Tetrahedron 65 (2009) 547-562

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of novel deuterium labelled derivatives of N-alkylated polyamines

Merja R. Häkkinen^{a,*}, Tuomo A. Keinänen^b, Alex R. Khomutov^c, Seppo Auriola^d, Janne Weisell^a, Leena Alhonen^b, Juhani Jänne^b, Jouko Vepsäläinen^a

^a Department of Biosciences, Laboratory of Chemistry, Biocenter Kuopio, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland

^b Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Kuopio,

PO Box 1627, FI-70211 Kuopio, Finland

^c Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia

^d Department of Pharmaceutical Chemistry, Biocenter Kuopio, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland

ARTICLE INFO

Article history: Received 9 May 2008 Received in revised form 10 October 2008 Accepted 23 October 2008 Available online 26 October 2008

Keywords: Polyamines Deuterated polyamines Deuterated N-Alkylated polyamine analogues

ABSTRACT

Novel di-, tetra- and octadeuterated derivatives of mono-*N*-alkylated diaminopropanes, spermidines, spermines, symmetrically bis-*N*-alkylated spermines and unsymmetrically bis-*N*-alkylated spermines were synthesized. Deuterium labels were introduced into the RHNCH₂CH₂CN intermediate either by exchanging the protons next to the nitrile group under basic conditions with D₂O–EtOD mixture or/and by reducing the nitrile group to a CD₂–NH₂ fragment with LiAlD₄.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Biogenic polyamines (PAs), spermidine (SPD), spermine (SPM) and their diamine precursor putrescine (butane-1,4-diamine) are small organic bases, which are widely distributed in nearly every prokaryotic and eukaryotic cell type, and are essential for cell growth, division and differentiation. In mammalian cells, the PAs are present at micro- to millimolar concentrations, and their intracellular levels are known to be strictly regulated by several enzymes and the cell membrane transport system.¹⁻³ Natural PAs and their analogues have been investigated as chemopreventative and antiparasitic agents, NMDA receptor modulators, polyamine-based venoms, metal chelators and as potential carriers for drug delivery.⁴⁻⁶ It is known that relatively modest structural modifications in the PA backbone or incorporation of terminal *N*-alkyl substituent(s) may evoke significant differences in their chemical and therapeutic behaviour.^{5–10}

Metabolic studies play an important role in drug discovery, development, testing and approval,¹¹ and represent the basic knowledge needed prior to clinical drug use by providing information on the drug safety and efficacy. This may prevent unnecessary expense in drug development as unsuitable projects can be interrupted as quickly as possible. In addition, metabolic studies may also identify novel possible targets for therapeutic intervention and new avenues for research.^{5,6}

Despite intensive investigations into the biochemistry and molecular biology of PAs, there is relatively sparse data describing details of the interaction between PAs with macromolecules and receptors at the molecular level. In other words, the actual intracellular roles of PAs and the specificity of their interactions with receptor molecules are still largely unknown.^{1,3,6,9} One reason for this problem is that it is biochemically challenging due to the fact that different PAs compete for the same binding site with varying degrees of specificity for their many predicted target molecules,

^{*} Corresponding author. Tel.: +358 40 3553987; fax: +358 17 163259. *E-mail address:* merja.hakkinen@uku.fi (M.R. Häkkinen).

^{0040-4020/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.10.071

and there can also be competition with divalent metal ions or other polyamine mimetics in the study systems. Moreover, the cellular distribution and compartmentalization of polyamines is not understood in detail. Furthermore, in vivo studies are hampered due to the metabolism of polyamines and their structural analogues. Thus, novel tools are required for in depth studies to identify key cellular targets as well as understanding details of the substrate properties of polyamine(analogue) metabolizing enzymes.

Today, liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) represents a powerful tool for metabolite profiling studies since it can perform metabolite identification, as well as structural characterization and quantitation of the metabolites.¹² Recently, we have developed a novel method in which PAs, and also their biologically active derivatives and metabolites, are separated and quantitatively analyzed by LC–MS/MS using deuterium labelled compounds as internal standards.^{13,14}

To achieve acceptable reproducibility and reliability, internal standards are used to correct for the variations in sample preparation and to compensate for the variability in MS detection. Stable isotopically labelled analogues are the most appropriate internal standards in quantitative LC-MS/MS assays, since virtually the only distinguishing feature from the analyte is the difference in the m/z ratio of the ions being studied. However, their use has been hampered due to the time-consuming and expensive syntheses involved in their production.^{12,15} Deuterium is the most widely accessible and the least expensive stable isotope for use in the preparation of labelled internal standards. It is also often synthetically straightforward to incorporate more than one deuterium atom into the molecule, which may be necessary to sufficiently distinguish the labelled internal standards from the isotope peaks of the unlabelled analytes. In addition, deuterium labelled compounds are invaluable tools in studying the mechanisms of enzymes and the site of biotransformation, establishing the mechanism of organic reactions, and they are also useful in structural determinations, for example, in MS and NMR analyses.16,17

Various protocols have been developed for the synthesis of PA analogues and conjugates,^{4,6,7,18} but the synthetic strategies to obtain deuterium labelled polyamines have been much more limited, and there is no general method to prepare *N*-alkylated PA derivatives labelled with deuterium.^{19–22} Previously, only putrescine- d_4 (1,1,4,4-²H₄-butane-1,4-diamine),²¹ putrescine- d_8 ,^{20,23} cadaverine- d_4 (1,1,5,5-²H₄-pentane-1,4-diamine),²¹ 1,1,3,3-²H₄-propane-1,3-diamine²² and 1,1,2,3-²H₄-propane-1,3-diamine²⁰ have been used to prepare deuterated spermine, spermidine, *N*¹-acetylspermidine.^{19–21,24} However, the selective derivatization of diamines is not straightforward, even in the simplest cases for the synthesis of *N*-monosubstituted alkane-diamines,²² and it is especially complicated with non-symmetrical diamines.

The aim of this study was to develop a simple and straightforward method to synthesize *N*-alkylated polyamines **1–4**, in which R=H, Et, ⁱPr, Bn or *c*-Hex, and X, Y, X₁ and Y₁ are deuterium labelling positions, in order to use these compounds as standards in quantitative analysis of polyamines by LC–MS/MS,^{13,14} as well as biochemical probes to study the metabolism of PAs.

2. Results and discussion

2.1. Chemistry

The most straightforward method to synthesize deuterium labelled molecules is to use commercially available labelled building blocks, but this approach is often limited due to the low availability and also the high cost of these compounds. It is possible to attempt exchange reactions adjacent to an activation group accelerated by various catalytic methods, and by using deuterated solvents as the labelling source.^{22,25} However, the most common and a selective deuteration method is reduction with deuterium gas or deuterated solvents with the appropriate catalyst, or with metal deuterides.^{20,21,26,27} Some possible approaches, which could be used in the synthesis of deuterium labelled polyamines are summarized in Scheme 1.

Scheme 1. Possible retrosynthetic strategies to prepare deuterated polyamine derivatives.

Our synthetic strategies to deuterated PA analogues **1–4** are based on the methods described above. As shown in Scheme 2, the starting compound was acrylonitrile (**5**), since it allows not only the introduction of the desired *N*-alkyl group to the double bond, but also the deuterium labelling of either X or Y positions, or both. The key intermediate **1**, after sufficient protection, can undergo chain elongation to yield the corresponding deuterium labelled SPD and SPM derivatives. The structures of prepared target compounds **1–4**, their overall yields and the isotopic purities of the deuterated compounds are summarized in Tables 1–3.

Scheme 2. (i) R-NH₂ (R=Et, ⁱPr, *c*-Hex, Bn), MeOH, reflux; (ii) Method A: LiAlH₄ or LiAlD₄, THF, reflux, Method B: H₂/PtO₂, EtOH, HCI; (iii) 0.1 M NaOD, D₂O, EtOD; X and Y=H or D.

Preparation of PA **1–4** was started from acrylonitrile (**5**) and the appropriate *N*-alkylamine using the Michael addition to obtain the desired *N*-alkylamino-propionitriles **6a–d** with 79–91% yields.²⁸ In

Table 1

Synthesized DAP derivatives, their overall yields and the isotopic purities of the deuterium labelled compounds

Compound				Over	all yield	l % ^a	Isotopic	
DAP derivatives	R	Х	Y	Intermediate	Meth	nod		purity %
				compound	A	В	С	
1a	Et	Н	Н	6a	39	73		_
1b	Et	D	Н	6a	43			99
1c	Et	Н	D	6e	18			94
1d	Et	D	D	6e	20			92
1e	Bn	Н	Н	6d	62		56	_
1f	Bn	D	Н	6d	70			98
1g	Bn	D	D	6f	49			98
1h	ⁱ Pr	Н	Н	6b	46	66		_
1i	ⁱ Pr	D	Н	6b	47			99
1j	<i>c</i> -Hex	Н	Н	6c	56	72		_
1k	c-Hex	D	Н	6c	60			98
11	Н	D	Н	1f	54			98

^a Method A and method B, starting from alkylamine and acrylonitrile. Method A with LiAlH₄ or LiAlD₄ and Method B with H_2/PtO_2 . Method C, starting from aldehyde. Yields are for recrystallized compounds and are not optimized.

