are still far from ideal.6,7 For
instance, while addressing the first issue, Li used a process
consisting of Ellman auxiliary addition to a ketone group,
reduction of the imine, removal of the auxiliary, and acetylation
(Figure 2). As previously mentioned, the first issue of
colchicine’s C-7 acetamido group installation is a longstanding
conundrum. In other syntheses described by Banwell,5f,g

Cha,5h,i and Schmalz,5k they unanimously used similar
strategies in which four concession steps were required:
asymmetric reduction of a ketone, Mitsunobu inversion with
an azide, Staudinger reaction, and acylation. To solve this
problem, one-step, direct transformation would be “ideal”.
Before discussing our chemical synthesis of colchicine (1), it

is worth illustrating the pathway established for the biosyn-
thesis of colchicine.8 Having emerged in the 1960s, and
reported as late as 2020, a near-complete biosynthetic pathway
has been elucidated. As shown in Figure 3, a series of
methylations and phenyl ring hydroxylation of Pictet−Spengler
product 6 generate autumnaline (7), upon which a critical
oxidative para−para phenol coupling occurs and then a
methylation affords O-methylandrocymbine (8). Next, another
crucial transformation, namely, formation of the characteristic
tropolone ring has proven to be a cyclopropane ring cleavage
process catalyzed by a noncanonical cytochrome P450 (9 →

10 → 11). Based on the proposed pathway for colchicine
biosynthesis, as discussed in the preceding paragraph, in 1996,
Banwell reported an elegant biomimetic strategy in which the
tropolone ring was brilliantly constructed through a cyclo-
propane ring cleavage process. However, the efficiency of the
biomimetic synthesis was significantly decreased by a series of
low yielding transformations (Figure 2), largely because of
their inability to satisfactorily solve the first issue of colchicine
chemical synthesis as we noted earlier. We hypothesized that
the use of a free hydroxyl group might be the real culprit
eroding Banwell’s creative design, leading to a 0.9% overall
yield. By contrast, if the more stable, chiral acetamido group
was used directly, the scenario would be fundamentally
changed not only because the natural product would be
obtained asymmetrically after a rearrangement but also because
the low yielding issue encountered in the case of the free
hydroxyl group could be avoided. Taking account of the
unparalleled conciseness but with apparent limitation of
Banwell’s cyclopropane rearrangement in the biomimetic
synthesis for colchicine (1), we decided to revisit a similar
strategy at the final stage that ultimately would bring about an
“ideal” chemical synthesis competing with the biosynthesis in
terms of efficacy.
A robust synthesis of colchicine (1) demands inexpensive

chemical inputs, step economy, time economy, and overall
efficiency. As shown in Scheme 1, inexpensive isovanillin (12)
was selected as the starting material. Rapid addition of vinyl
Grignard reagent to isovanillin provided a quantitative yield of
a secondary allylic alcohol 13 in 10 min, thereby setting the
stage to install the C-7 acetamido group. Initially, we followed
Carreira’s protocol,9a using sulfamic acid9b,c as the ammonia
equivalent, and the capture of a chiral primary amine
intermediate with acetyl chloride was carried out in a one-
pot reaction. Despite our efforts, the reaction of our substrate
13 gave an unsatisfactory yield (<35%) of allylic acetamide 14
with approximately 90% ee. We observed that the phenolic
hydroxyl group of 13 could be involved in the acetylation,
which complicated the reaction. To exclude a protecting group
for the free phenol, we hypothesized that the direct use of
acetamide as a nucleophile would be possible in this key step.
After extensive studies (see the Supporting Information (SI)),
we found that by using 0.2 equiv of BF3·Et2O as a promoter,
1,4-dioxane (0.5 M) as the solvent, and [{Ir(cod)Cl}2]/(S)-L
as the catalyst,10 the proposed direct substitution of racemic
hydroxyl with acetamide afforded allylic acetamide 14 in 93%
yield with >99% ee in 1 h. Gratifyingly, the yield and ee of the
reaction seemed unaffected during scale-up. Moreover, we

Figure 2. A synopsis of the previous syntheses of colchicine.

