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EFFECT OF WATER DENSITY INVERSION ON THE 
PLANE-PARALLEL F L O W  AND HEAT T R A N S F E R  
IN A C H A N N E L  OF CONSTANT WIDTH 

I. M. Galiev and P. T. Zubkov UDC 532.529.2:536.421 

The results of a numerical study of the effect of cold-water density inversion (Prandtl number Pr=l 1.59) on the flow and heat transfer in a 
horizontal plane-parallel channel with isothermal top and bottom walls are presented. The calculations were performed for the Grashof number 
Gr=3'104, the Reynolds number Re=HI, and the channel segment length-to-height ratio l/d=40. The wall temperature was so varied that the 
temperature difference between the top and bottom walls remained constant. 

A specific feature of the problem in question is the presence of the simultaneous forced and natural convection, i.e. 
mixed convection. The first studies of mixed convection considered only fully developed flows [1, 2]. However, in many 
cases, for instance, in heat exchangers, the channel is too short to ensure developed flow and, hence, information on the flow 
and heat transfer characteristics in the entrance region is also important [3-7]. The thermal instability associated with 
convection between two heated plates results in the appearance of secondary flows and a noticeable enhancement of the heat 
transfer. 

As a rule, secondary channel flows take the form of lengthwise rolls [8]. However, at small Reynolds numbers (Re-10) 
the minimum critical Rayleigh (or Grashof) numbers corresponding to disturbances in the form of rolls with axes directed 
parallel and normal to the flow are very close to each other [9]. This is why, for fairly intense natural convection, flows 
directed opposite to those in forced convection may develop [10, 11]. 

Neglecting longitudinal disturbances, we can use the two-dimensional formulation of the plane-parallel channel flow 
equations. To confirm this assumption, we performed additional three-dimensional calculations for the flow in a channel with 
the dimensions (height:width:length) 1:10:16 on a 15:50:200 grid. The results for the middle of the channel agreed very well 
with the results for the two-dimensional problem on a similar grid (height-to-length ratio 1:16 and a 15:200 grid). It follows 
that, at least in the initial section of the channel, the use of the two-dimensional model is justified. 

Most studies of mixed convection in pipes deal with fluids whose thermal expansion coefficient is constant. However, 
near the freezing point the assumption of constancy of the thermal expansion coefficient is not valid since the density of 
water has a maximum near 4~ The heat transfer in cold-water forced convection was studied not only for its a theoretical 
interest but also because it might have engineering applications and could help to explain some natural phenomena [12]. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a flow of viscous incompressible heat-conducting fluid in a plane channel with parallel walls of length l and 
width d. The temperature of the walls is constant, the bottom wall being warmer. At the channel entrance, the fluid 
temperature is equal to 4~ and the velocity is constant across the section. On the channel walls, the fluid velocity is zero. 
For investigating mixed convection, we write the system of incompressible-fluid equations in the Boussinesq approximation 
in the following nondimensional form: 

~U/OFo + U~U/~X + V~U/~Y=-~P/~X + (1/Re)AU 

bV/~Fo + UOV/~X + V~V/~Y=-~P/3Y + (1]Re)AV + (Gr/Re2)]0 Iv 

bU/OX + OV/3Y=O, 00/3Fo + UOO/OX + VOO/OY=I/(RePr)AO (1.1) 

X=x/d,  Y=y/d,  U=u/u+, V=v/u+ 

0 = ( T -  Ti)/(T d - T ) ,  Fo=t/(d/Ue), P=p/(pUe) 

Re=(u+d)/v, Pr=v/c~, Gr=(g[3 IT d - T,lV d3)/v z 
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Fig. 1. Stream functions for different wall temperatures: 0~0 ,  0.5, 0.85, and 1 (a-d). 

