Russian Journal of General Chemistry, Vol. 73, No. 3, 2003, pp. 492–493. Translated from Zhurnal Obshchei Khimii, Vol. 73, No. 3, 2003, pp. 525–526. Original Russian Text Copyright © 2003 by Prishchenko, Livantsov, Livantsova, Novikova, Nikolaev, Grigor'ev.

LETTERS TO THE EDITOR

Reaction of Bis(trimethylsiloxy)phosphine with Methyl(phenyl)divinylsilane

A. A. Prishchenko, M. V. Livantsov, L. I. Livantsova, O. P. Novikova, S. N. Nikolaev, and E. V. Grigor'ev

Lomonosov Moscow State University, Moscow, Russia

Received May 7, 2002

Bis(trimethylsiloxy)phosphine is successfully used in various addition reactions to unsaturated synthons, leading to promising types of organophosphorus compounds [1]. We showed that the reaction of an excess of bis(trimethylsiloxy)phosphine with methyl-(phenyl)divinylsilane provides a mixture of phosphonite I and bisphosphonite II in equal amounts. Phosphonites I and II were isolated in high yield. The reaction was initiated with 2,2'-azobisisobutyronitrile (AIBN) under conditions of its thermolysis (100– 130°C).

$$n(Me_{3}SiO)_{2}PH + (CH_{2}=CH)_{2}Si(Me)Ph$$

$$\xrightarrow{R^{\circ}} (Me_{3}SiO)_{2}PCH_{2}CH_{2}SiCH=CH_{2}(Me)Ph$$

$$I$$

$$+ [(Me_{3}SiO)_{2}PCH_{2}CH_{2}]_{2}Si(Me)Ph,$$

$$II$$

$$R' = Me_2(NC)C'$$

Phosphonite I is easily aminomethylated with bis-(dialkylamino)methanes at 130°C in the presence of zinc chloride as catalyst to form phosphinates IIIa and IIIb in good yields.

$$I \xrightarrow{(R_2N)_2CH_2, ZnCl_2}_{-Me_3SiNR_2} \rightarrow Me_3SiOP \xrightarrow{CH_2CH_2SiCH=CH_2(Me)Ph}_{CH_2NR_2}$$

$$IIIa, IIIb$$

$$R_2N = Me_2N (a), \qquad N (b).$$

Treatment of phosphonites **I** and **II** and phosphinates **III** with dilute solutions of sodium methylate in methanol gives water-soluble sodium phosphonates **IV** and **V** and phosphinates **VI**, which contain stable organosilicon fragments.

Salts IV-VI are white hygroscopic crystals. The ¹H NMR spectra of compounds I-VI contain characteristic signals of the PC¹H₂C²H₂Si and PC³H₂NC⁴H_n fragments. Their parameters are listed below. In ¹H NMR spectra, the signals of these fragments partially or completely overlap. The vinyl and phenyl proton signals of these compounds are multiplets at 5.7–6.5 and 7.2–7.6 ppm, respectively.

Bis(trimethylsilyl) [2-[methyl(phenyl)(vinyl)silyl]ethyl]phosphonite (I) and bis[2-bis(trimethylsiloxy)phosphinoethyl]methyl(phenyl)silane (II). A mixture of 50 g of bis(trimethylsiloxy)phosphine, 12.7 g of methyl(phenyl)(divinyl)silane, and 0.4 g of AIBN was heated to 100°C and, within 1 h, to 130°C. After that the reaction mixture was distilled in a vacuum to give 13.5 g of phosphonite I and 19.6 g of bisphosphonite II. Phosphonite I, yield 48%, bp 133°C (1 mm). ¹³C NMR spectrum, δ_C , ppm: 34.01 d (C¹, ¹J_{PC} 25.7 Hz), 4.20 d (C², ²J_{PC} 6.8 Hz). ³¹P NMR spectrum, δ_P , ppm: 157.34 s. Phosphonite II, yield 45%, bp 178°C (1 mm). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 33.58 d (C¹, ¹J_{PC} 26.0 Hz), 3.01 d (C², ²J_{PC} 10.8 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 158.23 s.

Trimethylsilyl (dimethylaminomethyl)[2-[me**thyl(phenyl)(vinyl)silyl]ethyl]phosphinate (IIIa).** A mixture of 4 g of phosphonite **I**, 2.4 g of bis(dimethylamino)methane, and 0.1 g of zinc chloride was heated at 110–130°C for 1.5 h and then distilled to give 3 g of phosphinate **III**, yield 78%, bp 141°C (1 mm), n_D^{20} 1.5019. ¹H NMR spectrum, δ, ppm: 2.05 s (C⁴H₃). ¹³C NMR spectrum, δ_P, ppm: 21.81 d (C¹, ¹J_{PC} 91.5 Hz), 4.84 d (C², ²J_{PC} 7.2 Hz), 57.14 d (C³, ¹J_{PC} 111.9 Hz), 47.08 d (C⁴, ³J_{PC} 10.0 Hz). ³¹P NMR spectrum, δ_P, ppm: 42.99 s.

Phosphinate IIIb was obtained analogously.