Figure 3. A brief description of the biosynthesis of colchicine.
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found that the very pure crude product 13 of the first step
could be subjected to Ir-catalyzed allylic amidation, also
yielding allylic acetamide 14.
After producing multigram quantities of 14, we began the

crucial Suzuki coupling.11 Allylic acetamide 14 was converted
to alkyl borane with 9-BBN in 4 h, which was coupled with
commercially available 3,4,5-trimethoxylphenyl bromide (15)
using the catalyst Pd(PPh3)4 to give a 56−65% yield of
biphenyl compound 16 in 2 h. The fluctuation of the yield
depended on the reaction scale. In addition, we believe that the
yield could still be improved. Intramolecular oxidative coupling
of 16 turned out to be a workable process after optimization of
the conditions (see the SI). Treatment of 16 with PIDA and
BF3·Et2O at room temperature for 35 min resulted in an 80%
yield of allocolchicinoid 17. 17 was a crystalline compound
whose absolute configuration was confirmed by means of X-ray

crystallographic analysis (CCDC 1981454) and was in
agreement with the expected Ir-catalyzed selectivity. It is
noteworthy that the foregoing steps are all construction
reactions. To our knowledge, in contrast with the previous
syntheses that required 10−20 steps,3 this 4-step process
stands for the most efficient means for allocolchicinoid
preparation to date.
Treatment of allocolchicinoid 17 with PIDA in methanol at

room temperature provided the expected cyclohexadienone 18
with an 84% yield in 5 min. Because this step was a strategic
redox reaction, it also contributed to the synthetic ideality, as
did other construction reaction steps.7 Additionally, the
adoption of environmentally friendly reagent PIDA rather
than highly toxic Pb(OAc)4 and Tl(NO3)3 used stoichiometri-
cally in Banwell’s route merits attention. Nucleophilic
cyclopropanation of compound 18 with dimethylsulfoxonium
methylide12 proceeded both regio- and stereoselectively to
rapidly result in an 82% yield of a single tetracyclic product 19
within 10 min. The resulting cyclopropane’s configuration was
tentatively assigned because it could not be established
unequivocally with NMR techniques, and a single crystal of
compound 19 could not be acquired. Regardless, this was
inconsequential because the axial chirality of 1 was
thermodynamically controlled by the configuration of the C-
7 acetamido group,5k which had been confirmed using X-ray
crystallographic analysis. Further treatment of tetracycle 19
with TFA in DCM produced colchicine (1) along with an
unrearranged product caused by the simple hydrolysis of
acetal, which was efficiently inhibited using a 4-Å molecular
sieve (see the SI). Eventually, an 85% yield of colchicine (1)
was obtained after heating at 40 °C for 2 h. The latter process
could be carried out without intermediate purification, yielding
51−60% of colchicine (1) over four steps. Our synthetic
colchicine (1) was identical in all respects to a natural
sample.13 In this laboratory, 3 g of colchicine samples can be
synthesized in a short time.
In summary, a concise, catalytic asymmetric, and bioinspired

total synthesis of (−)-colchicine was achieved. Salient features
of the synthesis included the following: (1) efficiently
addressing two key problems simultaneously for the first
time using a highly efficient Ir-catalyzed amidation to install
the C-7 acetamido group in a single operation with a high-
yielding, bioinspired transformation to colchicine in the final
step; (2) super ideality compared to previous syntheses, with
the natural product being obtained in 7 steps/reactions, with
27−36% overall yield and 86% ideality, and all reactions were
conducted on the gram-scale with only 3 steps requiring
purification; (3) time economyover 1 g of colchicine was
prepared from 1.5 g of isovanillin by a single chemist in a single
batch within 2−3 days. Such is the efficacy of this route that it
could compete with the biosynthetic pathway which contains
more than 20 transformations from amino acids. We do not
think this work would be the end point of the total synthesis of
colchicine. Other issues such as lowering the effective iridium
catalyst loading and looking for a higher-yielding method of
constructing biphenyl 16 are well worth considering if large-
scale production is executed.
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Scheme 1. Catalytic Asymmetric, Gram-Scale Synthesis of
(−)-Colchicinea

aReagents and conditions: (a) C2H3MgBr (4.0 equiv), THF, 0 °C;
(b) [{Ir(cod)Cl}2] (3 mol %), (S)-L (12 mol %), NH2Ac (2.0 equiv),
BF3·Et2O (20 mol %), 1,4-dioxane, rt (93%, 2 steps, >99% ee); (c) 9-
BBN (3.0 equiv), THF, 0 °C to rt; then H2O (15.0 equiv), 15 (3.0
equiv), Pd(PPh3)4 (5 mol %), K3PO4 (3.0 equiv), DMF, reflux (56−
65%); (d) PhI(OAc)2 (1.0 equiv), MeOH, rt; then BF3·Et2O (3.0
equiv), DCM, rt; (e) PhI(OAc)2 (1.0 equiv), NaHCO3 (2.0 equiv),
MeOH, rt; (f) Me3S(O)I (1.0 equiv), NaH (1.1 equiv), DMSO, rt;
(g) TFA (10.0 equiv), 4-Å molecular sieves, DCM, rt (51−60%, 4
steps).
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Experimental procedures and spectral data for all new
compounds (PDF)
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