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Abstract: Blastidic acid and cytosinine, two components of antibi-
otics blasticidin S, have been synthesized.
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Blasticidin S (1) was isolated from Streptomyces griseo-
chromogenes and at one time used as a fungicide for the
prevention of rice blast in Japan.1 The structural studies by
Otake et al. revealed that blasticidin S (1) is a member of
the peptidyl-nucleoside family of antibiotics as shown in
Figure 1.2

Figure 1

Careful acid hydrolysis of blasticidin S (1) yielded blas-
tidic acid (2) and cytosinine (3), as shown in Scheme 1.
Structurally, cytosinine (3) is characterized as a peculiar
nucleoside possessing �-amino acid functionality, and
this structural feature inspired us to propose a new type of
DNA-analogue 4 based on a peptide backbone (peptide-
nucleoside, PNA).3 With this in mind, we here focused
our attention on the synthesis of blasticidin S (1).

Although the first synthesis of cytosinine (3) was reported
by Kondo and Goto,4 there has been no report on the total
synthesis of blasticidin S. A recent report on the synthesis
of blastidic acid (2) by Nomoto prompted us to present our
synthetic effort in this field.5

The synthesis of blastidic acid began with (3S)-3[(benzy-
loxycarbonyl])amino]-glutarate 6, which was prepared by

enantioselective hydrolysis of meso-diester 5 with pig liv-
er esterase as reported by Ohno (Scheme 2).6 Hence, our
initial effort focused on the functional group interconver-
sion of the carboxylic acid of 6 into the N-methyl guani-
dine moiety. Diborane reduction of the carboxylic acid 6
yielded the alcohol 7 in 74% yield, which was further con-
verted into the benzyl amide 8 (54% yield) by reaction
with benzylamine in refluxing benzene.7 Transformation
of the hydroxyl group of 8 into the N-methyl amine moi-
ety was accomplished according to the protocol of Fuku-
yama.8 Accordingly, N-methyl 2-nitrobenzenesulfon-
amide was alkylated with 8 under Mitsunobu conditions
(DEAD, Bu3P, CH2Cl2) to furnish 9 in 95% yield.9 Depro-
tection of the o-nitrobenzenesulfonamide group of 9 was
carried out by treatment with thiophenol and cesium car-
bonate in acetonitrile, giving the N-methylamine 10,
which further reacted with N,N-di-(tert-butoxycarbon-
yl)thiourea in the presence of mercuric chloride.10 The
bis-Boc-protected guanidine 11 was isolated in 75% over-
all yield from 9.

The final stage of the blastidic acid synthesis is the two-
step process of amide activation and hydrolysis of the
benzyl amide 11.11 Accordingly, benzylamide 11 was
subjected to exhaustive acylation with di-tert-butyl dicar-
bonate in THF using DMAP as catalyst to afford the N-
Boc imide 12 in 60% yield. During this acylation, the tert-
butoxycarbonyl groups were also introduced onto the ni-
trogen atoms of both the benzyloxycarbonyl group and the
Boc-protected N-methyl guanidine group. Although sa-
ponification of imide 12 was complicated by base-cata-
lyzed �-elimination of the imide group at C-3, this
reaction could be avoided by lowering the leaving group
ability. Thus, imide 12 was transformed into the Boc-car-
bamate 13 by catalytic hydrogenolysis of the Cbz group of
12. Methanolysis of the resulting compound 13 with tet-
ramethyl guanidine in methanol furnished the methyl es-
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ter 14 in 68% overall yield from 12.12 Finally, the methyl
ester 14 was hydrolyzed with lithium hydroxide in aque-
ous THF to afford the Boc-protected blastidic acid 15,
which is ideal for the synthesis of blasticidin S.13 Confir-
mation of the structure was performed by transforming 15
into the blastidic acid dihydrochloride 16 by treatment
with TFA and purification using ion exchange chromatog-
raphy. The 1H and 13C NMR spectra of our synthetic 16
were found to be identical with those of a sample prepared
from natural blasticidin S.14,15

Cytosinine (3) has the structure of 2,3-dideoxy-4-amino-
D-hex-2-enopyranoside (Scheme 1), and synthesis of such
an unsaturated amino sugar moiety posed synthetic prob-
lems in previous studies, because they relied upon intro-
ducing the nitrogen substituent by replacement reaction
with sodium azide.4,16 To solve this problem, we have de-
veloped a new approach for the synthesis of cytosinine by

using [3,3]-sigmatropic rearrangement of an allyl cyanate
as shown in Scheme 3.17