Table 2

Synthesized SPD derivatives, their overall yields and the isotopic purities of the deuterium labelled compounds

Compound		Over	all yield	% ^a	Isotopic			
SPD derivatives	R	Х	Y	Intermediate compound	Meth	nod	purity %	
					A	В	С	
2a	Et	Н	Н	12a	25	46		_
2b	Et	D	Н	12b	21			99
2c	Et	D	D	12c	15			93
2d	Bn	Н	Н	12d	31		28	_
2e	Bn	D	Н	12e	39			97
2f	ⁱ Pr	Н	Н	12f	14	20		_
2g	c-Hex	Н	Н	12g	19	25		_
2h	Н	D	Н	2e	21			99

^a Method A and method B, starting from alkylamine and acrylonitrile. Method C, starting from aldehyde. Yields are for recrystallized compounds and are not optimized.

the next step, it was possible to exchange $-CH_2CN$ protons with deuterium or to reduce the nitrile group to the CD_2-NH_2 or CH_2-NH_2 unit. The base catalyzed hydrogen exchange reactions of the simple cyanoalkanes are much faster than the corresponding hydrolysis to carboxylate ions,²⁹ which enables labelling at the

Table 3

Synthesized SPM derivatives, their overall yields and the isotopic purities of the deuterium labelled compounds

Compound	Compound									ld % ^a	Isotopic
SPM	R	R ₁	Х	Y	X_1	Y_1	Intermediate	Method			purity %
derivatives							compound	A	В	С	
3a	Et	Н	Н	Н	Н	Н	13a	13	25		_
3b	Et	Н	D	Н	Н	Н	13b	15			97
3g	Et	Н	Н	Н	D	D	4f	16			93
3c	Bn	Н	Н	Н	Н	Н	13c	28		26	_
3d	Bn	Н	D	D	Н	Н	13d	27			92
3e	ⁱ Pr	Н	Н	Н	Н	Н	13e	11	15		_
3f	c-Hex	Н	Н	Н	Н	Н	13f	12	16		_
4a	Et	Et	Н	Н	Н	Н	14a	16	30		_
4b	Et	Et	D	Н	D	Н	14b	14			97
4c	ⁱ Pr	ⁱ Pr	Н	Н	Н	Н	14c	10	15		_
4d	c-Hex	c-Hex	Н	Н	Н	Н	14d	18	24		_
4e	Et	Bn	Н	Н	Н	Н	14e	21	40		_
4f	Et	Bn	Н	Н	D	D	14f	20			92
4g	Et	Bn	D	D	D	D	14g	10			87
4h	Н	Н	D	D	Н	Н	3d	22			92

^a Method A and method B, starting from alkylamine and acrylonitrile. Method C, starting from aldehyde. Yields are for recrystallized compounds and are not optimized.

 α -position. The deuteration stage achieved >97% for **6e,f** after the exchange reaction was repeated twice with a mixture of 0.1 M NaOD in D₂O and EtOD by using dry diethylether as the extraction solvent. Ethanol is of crucial importance for this reaction, since in its absence after the first cycle, only about 82–84% hydrogen was exchanged, whereas with ethanol, the deuterium stages were 92–95%. Moreover, chloroform was a poor extraction solvent, since both nitrogen deuteriums and α -deuteriums to nitrile were converted back to hydrogens to some extent, even when the traces of water and ethanol (as a stabilizer in chloroform) were removed with P₂O₅.³⁰

The obtained nitriles **6a–f** were reduced to the corresponding amines **1a–k** either with LiAlD₄ (method A, 43–88% yields) or with PtO₂ catalysed hydrogenation (method B, 80–84% yields). However, the latter method is not suitable for benzyl derivatives **1e–g**, and as an example, compound **1e** was prepared from the commercially available Boc-protected amine **7** and benzaldehyde via imine **8** using reductive amination (method C) as shown in Scheme 3. Also the chain elongation unit **10**, which was used as a building block to the SPM derivatives **3a–g**, was prepared from **7** via protected **9**. Previously, **10** (X=Br) was prepared from **9** and 1,4-dibromobutane but we used 1-bromo-4-chlorobutane as an alkylating agent to avoid dimerization.³¹

Scheme 3. (i) PhCHO, 3 Å molecular sieves, Et₂O; (ii) (1) NaBH₄, EtOH; (2) HCl, EtOH; (iii) NsCl, Et₃N, CH₂Cl₂; (iv) Br(CH₂)₄Cl, K₂CO₃, DMF; (v) Nal, acetone, reflux.

Mono-*N*-alkylated SPD analogues were selectively prepared from propanediamines **1a**–**k** after protection as the *o*-nitrophenylsulfonyl (Ns) derivatives **11a**–**k** (intermediate structures in Tables 7–10), since the only remaining NH group was readily alkylated with *N*-(4-iodobutyl)phthalimide³² to **12a**–**k** under basic conditions with 81–95% yields as shown in Scheme 4. It was notable that the protection of the sterically hindered *N*-isopropyl and *N*-cyclohexyl derivatives to nosylated **11g**–**h** required more robust reaction conditions, chromatographic purification and yields (40– 48%) were only half of that of those obtained with the ethyl and benzyl derivatives. The target SPD hydrochlorides **2a**–**g** were obtained from **12a**–**k** after deprotection and recrystallization from ethanol–water–EtOAc with 51–80% yields.

Mono-*N*-alkylated SPM analogues **3a**–**f** were also prepared from nosylated **11** via **13a**–**f** using **10b** (see Scheme 3) as an alkylating agent with 35–60% yields following the strategy having been earlier developed for spermidines.^{32,33} Using the same approach and with 1,4-diiodobutane as the alkylating agent, the corresponding symmetric di-*N*,*N*-alkyl SPMs **4a**–**d** were obtained via **14a**–**d** with 32–69% yields. Surprisingly, the purification of **14a–c** was straightforward, since after addition of EtOAc and water to the reaction mixtures, the products crystallized out. Thus, chromatographic purification was needed only for the compound **14d**.

Using this strategy it is also possible to prepare non-symmetric N,N'-dialkyl SPMs. In this case, as shown in Scheme 4, we used **11a** (R=Et, X=Y=H) or **11c** (R=Et, X=Y=D) as starting materials to prepare alkylating agents **15c** and **15d**, respectively. The compounds **11d** (R=Bn, X=Y=H) or **11f** (R=Bn, X=Y=D) were selected

Scheme 4. (i) NsCl, Et₃N, CH₂Cl₂; (ii) PhtN(CH₂)₄l, ³² K₂CO₃, DMF; (iii) (1) PhSH, K₂CO₃, DMF; (2) N₂H₄·H₂O, EtOH, reflux; (3) HCl, 1,4-dioxane; (iv) **10b**, K₂CO₃, DMF; (v) (1) PhSH, K₂CO₃, DMF; (2) HCl, 1,4-dioxane; (iv) I(CH₂)₄l, K₂CO₃, DMF; (vii) Br(CH₂)₄Cl, K₂CO₃, DMF; (viii) Nal, acetone, reflux; (ix) **11**, K₂CO₃, DMF.

as the precursors of another three-carbon fragment of the SPM molecule. The use of these benzyl derivatives not only allowed the preparation of mixed *N*-ethyl-*N*-benzyl SPMs **4e**–**g**, but also after the removal of benzyl group by catalytic hydrogenation, it proved possible to obtain SPM derivatives labelled at the non-alkylated terminus (see compound **3g** in Table 3). The same strategy was used to prepare deuterated propanediamine- d_2 **1I**, spermidine- d_2 **2h** and spermine- d_4 **4h** starting from **1f**, **2e** and **3d**, respectively, as depicted in Scheme 5.

Scheme 5. (i) H₂/10% Pd–C, EtOH–H₂O.

2.2. NMR, MS and IR studies

All of the compounds were identified by ¹H and ¹³C NMR spectroscopy. The complicated ¹³C NMR spectra were assigned based on 2D techniques and via the information obtained from deuterated analogues. All the backbone carbons are quoted in Tables 4–6 (target compounds **1–4**) and in Tables 7–10 (intermediates). In the experimental part and in Tables 4–10, the backbone carbons are assigned with a number and *N*-alkyl substituents by using Greek letters as shown below.

During the syntheses, the overall deuterium contents were estimated from the ¹H NMR spectra and localizations were verified from the ¹³C NMR spectra. The presence of deuterium atoms in the target compounds were identified without doubt, since in the ¹H NMR spectra the exchanged proton signals disappeared, remaining coupling patterns were simplified and in the ¹³C NMR spectra, the low intensity CD₂ quintets closely upfield to the corresponding CH₂

 Table 4

 ¹³C NMR chemical shifts for DAP derivatives 1a-l^{a,b,c}

Compd			R、C1	C ^{2-C³} NH ₂		
	R	C-1	C-2	$^{1}J_{CD}$	C-3	$^{1}J_{CD}$
1a	Et	46.8	26.6		39.5	
1b	Et	46.8	26.4		38.9*	22 Hz
1c	Et	46.7	26.0*	20 Hz	39.3	
1d	Et	46.7	25.8*	20 Hz	38.8*	22 Hz
1e	Bn	46.8	26.6		39.4	
1f	Bn	46.8	26.5		39.0*	22 Hz
1g	Bn	46.6	25.7*	20 Hz	38.8*	22 Hz
1h	ⁱ Pr	44.5	26.9		39.5	
1i	ⁱ Pr	44.5	26.6		39.0*	22 Hz
1j	c-Hex	44.2	26.8		39.5	
1k	c-Hex	44.1	26.6		39.0*	22 Hz
11	Н	39.4	27.5		38.9*	22 Hz

^a NMR solvent was D₂O with TSP and products were measured as their HCl salts.

^b ¹³C NMR chemical shifts for R are presented in Section 4.

 $^{\rm c}$ Shifts marked with * are for CD₂ carbons, which were observed as 1:2:3:2:1 quintets.

signals were observed as shown in Figure 1. When the protons are replaced by deuterium the relaxation time (T_1) for the deuterated carbon may be more than an order of magnitude greater than that of the comparable protonated carbon. This may mean that with normal recycle delay for carbon measurements (D1=3 s) deuterated carbons may either not show up or appear with much reduced intensity. This was the reason to collect ¹³C NMR data over a long period of time with a longer recycle delay (D1=10 s). In addition, the intensity of the carbon signal will be split into a multiplet due to ¹³C-²H *J* coupling depending on how many deuterons are attached to the carbon (1:1:1 triplet for CD and 1:2:3:2:1 quintet for CD₂). Measured ¹³C-²H *J* couplings (¹*J*_{CD} ≈ 19–22 Hz) for quintets are

¹³C NMR chemical shifts for SPD derivatives 2a-h^{a,b,c}

Compd			R、	N ^{C¹C²}	-C ³ _C	2 ⁵ C ⁶ C ⁷	C ^{8⁻NH₂}	!		
	R	C-1	C-2	$^{1}J_{CD}$	C-3	$^{1}J_{CD}$	C-5	C-6	C-7	C-8
2a	Et	46.8	25.7		47.4		50.0	25.7	26.9	41.7
2b	Et	46.7	25.4		46.8*	22 Hz	49.9	25.6	26.8	41.7
2c	Et	46.6	24.7*	20 Hz	46.6*	22 Hz	49.9	25.6	26.7	41.7
2d	Bn	46.8	25.6		47.4		50.0	25.7	26.8	41.7
2e	Bn	46.7	25.3		46.8*	22 Hz	49.8	25.5	26.7	41.7
2f	ⁱ Pr	44.5	25.8		47.4		50.0	25.6	26.8	41.7
2g	c-Hex	44.2	25.8		47.5		50.0	25.7	26.8	41.7
2h	Н	39.4	26.4		46.8*	22 Hz	49.9	25.6	26.7	41.7

^a NMR solvent was D₂O with TSP and products were measured as their HCl salts.
 ^b ¹³C NMR chemical shifts for R are presented in Section 4.