Here, Re, Pr, and Gr are the Reynolds, Prandtl, and Grashof numbers, respectively. 
The dependence of the water density P on the temperature T is taken in the form suggested by Gebhart and Mollendorf 

[13]: 

p : p , ( 1  - ~ I T  - LI 

Here, Pi is the water density at 4~ [3=9.297173.10 -~ K -v, and Ti equal to 4~ is the density inversion point. 
In nondimensionalizing, distance was scaled to d, time to d/u e, velocity to u e, pressure to pu~, and temperature to Tj 

- T,; here, Tj and T, are the temperatures of the top and bottom walls, and Ue is the longitudinal velocity component at the 
channel entrance. 

Equations (1.1) were solved for the following boundary conditions: 

Fe=0,  X=0:  V=0, U = I ,  0=0  

0 < X <_ L,  Y = I ,  Y=O: U = V = 0  (1.2) 

L < X < L + L 1, Y=0, Y = I :  U=V=~O/~Y=O 

X=L + LI: 3U/~X=OV/OX=OO/bX=O 

The nondimensional temperatures of the bottom and top walls were varied from 0 to 1 and from -1 to 0, respectively: 

0 <- X < L, Y=0: 0a=0...1, Y=I :  0 = 0  d - 1 (1.3) 

In order to specify the exit boundary conditions (1.2) at X=L + L 1, we assume that, near the exit, there is a channel 
segment of length L 1 with adiabatic walls, which ensures the regression of the influence of natural convection. In this study, 
the length of this segment (L1=20), derived from the test calculations, was sufficient for flow stabilization. 

The local Nusselt number and the friction coefficient on the channel walls are defined as follows: 

Nu=hd/k=-OO/OY, f=+2c~/(pu~)=+(2/Re)(OU/OY) 

Here, h is the heat transfer coefficient, k is the thermal conductivity, and c is the stress. 
The two-dimensional problem of water channel flow was solved numerically using the control-volume method and the 

SIMPLER algorithm on a uniform grid with 23 control volumes over the channel height [14]. This grid was sufficient for 
a qualitative description of the flow and heat transfer. 
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Fig. 2, Temperature fields for different wall temperatures: 0a=0, 0.5, 0.85, and 1 (a-d). 
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Fig. 3. Friction coefficients at the top (broken curve) and bottom (continuous curve) 
walls for different wall temperatures. 

2. RESULTS AND DISCUSSION 

The chosen Grashof number Gr=3 "10 4 w a s  not too large but, at the same time, it made it possible to obtain essentially 
different "kinds of flow within the problem formulation considered. In our numerical experiments, in accordance with 
boundary condition (1.3), the wall temperature was varied in such a way that the difference between the temperatures of  the 
walls remained constant. Accordingly, in what follows we will use the bottom wall temperature 0 a as the variable. Examples 
of  flow patterns and temperature fields are given in Figs. 1 and 2. 
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Fig. 4. Nusselt numbers at the top (broken curve) and bottom (continuous curve) 
walls for different wall temperatures. 

For 0"=0, in the entrance region of the heated segment, near the top wall a reverse flow develops. This disappears 
downstream and the flow becomes parabolic. As the bottom wall temperature increases, the reverse flow becomes weaker 
and disappears completely at 0j=0.35. With further increase in 0 a, at a certain distance from the channel entrance there 
appears a secondary flow with an upward motion of the fluid near the bottom wall. In the middle of the channel, this warm 
stream meets the colder main stream. The main flow, which has a parabolic profile at the heated region entrance, is narrowed 
by the rising streams. As a result, the flow and the temperature field are almost unchanged near the top wall despite the fact 
that, near the bottom wall, both the velocity and temperature fields oscillate almost periodically and even form small local 
reverse-flow regions. These regions can be clearly seen in Fig. 3. When the longitudinal velocity component near the wall 
is negative, the friction coefficient takes negative values. 

A further increase in O a results in the appearance of a secondary flow near the top wall and intensifies the secondary 
flow near the bottom wall. Figures 1 and 2 show an example of this flow and the temperature field for 0"=0.5. At a distance 
of approximately X=3.5 from the channel entrance, a reverse flow develops near the bottom wall. Downstream, the rising 
of warm fluid from the bottom wall and the sinking of cold fluid from the central region oscillate, with the bottom half of 
the channel being mainly involved. Then, at a distance of approximately X=13 from the channel entrance, a secondary flow 
near the top wall appears, producing a change in the flow and temperature field structure. Beyond this transition region, the 
flow becomes almost periodic and the friction coefficient amplitude increases, i. e. the reverse flow becomes more intense. 