Ferrier-type glycosylation of 2-acetoxy-tri-O-acetyl-D-
glucal (17) with p-methoxyphenol catalyzed by boron tri-
fluoride diethyl etherate gave 18 in 49% yield after recrys-
tallization.18 Treatment of 18 with lithium aluminum
hydride gave the diol 19,19 which was selectively protect-
ed with tert-butyldimethylsilyl chloride and triethylamine
in the presence of a catalytic amount of DMAP to afford
the silyl ether 20 in 53% overall yield from 18.20 With the
hex-3-enopyranoside 20 in hand, we have undertaken the
allyl cyanate-to-isocyanate rearrangement of 20. Thus,
treatment of 20 with trichloroacetyl isocyanate followed
by hydrolysis with potassium carbonate in aqueous meth-
anol gave carbamate 21. Dehydration of 21 with triphe-
nylphosphine, carbon tetrabromide and triethylamine at –
40 °C gave the allyl cyanate 22, which underwent [3,3]-
sigmatropic rearrangement at 0 °C for 60 min to afford the

Scheme 2
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allyl isocyanate 23. Since isolation of 23 using an aqueous
work-up caused a decrease of yield due to the high reac-
tivity of the isocyanate function, allyl isocyante 23 was
transformed in situ into the trichloroethoxy carbamate 24
by reaction with 2,2,2-trichloroethanol.21 The resulting
carbamate 24 was isolated in 75% overall yield from 20
after chromatographic purification. 

The next stage of the synthesis is the transformation of 24
into the corresponding 2,3-dideoxy-hex-2-enopyranour-
onate and cytosine glycosidation. Accordingly, the tert-
butyldimethylsilyl group of 24 was removed with tetrabu-
tylammonium fluoride in a mixture of acetic acid and tet-
rahydofuran to provide 25 in 79% yield. Two-step
oxidation of 25 involving Swern oxidation followed by
sodium chlorite oxidation and esterification of the result-
ing carboxylic acid with diazomethane in methanol fur-
nished 26 in 70% overall yield for the three steps.
Oxidative hydrolysis of p-methoxyphenyl glycoside 26
with silver (II) bis-(hydrogen dipicolinate) gave the unsta-
ble lactol 27,18 which was immediately subjected to acetic
anhydride and pyridine to provide the acetyl glycoside 28
in 75% yield. Condensation of 28 with silated N4-(4-tert-
butylbenzoyl)cytosine22 in the presence of TMSOTf af-
forded a 1:1 mixture of the fully protected cytosinine de-
rivative 29 and its �-isomer in 63% yield.23 Finally, 29
was transformed into 30 24 which was identical with the
product  derived from natural blasticidin S.25 

In summary, the synthesis of Boc-protected blastidic acid
15 was achieved in 9 steps starting from chiral carboxylic
acid 6. Allyl cyanate-to-isocyanate rearrangement has
been successfully employed for the construction of an un-
saturated amino sugar moiety of cytosinine, and our syn-
thesis of the fully protected cytosinine derivative 29
required 13 steps starting from 2-acetoxy-tri-O-acetyl-D-
glucal 17. Further studies toward the total synthesis of
blasticidin S are now underway in our laboratory. 

Preparation of p-Methoxyphenyl 2,3,4,6-Tetradeoxy-4-
trichloroethoxycarbonylamino-�-D-erythro-hex-2-
enopyranoside 26 from 20
To a solution of 20 (28.2 g, 77.0 mmol) in CH2Cl2 (300 mL) cooled
to 0 °C was added trichloroacetyl isocyanate (10.5 mL, 92.4 mmol).
After stirring at 0 °C for 1 h, the reaction mixture was concentrated,
and the resulting residue was dissolved in methanol (100 mL). Wa-
ter (100 mL) and potassium carbonate (16.1 g, 231mmol) were add-
ed at 0 °C, and the cooling bath was removed. After stirring at room
temperature for 2.5 h, the reaction mixture was concentrated under
reduced pressure to remove methanol. The resulting aqueous phase
was extracted with CH2Cl2 and the combined organic layer was
dried (Na2SO4) and concentrated to afford the carbamate 21 (25.6
g), which was used for the next reaction without further purifica-
tion. 

To a solution of the carbamate 21 (8.27 g, 20.2 mol), triphenylphos-
phine (13.3 g, 50.5 mmol) and triethylamine (7.04 mL, 50.5 mmol)
in CH2Cl2 (170 mL) cooled to –40 °C under nitrogen atmosphere
was added carbon tetrabromide (18.8 g, 56.6 mmol) in CH2Cl2 (30
mL). The reaction mixture was gradually warmed to 0 °C over 30
min and then stirred at 0 °C for 1 h. 2,2,2-Trichloroethanol (11.6
mL, 0.12 mol) was added, and stirring was continued at 0 °C for 2

h and then at r.t. overnight. The reaction mixture was washed with
1 N HCl and aq sat. NaHCO3 solution, and dried (Na2SO4). Concen-
tration under reduced pressure gave a crude residue, which was pu-
rified by silica gel chromatography to furnish 24 (10.1 g, 75% for
the two steps).
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