 $^{\rm c}\,$ Shifts marked with * are for CD_2 carbons, which were observed as quintets.

Table 6	
¹³ C NMR chemical shifts for SPM derivatives 3a-g and 4a-h ^{a,b}	,c

Compd						R. _N	C ¹ C ² C ³	N ^{∕C⁵} C ^{6∕}	C ⁷ C ⁸ -N C	C ¹¹ H C ¹⁰ C ¹²	R ¹					
	R	R ¹	C-1	C-2	$^{1}J_{CD}$	C-3	$^{1}J_{CD}$	C-5	C-6	C-7	C-8	C-10	$^{1}J_{CD}$	C-11	$^{1}J_{CD}$	C-12
3a	Et	Н	46.7	25.5		47.4		49.9	25.6	25.6	49.9	47.4		26.6		39.5
3b	Et	Н	46.7	25.4		46.8*	22 Hz	49.8	25.6	25.6	49.9	47.4		26.6		39.4
3g	Et	Н	46.7	25.5		47.3		49.8	25.6	25.6	49.8	46.7*	22 Hz	25.8*	20 Hz	39.2
3c	Bn	Н	46.7	25.5		47.4		49.9	25.6	25.6	49.9	47.4		26.6		39.4
3d	Bn	Н	46.6	24.7*	19 Hz	46.6*	22 Hz	49.8	25.6	25.6	49.9	47.4		26.6		39.4
3e	ⁱ Pr	Н	44.5	25.8		47.4		49.9	25.6	25.6	49.9	47.4		26.6		39.4
3f	c-Hex	Н	44.1	25.8		47.4		49.9	25.6	25.6	49.9	47.4		26.6		39.4
4a	Et	Et	46.7	25.6		47.4		49.9	25.6	25.6	49.9	47.4		25.6		46.7
4b	Et	Et	46.7	25.4		46.8*	22 Hz	49.8	25.6	25.6	49.8	46.8*	22 Hz	25.4		46.7
4c	ⁱ Pr	ⁱ Pr	44.5	25.8		47.4		49.9	25.6	25.6	49.9	47.4		25.8		44.5
4d	c-Hex	c-Hex	44.1	25.8		47.4		49.9	25.6	25.6	49.9	47.4		25.8		44.1
4e	Bn	Et	46.7	25.5		47.4		49.9	25.6	25.6	49.9	47.4		25.6		46.7
4f	Bn	Et	46.6	24.7*	19 Hz	46.6*	(m)	49.8	25.6	25.6	49.9	47.4		25.5		46.7
4g	Bn	Et	46.6	24.7*	(m)	46.6*	(m)	49.8	25.6	25.6	49.8	46.6*	(m)	24.7*	(m)	46.5
4h	Н	Н	39.2	25.8*	20 Hz	46.7*	22 Hz	49.8	25.6	25.6	49.8	47.4		26.6		39.4

^a NMR solvent was D₂O with TSP and products were measured as their HCl salts.

^b ¹³C NMR chemical shifts for R, R¹ are presented in Section 4.

^c Shifts marked with * are for CD₂ carbons, which were observed as quintets except **4f**, C-3 which was under the other shifts, and overlaid **4g** shifts. See also Figure 2.

Table '	7
---------	---

¹³ C NMR chemical	shifts for	intermediates	6a-f ^{a,b,c}
------------------------------	------------	---------------	-----------------------

Compd		R _N C ¹ C ² CN							
	R	C-1	C-2	$^{1}J_{CD}$	CN				
6a	Et	44.9	18.7		118.8				
6e	Et	44.7	18.3*	21 Hz	118.8				
6d	Bn	44.3	18.8		118.7				
6f	Bn	44.2	18.4*	21 Hz	118.7				
6b	ⁱ Pr	42.6	19.1		118.8				
6c	c-Hex	42.2	19.2		118.9				

^a NMR solvent was CDCl₃ with TMS.

^b ¹³C NMR chemical shifts for R are presented in Section 4.

^c Shifts marked with * are for CD₂ carbons, which were observed as quintets.

Table 8

¹³C NMR chemical shifts for intermediate DAP derivatives **11a-h**^{a,b,c}

Compd	R _N C ¹ C ² C ³ NH Ns						
	R	C-1	C-2		C-3		
11a	Et	44.2	28.9		40.6		
11b	Et	44.1	28.7		40.1*	(m)	
11c	Et	44.0	28.0*	(m)	40.0*	(m)	
11d	Bn	45.1	28.5		40.5		
11e	Bn	45.1	28.4		40.0*	(m)	
11f	Bn	45.0	27.6*	(m)	39.8*	(m)	
11g	ⁱ Pr	41.1	32.0		40.4		
11h	c-Hex	41.2	32.1		41.1		

^a NMR solvent was CDCl₃ with TMS.

 $^{\rm b}$ $^{\rm 13}{\rm C}$ NMR chemical shifts for R and for protecting groups (Ns) are presented in Section 4.

 $^{\mbox{c}}$ Shifts marked with * are for \mbox{CD}_2 carbons, which were observed as multiplets due to dynamic effects at room temperature.

shown in Tables 4–7. However, ¹³C NMR spectra of the protected intermediates were more complex due to dynamic effects caused by the neighbouring protecting groups at room temperature and only multiplets were observed for the CD₂ groups (Tables 8–10). A typical example of the isotope effects generated by deuterium atoms is shown in Figure 2. Negative (upfield to the corresponding CH₂) deuterium induced isotope shifts were observed over one, two and three bonds, as can be estimated also from Tables 4–10. The isotopic shifts are additive, since deuterated C-3 resonance is shifted more upfield when also C-2 is deuterated (see Tables 4,5,8,9). In some cases, ¹H and ¹³C NMR chemical shifts for the

known compounds were re-evaluated, since the 13 C NMR chemical shifts differences in the literature compared to our shifts were 1–3 ppm (literature shifts measured in D₂O without internal standard) or in some cases chemical shifts were missing.

The isotopic distribution was estimated for all the deuterated target compounds. The isotopic purity was 87% for **4g** containing eight deuterium atoms, 91–97% for compounds with four deuterium atoms and 94–99% for compounds with two deuterium atoms, as shown in Tables 1–3. In addition, according to the ¹H NMR and ESI mass spectra, the overall deuterium stage of all the labelled compounds (detected deuterium amount in the molecule versus expected) was over 97%.

IR was used to study the C–D stretches in deuterated compounds. According to literature the range for C–D stretches is 2200– 2080 cm⁻¹, which is beyond 'normal' IR vibrations.³⁴ However, only compound **11** clearly showed bands around this region (~2230 cm⁻¹). In the other spectra, there were no such clear vibrations in this region, or the bands are so weak or they may remain under the highly structured ammonium (NH₃⁺, NH₂⁺) vibrations (3000–2000 cm⁻¹).

3. Conclusions

A general method was developed to synthesize several deuterium labelled *N*-alkylated diaminopropanes containing two or four deuteriums in the non-exchangeable positions. These key intermediates were used to prepare mono-, di- and unsubstituted, sterically hindered, as well as symmetrically and non-symmetrically substituted polyamine derivatives, and also their symmetrically or non-symmetrically deuterium labelled analogues, having two to eight deuterium atoms in the PA backbone. According to the ESI-MS and ¹H NMR data, the isotopic purities were high (87–99%) for all the labelled compounds. Benzyl alkylated derivatives were found to be convenient precursors in the synthesis of a variety of labelled, non-*N*-alkylated diaminopropanes, spermidines and spermines, and they served also as an alternative route to monosubstituted polyamines.

4. Experimental

4.1. Reagents

Dimethylformamide (DMF) was distilled and stored over 4 Å molecular sieves, triethylamine (TEA) was dried over KOH and

Table	9
Table	3

C INVIN CHEINICAL SUITS TO FITTELITIEUTATE SET DELIVATIVES 12d-2 and alkylating agents 13d-U and 10d-D

Compd $R_{N} C^{C}_{C^{C}} C^{C}_{C^{C}} C^{C}_{C^{C}} C^{C}_{C^{C}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{T}_{C^{S}} C^{S}_{C^{S}} C^{T}_{C^{S}} C^{S}_{C^{S}} C^{T}_{C^{S}} C^{S}_{C^{S}} C^{S}_{C}} C^{S}_{C^{S}} C^{S}_{C} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C}} C^{S}_{C} C^{S}_{C} C^{S}_{C} C^{S}_{C} C^{S}_{C} C^{S}_{C} C^{S}} C^{S} C C^{S} C C^{S} C^{S} C^{S}} C^{S} C^{S} C C^{S} C C^{S} C C^{S} C C^{S} C C^{S} C C^{C} C C^{S} C$												
	R	х	Y	C-1	C-2	X N	IS C-3		C-5	C-6	C-7	C-8
12a	Et	Ns	NPht	44.3	27.5		45.2		47.3	25.4	25.7	37.1
12b	Et	Ns	NPht	44.3	27.3		44.6*	(m)	47.2	25.4	25.7	37.1
12c	Et	Ns	NPht	44.1	26.6*	(m)	44.5*	(m)	47.2	25.4	25.7	37.1
12d	Bn	Ns	NPht	45.1	26.9		44.9		46.8	25.2	25.6	37.1
12e	Bn	Ns	NPht	45.1	26.7		44.3*	(m)	46.7	25.2	25.6	37.1
12f	ⁱ Pr	Ns	NPht	40.5	30.3		45.1		46.8	25.2	25.7	37.2
12g	c-Hex	Ns	NPht	41.4	30.4		45.1		46.8	25.2	25.7	37.2
15a	Et	Ns	Cl	44.4	27.6		45.1		47.2	25.4	29.3	44.4
15b	Et	Ns	Cl	44.3	26.7*	(m)	44.4*	(m)	47.1	25.4	29.3	44.4
15c	Et	Ns	Ι	44.4	27.6		45.1		46.7	29.0	30.1	5.9
15d	Et	Ns	Ι	44.3	26.7*	(m)	44.3*	(m)	46.7	28.9	30.1	6.0
10a	Н	Boc	Cl	37.4	28.6		45.0		46.8	25.4	29.3	44.3
10b	Н	Boc	Ι	37.4	28.6		45.0		46.4	28.9	30.1	5.8

^a NMR solvent was CDCl₃ with TMS.