With increase in 0 a, the coordinate of secondary flow onset and the transition region are displaced towards the channel 
entrance. The flow structure and the temperature field become strictly periodic, as is clear from Figs. 1 and 2 for 0a=0.85, 
and the intensities of the secondary flows near the top and bottom walls are almost identical (Fig. 3). A further increase in 
0 a results in the breakdown of the flow periodicity, as may be seen in Figs. 1.2, and 3 for 0"=1. 

Observations of the heat transfer variation during the passage from 0,r-=0 to 0"= 1 reveal the following pattern. When 
no secondary flow exists, the heat transfer is associated with the thermal conductivity of the fluid. On the range between 
0"=0 and 0"=0.4, the local Nusselt number at the top wall is greater than that at the bottom wall. This is because the 
temperature of the water entering the channel is zero (0e=0). When 0"=0.4, the secondary flow near the bottom wall induces 
heat flux oscillations while, at the top wall, the heat flux is constant. 

A further increase in 0,/ results in the earlier appearance of the heat flux oscillations on the bottom wall, and 
downstream, when the secondary flow appears at the top wall, the Nusselt number Nu at the top wall also oscillates, as is 
clear from Fig. 4 for 0.=0.5 and 0.85. For 0"=0.85, at the channel entrance the heat fluxes at the top and bottom differ 
substantially. This is associated with the difference in the secondary flow intensities at the top and bottom walls. Near the 
bottom wall, a secondary flow starts to develop in the form of rising warm fluid which is then carried downstream by the 
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Fig. 5. Temperature variation at different points for 0a=0.5, Y=0.5:X=35 (broken curve) 
and X=14 (continuous curve). 

Fig. 6. Temperature variation at the points Y=0.5, X=2, 6, and 20 (curves 1-3) for 0u=0.85. 

main flow, so that only after traveling a certain distance does the warm fluid reach the top flow layers. With increase in 0j, 
the amplitude of variation of Nu increases and, for fairly large 0~, the variation of Nu becomes chaotic, as is clear from Fig. 
4 for 0~=1. 

We will now consider the channel flow temperature oscillations with time. Increasing 0j from 0 to 1 leads first to the 
appearance of an almost periodic secondary flow (X=35, Y=0.5) which, with further increase in 0a, becomes more and more 
nearly periodic. With further increase in 0j, the periodic flow changes its structure and, near the top wall, a reverse flow 
arises. For 0,=0.5, up to the coordinate X=13 the flow is strictly time-periodic. In the region X=t3-16,  when the flow 
structure changes, as is clear from Fig. 5 the flow is almost chaotic, while beyond X=16 it becomes almost periodic (Fig. 
5). 

With further increase in 0 a, the flow becomes periodic over the whole channel. For 0u=0.85, this is illustrated in Fig. 
6. Then, the flow becomes chaotic, but in the entrance region it remains periodic. 

Thus, due to the water density maximum at 4~ for the same Grashof number we observed several different kinds of 
flow. 

Summary. The effect of water density inversion in a plane-parallel channel flow with isothermal walls and an entrance 
water temperature equal to that at the density inversion point is investigated. It is shown that for different wall temperatures 
but the same difference between the top and bottom walls several qualitatively different kinds of flow are possible. These 
may be briefly characterized as follows: parabolic flow, a weak almost periodic flow near the bottom wall, a flow periodic 
in the entrance region near the bottom wall and almost periodic downstream near the top wall, a periodic flow with large 
reverse-flow regions, and a chaotic flow. With the successive realization of these kinds of flow, the reverse-flow intensity 
and the amplitude of the Nusselt number variation increase, which, in a sense, is equivalent to an increase in the Grashof 
number. 
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