Trimethylsilyl [2-[methyl(phenyl)(vinyl)silyl]ethyl](*N*-piperidinomethyl)phosphinate (IIIb). Yield 72%, bp 189°C (2 mm), n_D^{20} 1.5085. ¹³C NMR spectrum, δ_C , ppm: 21.60 d (C¹, ¹J_{PC} 91.2 Hz), 4.78 d (C², ²J_{PC} 6.7 Hz), 56.31 d (C³, ¹J_{PC} 117.7 Hz), 55.68 d (C⁴, ³J_{PC} 8.3 Hz). ³¹P NMR spectrum, δ_P , ppm: 43.32 s.

Sodium [2-[methyl(phenyl)(vinyl)silyl]ethyl]phosphonite (IV). To a solution of 1.62 g of sodium methylate in 50 ml of methanol, a solution of 11.5 g of phosphonite in 10 ml of diethyl ether was added with stirring at 10°C. The resulting mixture was heated to boil, the solvent was removed, and the residue was kept in a vacuum (1 mm) for 1 h to obtain 7.6 g (96%) of salt **IV**. ¹H NMR spectrum, δ , ppm: 6.84 d.t (PH, ¹*J*_{PH} 495.6, ³*J*_{HH} 1.6 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 25.84 d (C¹, ¹*J*_{PC} 88.3 Hz), 5.23 d (C², ²*J*_{PC} 5.2 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 30.93 s. Found, %: C 50.26; H 6.09. C₁₁H₁₆NaO₂PSi. Calculated, %: C 50.37; H 6.15.

Salts V and VI were obtained analogously.

Disodium 3-[methyl(phenyl)sila]pentane-1,5-diphosphonate (V). Yield 94%. ¹H NMR spectrum, δ, ppm: 6.83 d.t (PH, ${}^{1}J_{PH}$ 499.2, ${}^{3}J_{HH}$ 1.8 Hz). ${}^{13}C$ NMR spectrum, δ_{C} , ppm: 25.46 d (C¹, ${}^{1}J_{PC}$ 88.0 Hz), 4.33 d (C², ${}^{2}J_{PC}$ 5.4 Hz). ${}^{31}P$ NMR spectrum, δ_{P} , ppm: 31.06 s. Found, %: C 37.59; H 5.10. C₁₁H₁₈Na₂O₄ · P₂Si. Calculated, %: C 37.72; H 5.18.

Sodium dimethylaminomethyl[2-[methyl-(phenyl)vinylsilyl]ethyl]phosphinate (VIa). Yield 95%. ¹H NMR spectrum, δ, ppm: 2.49 d ($C^{3}H_{2}$, ²J_{PH} 9.2 Hz), 2.23 s ($C^{4}H_{3}$). ¹³C NMR spectrum, δ_C, ppm: 24.30 d (C^{1} , ¹J_{PC} 89.7 Hz), 6.27 d (C^{2} , ²J_{PC} 6.4 Hz), 58.06 d (C^{3} , ¹J_{PC} 99.4 Hz), 47.27 d (C^{4} , ³J_{PC} 7.9 Hz). ³¹P NMR spectrum, δ_P, ppm: 37.95 s. Found, %: C 52.57; H 7.12. C₁₄H₂₃NNaO₂PSi. Calculated, %: C 52.65; H 7.26.

Sodium [2-[methyl(phenyl)(vinyl)silyl]ethyl](*N*piperidinomethyl)phosphinate (VIb). Yield 93%. ¹H NMR spectrum, δ, ppm: 2.50 d ($C^{3}H_{2}$, ${}^{2}J_{PH}$ 9.2 Hz), 2.42 t ($C^{4}H_{2}$, ${}^{3}J_{HH}$ 5.2 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 25.01 d (C^{1} , ${}^{1}J_{PC}$ 88.5 Hz), 6.57 d (C^{2} , ${}^{2}J_{PC}$ 6.6 Hz), 57.83 d (C^{3} , ${}^{1}J_{PC}$ 98.6 Hz), 56.19 d (C^{4} , ${}^{3}J_{PC}$ 7.0 Hz). ³¹P NMR spectrum, δ_{P} , ppm: 38.66. Found, %: C 56.64; H 7.49. C₁₇H₂₇NNaO₂PSi. Calculated, %: C 56.80; H 7.57.

The NMR spectra were obtained on a Varian VXR-400 spectrometer in CDCl₃ or D₂O (salts IV-VI) against TMS (¹H, ¹³C) and 85% H₃PO₄ in D₂O (³¹P).

REFERENCES

 Prishchenko, A.A., Livantsov, M.V., Min'ko, S.V., and Petrosyan, V.S., *Zh. Obshch. Khim.*, 1992, vol. 62, no. 6, pp. 1430–1432; Prishchenko, A.A., Livantsov, M.V., Livantsova, L.I., Pol'shchikov, D.G., and Grigor'ev, E.V., *Zh. Obshch. Khim.*, 1997, vol. 67, no. 10, pp. 1744–1745; Prishchenko, A.A., Livantsov, M.V., Livantsova, L.I., Pol'shchikov, D.G., Nikolaev, S.N., and Grigor'ev, E.V., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 1, pp. 156–157.