^b ¹³C NMR chemical shifts for R and for protecting groups (Ns, Pht and Boc) are presented in Section 4.

^c Shifts marked with * are for CD₂ carbons, which were observed as multiplets due to dynamic effects at room temperature.

Table 10				
13C NMR cher	mical shifts for inte	ermediate SPM de	rivatives 13a–f a	ınd 14a-g^{a,b,c}

Compd			R _N ^{C1} C ² C ³ N ^{C5} C ⁶ C ⁷ C ⁸ N ^{C1} C ¹⁰ C ¹¹ N _C ¹⁰ C ¹¹ N _C ¹⁰														
		n 1			6.0		Ns	Ns	- -		. .	6.0	6.40		6.44		6.40
	ĸ	K.	Х	C-1	C-2		C-3		C-5	C-6	C-/	C-8	C-10		C-11		C-12
13a	Et	Н	Boc	44.4	27.5		44.9		47.1	25.0	25.1	47.0	45.2		28.6		37.4
13b	Et	Н	Boc	44.4	27.3		44.4*	(m)	47.0	25.0	25.1	47.0	45.2		28.6		37.4
13c	Bn	Н	Boc	45.2	26.9		44.7		46.7	24.8	25.0	47.0	45.2		28.6		37.4
13d	Bn	Н	Boc	45.1	26.0*	(m)	44.0*	(m)	46.6	24.8	25.0	47.0	45.2		28.6		37.4
13e	ⁱ Pr	Н	Boc	40.5	30.2		44.9		46.6	24.8	25.1	46.9	45.2		28.6		37.4
13f	c-Hex	Н	Boc	41.4	30.4		44.8		46.6	24.7	25.1	46.9	45.1		28.6		37.4
14a**	Et	Et	Ns	44.4	27.5		45.0		47.2	25.0	25.0	47.2	45.0		27.5		44.4
14b*	Et	Et	Ns	44.4	27.2		44.5*	(m)	47.0	24.9	24.9	47.0	44.5*	(m)	27.2		44.4
14c**	ⁱ Pr	ⁱ Pr	Ns	40.2	29.8		44.4		46.5	24.5	24.5	46.5	44.4		29.8		40.2
14d**	c-Hex	c-Hex	Ns	41.4	30.3		44.8		46.6	24.7	24.7	46.6	44.8		30.3		41.4
14e	Bn	Et	Ns	45.2	26.9		44.8		46.8	24.8	25.0	47.1	45.0		27.5		44.4
14f	Bn	Et	Ns	45.1	26.0*	(m)	44.1*	(m)	46.7	24.8	25.0	47.1	45.0		27.5		44.4
14g	Bn	Et	Ns	45.1	26.0*	(m)	44.3*	(m)	46.7	24.8	24.9	47.1	44.3*	(m)	26.6*	(m)	44.3

^a NMR solvent was CDCl₃ with TMS, except for **, which were measured in $CDCl_3+DMSO-d_6$ with TMS.

^b ¹³C NMR chemical shifts for R, R¹ and for protecting groups (Ns and Boc) are presented in Section 4.

^c Shifts marked with * are for CD₂ carbons, which were observed as multiplets due to dynamic effects at room temperature.

distilled, diethylether was dried over sodium-benzophenone ketyl and distilled, dichloromethane (DCM) and chloroform were dried over P_2O_5 and distilled. All other reagents were used without further purification. Reactions were followed with TLC using analytical pre-coated silica gel 60 F_{254} plates, while silica gel (63–200 μ m, Merck) was used for column chromatographic separations.

¹H and ¹³C NMR spectra were measured on a Bruker Avance (Bruker, Rheinstetter, Germany) 500 DRX spectrometer operating at 500.13 and 125.76 MHz, respectively. TMS was used as an internal standard in organic solvents, and sodium 3-(trimethylsilyl)-1-propionic acid (TSP) in D₂O. Relaxation delay (D1) was set to 60 s for ¹H measurements and to 10 s for carbon experiments. ¹H and ¹³C NMR chemical shifts were assigned based on standard 2D techniques (¹H–¹H COSY, ¹H–¹³C HSQC and HMBC).

Isotope distribution measurements and high-resolution mass spectra were conducted on a QSTAR XL hybrid quadrupole TOF instrument (Applied Biosystems, Foster City, CA) using the positive electrospray ionization mode. Isopropylamine, amino acids and peptides were used as the internal standards in HRMS measurements.

IR spectra as KBr pelleting were recorded on Nexus 470 FT-IR. Melting points were measured in open capillary tubes and are uncorrected.

4.2. Syntheses of polyamines

4.2.1. 3-Ethylamino-propionitrile **6a**^{28,35}

Prepared by the known method²⁸ from 70% ethylamine (20.0 g, 311 mmol) and acrylonitrile (10.6 g, 200 mmol) to give **6a** (17.93 g, 91%) as a colourless liquid, bp 75 °C/10 mbar. IR (neat): 3313 (br), 2969–2834, 2247, 1455, 1375, 1130 cm⁻¹; ¹H NMR (CDCl₃): δ 2.94 (2H, t, *J*=6.6 Hz, H-1), 2.69 (2H, q, *J*=7.1 Hz, H-α), 2.53 (2H, t, *J*=6.6 Hz, H-2), 1.68 (1H, br, NH), 1.13 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 43.5 (C-α), 15.2 (C-β), rest in Table 7; HRMS (ESI-MS): calcd for (M+H) C₅H₁₁N₂ 99.0922, found 99.0922.

4.2.2. 3-Isopropylamino-propionitrile **6b**^{36,37}

Isopropylamine (5.00 g, 85 mmol) was added dropwise with stirring to a solution of acrylonitrile (6.73 g, 127 mmol) in methanol (10 mL) within 20 min. The stirring was continued for 30 min at room temperature and for 1 h under reflux. Solvents were evaporated in vacuo and the residue was distilled (bp 100 °C/35 mbar) to give **6b** (7.48 g, 79%) as a colourless liquid. IR (neat): 3313 (br), 2966–2870, 2247, 1472, 1381, 1175 cm⁻¹; ¹H NMR (CDCl₃): δ 2.92 (2H, t, *J*=6.7 Hz, H-1), 2.85 (1H, sep., *J*=6.2 Hz, H- α), 2.51 (2H, t, H-2), 1.09 (1H, br, NH), 1.07 (6H, d, *J*=6.2 Hz, H- β); ¹³C NMR (CDCl₃):

Figure 1. Deuterium induced changes in ¹H and ¹³C NMR chemical shifts during the deuteration of **6d** to **6f**. Top: ¹H NMR; the exchanged proton signals disappear and the remaining coupling pattern is simplifying. Bottom: ¹³C NMR; the carbon signal is splitting into a multiplet due to ¹³C-²H *J* coupling ($^{1}J_{CD} \approx 21$ Hz) depending on how many deuteriums are attached to the carbon. Singlet for CH₂, 1:1:1 triplet for CHD and 1:2:3:2:1 quintet for CD₂. A: unlabelled (**6d**), B: labelling in progress, C: labelled (**6f**).

δ 48.1 (C-α), 22.9 (2C-β), rest in Table 7; HRMS (ESI-MS): calcd for (M+H) C₆H₁₃N₂ 113.1079, found 113.1074.

4.2.3. 3-Cyclohexylamino-propionitrile **6c**^{35,38,39}

Prepared as **6b** from cyclohexylamine (7.40 g, 75 mmol) and acrylonitrile (5.94 g, 112 mmol) to give **6c** (9.76 g, 86%) as a colourless liquid, bp 140 °C/12 mbar. IR (neat): 3422 (br), 2927, 2853, 2247, 1450, 1130 cm⁻¹; ¹H NMR (CDCl₃): δ 2.95 (2H, t, *J*=6.7 Hz, H-1), 2.53–2.43 (3H, m, H-2,α), 1.90–1.83 (2H, m, H-β_{eq}), 1.77–1.70 (2H, m, H-γ_{eq}), 1.65–1.58 (1H, m, H-δ_{eq}), 1.31–1.01 (6H, m, H-γ_{ax}, δ_{ax}, β_{ax}, NH); ¹³C NMR (CDCl₃): δ 56.0 (C-α), 33.6 (2C-β), 26.0 (C-δ), 24.9 (2C-γ), rest in Table 7; HRMS (ESI-MS): calcd for (M+H) C₉H₁₇N₂ 153.1392, found 153.1391.

4.2.4. 3-Benzylamino-propionitrile **6d**^{36,40}

Prepared as **6b** from benzylamine (8.57 g, 80 mmol) and acrylonitrile (6.37 g, 120 mmol) to give **6d** (10.75 g, 84%) as a colourless liquid, bp 125 °C/2 mbar. IR (neat): cm⁻¹ as reported earlier;³⁶ ¹H NMR (CDCl₃): δ 7.36–7.22 (5H, m, Ph), 3.81 (2H, s, H-α), 2.90 (2H, t, *J*=6.6 Hz, H-1), 2.48 (2H, t, *J*=6.6 Hz, H-2), 1.54 (1H, br, NH); ¹³C NMR (CDCl₃): δ 139.5 (Ph), 128.6 (2C, Ph), 128.1 (2C, Ph), 127.3 (Ph), 53.2 (C-α), rest in Table 7; HRMS (ESI-MS): calcd for (M+H) C₁₀H₁₃N₂ 161.1079, found 161.1082.

4.2.5. 3-Ethylamino-2,2-²H₂-propionitrile **6e**

Nitrile **6a** (4.0 g, 40.75 mmol) in the mixture of 0.1 M NaOD in D₂O (26 mL) and EtOD (26 mL) was stirred at room temperature for 24 h. The reaction mixture was saturated with NaCl and extracted with dry Et₂O. Combined organic extracts were dried over K₂CO₃, solvents were removed by distillation, after the product was distilled under reduced pressure (2.65 g, 65%, 92% d, bp 72 °C/ 10 mbar). The reaction cycle was repeated once to give **6e** (1.91 g, 47%, 98% d) as a colourless liquid. IR (neat): 3312 (br), 2969–2340, 2248, 1453, 1384, 1126 cm⁻¹; ¹H NMR (CDCl₃): δ 2.92 (2H, s, H-1),

Figure 2. Negative deuterium induced isotope shifts, Δδ, in ¹³C NMR spectra were observed over one (0.7 ppm), two (0.17 ppm) and three bonds (0.06 ppm), as demonstrated for compounds 4e, 4f and 4g.

2.69 (2H, q, J=7.1 Hz, H- α), 1.13 (3H, t, J=7.1 Hz, H- β); ¹³C NMR (CDCl₃): δ 43.4 (C- α), 15.2 (C- β), rest in Table 7; HRMS (ESI-MS): calcd for (M+H) C₅H₉D₂N₂ 101.1048, found 101.1044.

4.2.6. 3-Benzylamino-2,2-²H₂-propionitrile **6f**

Prepared as **6e** from **6d** (3.2 g, 20 mmol) to give **6f** (2.62 g, 81%, 95% d, bp 120 °C/0.9 mbar) after the first cycle. The reaction cycle was repeated once to give **6f** (2.16 g, 66%, 99% d) as a colourless liquid. IR (neat): 3336 (br), 3085–2843, 2248, 1454, 743, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 7.36–7.22 (5H, m, Ph), 3.82 (2H, s, H-α), 2.91 (2H, s, H-1); ¹³C NMR (CDCl₃): δ 139.5 (Ph), 128.6 (2C, Ph), 128.1 (2C, Ph), 127.3 (Ph), 53.2 (C-α), rest in Table 7; HRMS (ESI-MS): calcd for (M+H) C₁₀H₁₁D₂N₂ 163.1204, found 163.1209.

4.3. General protocols to prepare 1a-k

Method A. To a cooled (0 °C) suspension of LiAlH₄ or LiAlD₄ (20.4 mmol) in dry Et₂O (40 mL), a solution of nitrile **6** (500 mg, 10 mmol) in dry Et₂O (10 mL) was added dropwise with stirring over a period of 45 min. The reaction mixture was allowed to warm to room temperature, heated at reflux for 3 h and further stirred at room temperature for 20 h. The reaction was quenched at 0–4 °C by dropwise addition of water (1.2 mL) and NaOH (5 M, 7.1 mL) with stirring. The organic phase was separated and the residue was extracted with hot chloroform (4×20 mL). The combined organic extracts were dried over MgSO₄ and the crude product was precipitated by treating with dry HCl. The subsequent recrystallization from ethanol–EtOAc yielded **1**.

Method B. To a solution of **6** (10.2 mmol) in ethanol (30 mL) was added concd HCl (2 mL) and the mixture was deoxygenated with argon for 10 min. Adam's catalyst (PtO₂, 0.44 mmol) was added and the mixture was hydrogenated at 3.5 bar pressure for 20 h. The

catalyst was filtered off through Celite, washed with hot ethanol and water, and the combined filtrates were evaporated to dryness in vacuo. The residue was recrystallized from ethanol–EtOAc to give **1**.

Method C. Following the published procedure for N^1 -benzylbutane-1,4-diamine,⁴¹ compound **1** was prepared from the corresponding aldehyde (20.5 mmol) and (3-amino-propyl)carbamic acid *tert*-butyl ester (**7**, 22.6 mmol) after reduction and amino group deprotection.

4.3.1. N¹-Ethylpropane-1,3-diamine dihydrochloride **1a**³⁹

Prepared from **6a** to give **1a** (method A: 43%, method B: 80%) as colourless solid, mp 224–225 °C. IR (KBr): 3000–2387, 1606, 1459, 1379, 804 cm⁻¹; ¹H NMR (D₂O): δ 3.17–3.10 (6H, m, H-α,1,3), 2.12–2.06 (2H, m, H-2), 1.30 (3H, t, *J*=7.3 Hz, H-β); ¹³C NMR (D₂O): δ 45.9 (C-α), 13.3 (C-β), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₅H₁₅N₂ 103.1235, found 103.1229.

4.3.2. N¹-Ethyl-3,3-²H₂-propane-1,3-diamine dihydrochloride **1b**

Prepared from **6a** to give **1b** (method A, 47%, 99% *d*) as a colourless solid, mp 219–221 °C. IR (KBr): 3000–2386, 1604, 1460, 1382, 1144, 855, 804 cm⁻¹; ¹H NMR (D₂O): δ 3.17–3.10 (4H, m, H- α ,1), 2.11–2.05 (2H, m, H-2), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 45.9 (C- α), 13.4 (C- β), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₅H₁₃N₂D₂ 105.1361, found 105.1354. Isotope distribution: 0% *d*₀, 1% *d*₁, 98% *d*₂.

4.3.3. N^1 -Ethyl-2,2-²H₂-propane-1,3-diamine dihydrochloride **1**c

Prepared from **6e** to give **1c** (method A, 43%, 97% *d*) as a colourless solid, mp 222–224 °C. IR (KBr): 3000–2369, 1594, 1462, 1374, 1185, 802 cm⁻¹; ¹H NMR (D₂O): δ 3.17–3.08 (6H, m, H- α ,1,3), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 45.9 (C- α), 13.4 (C- β),

rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₅H₁₃N₂D₂ 105.1361, found 105.1356. Isotope distribution: 0% d₀, 6% d₁, 94% d₂.

4.3.4. N^1 -Ethyl-2,2,3,3- 2H_4 -propane-1,3-diamine dihydrochloride **1d**

Prepared from **6e** to give **1d** (method A, 47%, 98% *d*) as a colourless solid, mp 218–220 °C. IR (KBr): 3000–2388, 1603, 1463, 1382, 1171, 837, 806 cm⁻¹; ¹H NMR (D₂O): δ 3.17–3.10 (4H, m, H-α,1), 1.30 (3H, t, *J*=7.3 Hz, H-β); ¹³C NMR (D₂O): δ 46.0 (C-α), 13.4 (C-β), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₅H₁₁N₂D₄ 107.1486, found 107.1480. Isotope distribution: 0% *d*₀–*d*₂, 8% *d*₃, 92% *d*₄.

4.3.5. N^1 -Benzyl-propane-1,3-diamine dihydrochloride **1** $e^{42,43}$

Prepared from **6d** to give **1e** (method A, 74%) as a colourless solid, mp 271–272 $^{\circ}$ C.

Prepared from benzaldehyde (2.2 g, 20.5 mmol) and (3-aminopropyl)carbamic acid *tert*-butyl ester (3.9 g, 22.6 mmol) following method C, which after recrystallization from ethanol–EtOAc gave **1e** in the overall (3 steps) with a 56% yield. IR (KBr): 3050–2410, 1599, 1484, 1174, 744, 697 cm⁻¹; ¹H NMR (D₂O): δ 7.57–7.48 (5H, m, Ph), 4.29 (2H, s, H-α), 3.24–3.17 (2H, m, H-1), 3.14–3.08 (2H, m, H-3), 2.17–2.07 (2H, m, H-2); ¹³C NMR (D₂O): δ 133.3 (Ph), 132.7 (2C, Ph), 132.6 (Ph), 132.2 (2C, Ph), 54.1 (C-α), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₁₀H₁₇N₂ 165.1392, found 165.1389.

4.3.6. N^1 -Benzyl-3,3-²H₂-propane-1,3-diamine dihydrochloride **1f**

Prepared from **6d** to give **1f** (method A, 83%, 99% *d*) as a colourless solid, mp 275 °C. IR (KBr): 3050–2387, 1601, 1478, 854, 744, 697 cm⁻¹; ¹H NMR (D₂O): δ 7.57–7.48 (5H, m, Ph), 4.29 (2H, s, H- α), 3.24–3.17 (2H, m, H-1), 2.16–2.07 (2H, m, H-2); ¹³C NMR (D₂O): δ 133.5 (Ph), 132.7 (2C, Ph), 132.6 (Ph), 132.1 (2C, Ph), 54.1 (C- α), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₁₀H₁₅N₂D₂ 167.1517, found 167.1513. Isotope distribution: 0% *d*₀, 2% *d*₁, 98% *d*₂.

4.3.7. N^1 -Benzyl-2,2,3,3- 2H_4 -propane-1,3-diamine dihydrochloride **1g**

Prepared from **6f** to give **1g** (method A, 88%, 98% *d*) as a colourless solid, mp 274–275 °C. IR (KBr): 3050–2429, 1600, 1468, 836, 744, 697 cm⁻¹; ¹H NMR (D₂O): δ 7.57–7.46 (5H, m, Ph), 4.29 (2H, s, H- α), 3.19 (2H, s, H-1); ¹³C NMR (D₂O): δ 133.3 (Ph), 132.7 (2C, Ph), 132.6 (Ph), 132.2 (2C, Ph), 54.1 (C- α), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₁₀H₁₃N₂D₄ 169.1643, found 169.1641. Isotope distribution: 0% *d*₀–*d*₂, 7% *d*₃, 92% *d*₄.

4.3.8. N¹-Isopropylpropane-1,3-diamine dihydrochloride **1h**^{39,44}

Prepared from **6b** to give **1h** (method A: 58%, method B: 83%) as a colourless solid, mp 184–186 °C. IR (KBr): 3000–2385, 1597, 1473, 1379, 1136, 766 cm⁻¹; ¹H NMR (D₂O): δ 3.45 (1H, sep., *J*=6.6 Hz, H-α), 3.19–3.09 (4H, m, H-1,3), 2.13–2.03 (2H, m, H-2), 1.33 (6H, d, *J*=6.6 Hz, H-β); ¹³C NMR (D₂O): δ 53.9 (C-α), 21.0 (2C-β), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₆H₁₇N₂ 117.1392, found 117.1386.

4.3.9. N¹-Isopropyl-3,3-²H₂-propane-1,3-diamine dihydrochloride **1i**

Prepared from **6b** to give **1i** (method A, 59%, 99% *d*) as a colourless solid, mp 182–184 °C. IR (KBr): 3000–2300, 1594, 1471, 1382, 1161, 845 cm⁻¹; ¹H NMR (D₂O): δ 3.45 (1H, sep., *J*=6.6 Hz, H-α), 3.18–3.13 (2H, m, H-1), 2.10–2.04 (2H, m, H-2), 1.33 (6H, d, *J*=6.6 Hz, H-β); ¹³C NMR (D₂O): δ 53.9 (C-α), 21.0 (2C-β), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₆H₁₅N₂D₂ 119.1517, found 119.1514. Isotope distribution: 0% *d*₀, 1% *d*₁, 99% *d*₂.

4.3.10. N¹-Cyclohexylpropane-1,3-diamine dihydrochloride **1***j*^{39,45}

Prepared from **6c** to give **1j** (method A: 65%, method B: 84%) as a colourless solid, mp 200–202 °C (lit. mp 199–202 °C).⁴⁵ IR (KBr): 3000–2368, 1606, 1464, 1164, 783 cm⁻¹; ¹H NMR (D₂O): δ 3.22– 3.08 (5H, m, H-1,3,α), 2.13–2.02 (4H, m, H-2,β_{eq}), 1.90–1.79 (2H, m, H-γ_{eq}), 1.72–1.63 (1H, m, H-δ_{eq}), 1.41–1.27 (4H, m, H-β_{ax},γ_{ax}), 1.25–1.13 (1H, m, H- δ_{ax}); ¹³C NMR (D₂O): δ 60.3 (C-α), 31.7 (2C-β), 27.3 (C-δ), 26.8 (2C-γ), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₉H₂₁N₂ 157.1705, found 157.1707.

4.3.11. N¹-Cyclohexyl-3,3-²H₂-propane-1,3-diamine dihydrochloride **1k**

Prepared from **6c** to give **1k** (method A, 70%, 99% *d*) as a colourless solid, mp 205–207 °C. IR (KBr): 3000–2385, 1604, 1467, 855 cm⁻¹; ¹H NMR (D₂O): δ 3.22–3.08 (3H, m, H-1, α), 2.13–2.02 (4H, m, H-2, β_{eq}), 1.90–1.79 (2H, m, H- γ_{eq}), 1.72–1.63 (1H, m, H- δ_{eq}), 1.41–1.27 (4H, m, H- β_{ax} , γ_{ax}), 1.25–1.13 (1H, m, H- δ_{ax}); ¹³C NMR (D₂O): δ 60.3 (C- α), 31.7 (2C- β), 27.3 (C- δ), 26.7 (2C- γ), rest in Table 4; HRMS (ESI-MS): calcd for (M+H) C₉H₁₉N₂D₂ 159.1830, found 159.1826. Isotope distribution: 0% d₀, 2% d₁, 98% d₂.

4.3.12. 1,1-²H₂-Propane-1,3-diamine dihydrochloride 11⁴⁶

To a mixture of **1f** (190 mg, 0.79 mmol) in ethanol (30 mL), water was added to dissolve **1f** followed with 10% Pd–C (80 mg) and the reaction mixture was hydrogenated at 3.5 bar pressure for 20 h. The catalyst was filtered off through Celite, washed with ethanol and water, and the combined filtrates were evaporated to dryness in vacuo. Recrystallization from ethanol–water–EtOAc yielded **1l** (92 mg, 78%, 99% *d*) as a colourless solid, mp 249–250 °C (lit. mp 246–250 °C).⁴⁶ IR (KBr): 3000–2300, 2227, 1610, 1463, 1167, 844 cm⁻¹; ¹H NMR (D₂O): δ 3.15–3.09 (2H, m, H-1), 2.10–2.04 (2H, m, H-2); ¹³C NMR (D₂O): δ in Table 4; HRMS (ESI-MS): calcd for (M+H) C₃H₉N₂D₂ 77.1048, found 77.1051. Isotope distribution: 1% *d*₀, 1% *d*₁, 98% *d*₂.

4.3.13. N^1 -Ethyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)propane-1,3diamine **11a**

A suspension of **1a** (2.0 g, 11.42 mmol) and TEA (8 mL, 57 mmol) in dry DCM (100 mL) was cooled to 0 °C. NsCl (5.32 g, 23.99 mmol) in dry DCM (70 mL) was added dropwise with stirring over a period of 10 min, and stirring was continued for 1 h at 0 °C and then for 3 h at room temperature. The reaction mixture was washed with water (2×200 mL), 10% citric acid (1×200 mL), brine (1×200 mL), dried over MgSO₄ and evaporated to dryness in vacuo that resulted in 11a (5.4 g, \sim 100%) as a pale yellow solid, mp 82-84 °C. IR (KBr): 3321, 3095-2878, 1545, 1380, 1160, 736 cm⁻¹; ¹H NMR (CDCl₃): δ 8.14–8.09 (1H, m, Ph), 8.03–7.98 (1H, m, Ph), 7.87-7.83 (1H, m, Ph), 7.78-7.67 (4H, m, Ph), 7.64-7.59 (1H, m, Ph), 5.66 (1H, t, J=6.2 Hz, NH), 3.42-3.31 (4H, m, H-α,1), 3.22-3.16 (2H, m, H-3), 1.89–1.81 (2H, m, H-2), 1.10 (3H, t, *I*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.1, 148.0, 133.7, 133.6 (2C), 133.3, 132.9, 131.8, 130.9, 130.8, 125.5, 124.2 (totally 12C-Ph), 42.4 (C-a), 13.7 (C- β), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) C₁₇H₂₁N₄O₈S₂ 473.0801, found 473.0793.

4.3.14. N^1 -Ethyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)-3, $3^{-2}H_2$ -propane-1,3-diamine **11b**

Prepared as **11a** from **1b** (1.20 g, 6.78 mmol) to give **11b** (3.33 g, ~100%) as a pale yellow solid, mp 79–81 °C. IR (KBr): 3323, 3095–2879, 1545, 1380, 1161, 732 cm⁻¹; ¹H NMR (CDCl₃): δ 8.14–8.09 (1H, m, Ph), 8.02–7.97 (1H, m, Ph), 7.87–7.84 (1H, m, Ph), 7.78–7.67 (4H, m, Ph), 7.64–7.59 (1H, m, Ph), 5.66 (1H, br, NH), 3.42–3.31 (4H, m, H-α,1), 1.86–1.81 (2H, m, H-2), 1.10 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.1, 148.0, 133.7, 133.6, 133.6, 133.3, 132.9, 131.8, 130.9, 130.8, 125.5, 124.2 (totally 12C–Ph), 42.4 (C-α), 13.7 (C-β), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) $C_{17}H_{19}D_2N_4O_8S_2$ 475.0926, found 475.0925.

4.3.15. N¹-Ethyl-bis-N¹,N³-(2-nitrobenzenesulfonyl)-2,2,3,3-²H₄-propane-1,3-diamine **11c**

Prepared as **11a** from **1d** (700 mg, 3.91 mmol) to give **11c** (1.89 g, ~100%) as a pale yellow solid, mp 79–83 °C. IR (KBr): 3323,

3095–2881, 1544, 1380, 1161, 746 cm⁻¹; ¹H NMR (CDCl₃): δ 8.14–8.10 (1H, m, Ph), 8.04–7.99 (1H, m, Ph), 7.89–7.84 (1H, m, Ph), 7.78–7.67 (4H, m, Ph), 7.64–7.60 (1H, m, Ph), 5.63 (1H, br, NH), 3.38 (2H, s, H-1), 3.35 (2H, q, *J*=7.2 Hz, H-α), 1.11 (3H, t, *J*=7.2 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.1, 148.0, 133.7, 133.6, 133.6, 133.2, 132.9 131.8, 130.9, 130.8, 125.5, 124.2 (totally 12C–Ph), 42.4 (C-α), 13.7 (C-β), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) C₁₇H₁₇D₄N₄O₈S₂ 477.1052, found 477.1046.

4.3.16. N^1 -Benzyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)propane-1,3-diamine **11d**

Prepared as **11a** from **1e** (600 mg, 2.53 mmol) to give **11d** (1.25 g, 92%) as a pale yellow solid, mp 40–55 °C (amorphous solid). IR (KBr): 3342 (br), 3095–2880, 1541, 1163, 732 cm⁻¹; ¹H NMR (CDCl₃): δ 8.07–8.03 (1H, m, Ph), 8.01–7.98 (1H, m, Ph), 7.86–7.82 (1H, m, Ph), 7.74–7.64 (5H, m, Ph), 7.31–7.22 (5H, m, Ph), 5.39 (1H, t, *J*=6.3 Hz, NH), 4.47 (2H, s, H- α), 3.36–3.32 (2H, m, H-1), 3.02–2.96 (2H, m, H-3), 1.62–1.55 (2H, m, H-2); ¹³C NMR (CDCl₃): δ 148.0, 148.0, 135.5, 133.8, 133.6, 133.1, 132.8, 131.9, 131.1, 130.9, 128.9 (2C), 128.3 (2C), 128.3, 125.4, 124.3 (totally 18C–Ph), 52.3 (C- α), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) C₂₂H₂₃N₄O₈S₂ 535.0957, found 535.0984.

4.3.17. N^1 -Benzyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)-3,3- 2H_2 -propane-1,3-diamine **11e**

Prepared as **11a** from **1f** (700 mg, 2.93 mmol) to give **11e** (1.43 g, 91%) as a pale yellow solid, mp 40–48 °C (amorphous solid). IR (KBr): 3341 (br), 3095–2880, 1541, 1163, 740, 699 cm⁻¹; ¹H NMR (CDCl₃): δ 8.07–8.03 (1H, m, Ph), 8.01–7.98 (1H, m, Ph), 7.86–7.82 (1H, m, Ph), 7.74–7.64 (5H, m, Ph), 7.31–7.22 (5H, m, Ph), 5.38 (1H, br, NH), 4.47 (2H, s, H- α), 3.36–3.32 (2H, m, H-1), 1.59–1.55 (2H, m, H-2); ¹³C NMR (CDCl₃): δ 148.0 (2C), 135.5, 133.8, 133.7 133.6, 133.1, 132.8, 131.9, 131.1, 130.9, 128.9 (2C), 128.3 (2C), 128.2, 125.4, 124.3 (totally 18C–Ph), 52.3 (C- α), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) C₂₂H₂₁D₂N₄O₈S₂ 537.1083, found 537.1083.

4.3.18. N^1 -Benzyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)-2,2,3,3- 2H_4 -propane-1,3-diamine **11f**

Prepared as **11a** from **1g** (2.50 g, 10.36 mmol) to give **11f** (5.16 g, 93%) as a pale yellow solid, mp 39–48 °C (amorphous solid). IR (KBr): 3340 (br), 3084–2928, 2225, 1541, 1164, 740 cm⁻¹; ¹H NMR (CDCl₃): δ 8.06–8.01 (1H, m, Ph), 7.99–7.95 (1H, m, Ph), 7.84–7.80 (1H, m, Ph), 7.75–7.63 (5H, m, Ph), 7.31–7.21 (5H, m, Ph), 5.41 (1H, br, NH), 4.46 (2H, s, H- α), 3.32 (2H, s, H-1); ¹³C NMR (CDCl₃): δ 148.0 (2C), 135.5, 133.8, 133.7, 133.5, 133.0, 132.9, 132.0, 130.9, 130.8, 128.8 (2C), 128.3 (2C), 128.2, 125.4, 124.3 (totally 18C–Ph), 52.2 (C- α), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) C₂₂H₁₉D₄N₄O₈S₂ 539.1208.

4.3.19. N^1 -Isopropyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)propane-1,3-diamine **11g**

Prepared as **11a** from **1h** (3.00 g, 15.86 mmol) but after 2 h at room temperature, the reaction mixture was heated at reflux for 20 h to give **11g** (3.08 g, 40%) as a pale yellow solid after column chromatography using EtOAc–hexane 3:2 as an eluent, mp 100– 102 °C. *R*_f 0.52 (EtOAc–hexane 3:2); IR (KBr): 3332, 3096–2850, 1545, 1380, 1160 cm⁻¹; ¹H NMR (CDCl₃): δ 8.15–8.12 (1H, m, Ph), 8.05–8.01 (1H, m, Ph), 7.89–7.85 (1H, m, Ph), 7.78–7.66 (4H, m, Ph), 7.62–7.58 (1H, m, Ph), 5.61 (1H, br, NH), 4.10 (1H, sep., *J*=6.8 Hz, H-α), 3.36–331 (2H, m, H-1), 3.23–3.19 (2H, m, H-3), 1.94–1.87 (2H, m, H-2), 1.14 (6H, d, *J*=6.8 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.1 (2C), 133.7, 133.6, 133.6, 133.5, 132.9, 131.7, 131.0, 131.0, 125.5, 124.2 (totally 12C–Ph), 50.1 (C-α), 21.4 (2C-β), rest in Table 8; HRMS (ESI-MS): calcd for (M+H) C₁₈H₂₃N₄O₈S₂ 487.0957, found 487.0957.

4.3.20. N^1 -Cyclohexyl-bis- N^1 , N^3 -(2-nitrobenzenesulfonyl)propane-1,3-diamine **11h**

Prepared as **11g** from **1j** (917 mg, 4.0 mmol) to give **11h** (1.02 g, 48%) as a pale yellow solid, mp 134–136 °C. R_f 0.50 (EtOAc–hexane 3:2); IR (KBr): 3311, 3091–2851, 1542, 1164 cm⁻¹; ¹H NMR (CDCl₃): δ 8.15–8.11 (1H, m, Ph), 8.04–7.99 (1H, m, Ph), 7.89–7.85 (1H, m, Ph), 7.78–7.66 (4H, m, Ph), 7.61–7.56 (1H, m, Ph), 5.62 (1H, t, *J*=6.3 Hz, NH), 3.70–3.62 (1H, m, H- α), 3.37–3.32 (2H, m, H-1), 3.24–3.18 (2H, m, H-3), 1.92–1.85 (2H, m, H-2), 1.78–1.72 (2H, m, H- γ_{eq}), 1.69–1.59 (3H, m, H- β_{eq} , δ_{eq}), 1.40–1.25 (4H, m, H- β_{ax} , γ_{ax}), 1.10–0.99 (1H, m, H- δ_{ax}); ¹³C NMR (CDCl₃): δ 148.1 (2C), 133.8, 133.7, 133.6, 133.5, 132.9, 131.7, 130.9, 130.8, 125.5, 124.1 (totally 12C–Ph), 58.3 (C- α), 32.1 (2C– β), 26.0 (2C– γ), 25.2 (C– δ), rest in Table 8; HRMS (ESI-MS): calcd for (M+Na) C₂₁H₂₆N₄O₈S₂Na 549.1090, found 549.1098.

4.3.21. 2-(4-{[3-(Ethyl-(2-nitrobenzenesulfonyl)amino)propyl]-(2-nitrobenzenesulfonyl)amino}-butyl)isoindole-1,3-dione **12a**

To a mixture of **11a** (1.0 g, 2.17 mmol) and K_2CO_3 (0.88 g, 6.35 mmol) in dry DMF (25 mL), *N*-(4-iodobutyl)phthalimide³² (0.77 g, 2.33 mmol) was added with stirring and the mixture was allowed to react at room temperature for 17 h. After filtration, the solvents were evaporated in vacuo and the residue was purified on silica gel using first EtOAc-hexane 1:1 and then 5:2 as an eluent to give 12a (1.24 g, 85%) as a colourless solid, mp 44-46 °C (amorphous solid). *R*_f 0.53 (EtOAc-hexane 5:2); IR (KBr): 3095, 2940 (br), 1709, 1543, 1373, 1158, 720 cm⁻¹; ¹H NMR (CDCl₃): δ 8.02–7.98 (2H, m, Ph), 7.86-7.81 (2H, m, Ph), 7.74-7.55 (8H, m, Ph), 3.68-3.64 (2H, m, H-8), 3.39-3.26 (8H, m, H-a.1.3.5), 1.91-1.83 (2H, m, H-2), 1.69-1.62 (2H, m, H-7) 1.60–1.52 (2H, m, H-6), 1.12 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 168.4 (2C, C=0), 148.0 (2C), 134.0 (2C), 133.5, 133.5, 133.4, 133.2, 132.1 (2C), 131.8, 131.8, 130.8 (2C), 124.2 (2C), 123.3 (2C) (totally 18C–Ph), 42.3 (C-α), 13.6 (C-β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₉H₃₂N₅O₁₀S₂ 674.1591, found 674.1584.

4.3.22. $2-(4-\{[3-(Ethy]-(2-nitrobenzenesulfony])-amino)-1,1-^2H_2-propy]]-(2-nitrobenzenesulfony])-amino\}buty])$ isoindole-1,3-dione **12b**

Prepared as **12a** from **11b** (600 mg, 1.26 mmol) to give **12b** (803 mg, 94%) as a colourless solid, mp 38–44 °C (amorphous solid). *R*_f 0.53 (EtOAc–hexane 5:2); IR (KBr): 3095, 2940 (br), 1710, 1544, 1373, 1160, 721 cm⁻¹; ¹H NMR (CDCl₃): δ 8.02–7.97 (2H, m, Ph), 7.86–7.81 (2H, m, Ph), 7.75–7.55 (8H, m, Ph), 3.68–3.63 (2H, m, H-8), 3.39–3.27 (6H, m, H-α,1,5), 1.88–1.83 (2H, m, H-2), 1.69–1.62 (2H, m, H-7), 1.60–1.52 (2H, m, H-6), 1.11 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 168.4 (2C, C=O), 148.0 (2C), 134.0 (2C), 133.6, 133.5, 133.3, 133.1, 132.0 (2C), 131.8, 131.8, 130.7 (2C), 124.2 (2C), 123.3 (2C) (totally 18C–Ph), 42.3 (C-α), 13.6 (C-β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₉H₃₀D₂N₅O₁₀S₂ 676.1716, found 676.1721.

4.3.23. 2-(4-{[3-(Ethyl-(2-nitrobenzenesulfonyl)-amino)-1,1,2,2-²H₄-propyl]-(2-nitrobenzenesulfonyl)amino}butyl)isoindole-1,3-dione **12c**

Prepared as **12a** from **11c** (715 mg, 1.50 mmol) to give **12c** (948 mg, 93%) as a colourless solid, mp 41–45 °C (amorphous solid). *R*_f 0.57 (EtOAc–hexane 5:2); IR (KBr): 3095, 2937 (br), 1710, 1544, 1372, 1161, 721 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.96 (2H, m, Ph), 7.86–7.81 (2H, m, Ph), 7.75–7.54 (8H, m, Ph), 3.68–3.63 (2H, m, H-8), 3.39–3.27 (6H, m, H-α,1,5), 1.69–1.61 (2H, m, H-7), 1.60–1.52 (2H, m, H-6), 1.12 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 168.4 (2C, C=O), 148.0 (2C), 134.0 (2C), 133.6, 133.5, 133.3, 133.1, 132.0 (2C), 131.8, 131.8, 130.7 (2C), 124.2 (2C), 123.3 (2C) (totally 18C–Ph), 42.3 (C-α), 13.6 (C-β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₉H₂₈D₄N₅O₁₀S₂ 678.1842, found 678.1848.

4.3.24. 2-(4-{[3-(Benzyl-(2-nitrobenzenesulfonyl)amino)propyl]-(2-nitrobenzenesulfonyl)amino}-butyl)isoindole-1,3-dione **12d**

Prepared as **12a** from **11d** (1.19 g, 2.23 mmol) to give **12d** (1.32 g, 81%) as a colourless solid, mp 47–50 °C (amorphous solid). R_f 0.57 (EtOAc-hexane 5:2); IR (KBr): 3093, 2940, 1710, 1543, 1160, 721 cm⁻¹; ¹H NMR (CDCl₃): δ 8.01–7.98 (1H, m, Ph), 7.95–7.91 (1H, m, Ph), 7.85–7.81 (2H, m, Ph), 7.74–7.60 (7H, m, Ph), 7.56–7.52 (1H, m, Ph), 7.34–7.25 (5H, m, Ph), 4.48 (2H, s, H- α), 3.63–3.58 (2H, m, H-8), 3.23–3.18 (2H, m, H-1), 3.16–3.08 (4H, m, H-3,5), 1.68–1.61 (2H, m, H-2), 1.60–1.52 (2H, m, H-7), 1.45–1.36 (2H, m, H-6); ¹³C NMR (CDCl₃): δ 168.3 (2C, C=O), 148.0, 147.9, 135.6, 134.0 (2C), 133.7, 133.5, 133.2 (2C), 132.1 (2C), 131.9, 131.7, 131.0, 130.7, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.1, 123.3 (2C) (totally 24C–Ph), 51.9 (C- α), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₃₄H₃₄N₅O₁₀S₂ 736.1747, found 736.1746.

4.3.25. 2- $(4-{[3-(Benzy]-(2-nitrobenzenesulfony])amino}-1,1-^2H_2-propy]-(2-nitrobenzenesulfony])-amino}buty])isoindole-1,3-dione$ **12e**

Prepared as **12a** from **11e** (1.42 g, 2.61 mmol) to give **12e** (1.83 g, 95%) as colourless solid, mp 50–52 °C (amorphous solid). R_f 0.47 (EtOAc-hexane 3:2); IR (KBr): 3093–2980, 1709, 1541, 1161, 721 cm⁻¹; ¹H NMR (CDCl₃): δ 8.01–7.98 (1H, m, Ph), 7.95–7.91 (1H, m, Ph), 7.85–7.81 (2H, m, Ph), 7.74–7.60 (7H, m, Ph), 7.56–7.52 (1H, m, Ph), 7.33–7.25 (5H, m, Ph), 4.48 (2H, s, H- α), 3.63–3.58 (2H, m, H-8), 3.23–3.18 (2H, m, H-1), 3.16–3.11 (2H, m, H-5), 1.66–1.61 (2H, m, H-2), 1.59–1.52 (2H, m, H-7), 1.44–1.36 (2H, m, H-6); ¹³C NMR (CDCl₃): δ 168.3 (2C, C=O), 148.0, 147.9, 135.6, 134.0 (2C), 133.7, 133.5, 133.2, 132.0 (2C), 131.9, 131.7, 131.0, 130.7, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.1, 123.3 (2C) (totally 24C–Ph), 51.9 (C– α), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₃₄H₃₂D₂N₅O₁₀S₂ 738.1873, found 738.1840.

4.3.26. 2-(4-{[3-(Isopropyl-(2-nitrobenzenesulfonyl)amino)propyl]-(2-nitrobenzenesulfonyl)amino}-butyl)isoindole-1,3dione **12**f

Prepared as **12a** from **11g** (973 mg, 2.0 mmol) to give **12f** (1.28 g, 93%) as a colourless solid, mp 46–54 °C (amorphous solid). *R*_f 0.30 (EtOAc–hexane 2:1); IR (KBr): 3096, 2940 (br), 1710, 1543, 1373, 1159, 721 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.99 (2H, m, Ph), 7.85–7.80 (2H, m, Ph), 7.74–7.62 (6H, m, Ph), 7.60–7.54 (2H, m, Ph), 4.12 (1H, sep., *J*=6.7 Hz, H-α), 3.69–3.63 (2H, m, H-8), 3.39–3.32 (4H, m, H-3,5), 3.23–3.17 (2H, m, H-1), 1.96–1.88 (2H, m, H-2), 1.69–1.54 (4H, m, H-6,7), 1.12 (6H, d, *J*=6.7 Hz, H-β); ¹³C NMR (CDCl₃): δ 168.3 (2C, C=O), 148.1, 148.0, 134.0 (2C), 133.6, 133.5, 133.4, 132.1 (2C), 131.8, 131.7, 130.9, 130.8, 124.1, 124.0, 123.3 (2C) (totally 18C–Ph), 50.1 (C-α), 21.3 (2 C-β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₃₀H₃₄N₅O₁₀S₂ 688.1747, found 688.1751.

4.3.27. 2-(4-{[3-(Cyclohexyl-(2-nitrobenzenesulfonyl)amino)propyl]-(2-nitrobenzenesulfonyl)amino}butyl)isoindole-1,3dione **12g**

Prepared as **12a** from **11h** (1.05 g, 2.0 mmol) to give **12g** (1.35 g, 93%) as a colourless solid, mp 53–63 °C (amorphous solid). R_f 0.56 (EtOAc–hexane 3:2); IR (KBr): 3095, 2935, 2858, 1711, 1544, 1157, 721 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.98 (2H, m, Ph), 7.85–7.80 (2H, m, Ph), 7.74–7.62 (6H, m, Ph), 7.59–7.54 (2H, m, Ph), 3.73–3.63 (3H, m, H-7,α), 3.39–3.31 (4H, m, H-3,5), 3.25–3.18 (2H, m, H-1), 1.95–1.86 (2H, m, H-2), 1.79–1.71 (2H, m, H-γ_{eq}), 1.69–1.54 (7H, m, H-6,7, β_{eq} , δ_{eq}), 1.39–1.25 (4H, m, H- β_{ax} , γ_{ax}), 1.10–0.99 (1H, m, H- δ_{ax}); ¹³C NMR (CDCl₃): δ 168.3 (2C, C=O), 148.0, 134.0 (2C), 133.9, 133.5, 133.4, 132.1 (2C), 131.8, 131.6, 130.8, 130.7, 124.1, 124.0, 123.3 (2C) (totally 18C–Ph), 58.3 (C-α), 31.9 (2C-β), 26.0 (2C-γ), 25.2 (C-δ), rest in Table 9; HRMS (ESI-MS): calcd for (M+Na) C₃₃H₃₇N₅O₁₀S₂Na 750.1880, found 750.1867.

4.3.28. N^1 -(3-Ethylamino-propyl)-butane-1,4-diamine trihydrochloride **2a**⁴⁷

A mixture of **12a** (1.21 g, 1.79 mmol), PhSH (0.56 mL, 5.40 mmol) and K₂CO₃ (1.48 g, 10.74 mmol) in DMF (15 mL) was stirred overnight at room temperature. The reaction mixture was then evaporated to drvness in vacuo. The residue was dissolved in a mixture of DCM and 2 M KOH (2:1, 150 mL), the water layer was extracted with DCM $(3 \times 50 \text{ mL})$, and the combined organic extracts were dried over MgSO₄. Solvent was evaporated in vacuo and the residue was dissolved in ethanol (14 mL) containing N₂H₄·H₂O (135 µL, 2.78 mmol). After heating for 3 h at reflux, the solvents were evaporated in vacuo, the residue was suspended in a mixture of dioxane and concd HCl (3:1, 28 mL) followed by evaporating to dryness in vacuo. After being co-evaporated once with dioxane, DCM was added to the residue and the product was filtered, washed with DCM and extracted with water. The filtrate was evaporated in vacuo, dissolved in water, the insoluble phthalyl hydrazide was filtered off and the solvent was evaporated to dryness in vacuo. The treatment with water was repeated twice. The product was washed with EtOAc, DCM and cold ethanol. After recrystallization from ethanol-water-EtOAc, 2a (376 mg, 74%) was obtained as a colourless solid, mp >298 °C decomp. IR (KBr): 3000-2387, 1611, 1460, 1354, 1147, 805 cm⁻¹; ¹H NMR (D₂O): δ 3.18–3.08 (8H, m, H-a,1,3,5), 3.06-3.02 (2H, m, H-8), 2.15-2.06 (2H, m, H-2), 1.83–1.71 (4H, m, H-6,7), 1.29 (3H, t, *J*=7.3 Hz, H-β); ¹³C NMR (D₂O): δ 46.0 (C- α), 13.4 (C- β), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₉H₂₄N₃ 174.1970, found 174.1964.

4.3.29. N^1 -(3-Ethylamino-1,1-²H₂-propyl)-butane-1,4-diamine trihydrochloride **2b**

Prepared as **2a** from **12b** (800 mg, 1.18 mmol) to give **2b** (172 mg, 51%, 99% *d*) as a colourless solid, mp >308 °C decomp. IR (KBr): 3000–2264, 1612, 1460, 1346, 1144, 844, 803 cm⁻¹; ¹H NMR (D₂O): δ 3.17–3.09 (6H, m, H- α ,1,5), 3.08–3.02 (2H, m, H-8), 2.13–2.07 (2H, m, H-2), 1.84–1.72 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 46.0 (C- α), 13.4 (C- β), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₉H₂₂N₃D₂ 176.2096, found 176.2092. Isotope distribution: 0% *d*₀, 1% *d*₁, 99% *d*₂.

4.3.30. N^1 -(3-Ethylamino-1,1,2,2-²H₄-propyl)-butane-1,4-diamine trihydrochloride **2**c

Prepared as **2a** from **12c** (927 mg, 1.37 mmol) to give **2c** (315 mg, 80%, 98% *d*) as a colourless solid, mp >285 °C decomp. IR (KBr): 3000–2312, 1611, 1458, 1343, 1123, 823, 806 cm⁻¹; ¹H NMR (D₂O): δ 3.18–3.09 (6H, m, H- α ,1,5), 3.08–3.02 (2H, m, H-8), 1.85–1.73 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 45.9 (C- α), 13.4 (C- β), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₉H₂₀N₃D₄ 178.2221, found 178.2217. Isotope distribution: 0% *d*₀–*d*₂, 8% *d*₃, 92% *d*₄.

4.3.31. N¹-(3-Benzylamino-propyl)-butane-1,4-diamine trihydrochloride **2d**⁴¹

Prepared as **2a** from **12d** (1.24 g, 1.69 mmol) to give **2d** (393 mg, 68%) as a colourless solid, mp >300 °C decomp. (lit. mp >300 °C).⁴¹ IR (KBr): 3050–2417, 1610, 1448, 744, 698 cm⁻¹; ¹H NMR (D₂O): δ 7.54–7.47 (5H, m, Ph), 4.28 (2H, s, H- α), 3.22–3.08 (6H, m, H-1,3,5), 3.07–3.02 (2H, m, H-8), 2.17–2.07 (2H, m, H-2), 1.82–1.71 (4H, m, H-6,7); ¹³C NMR (D₂O): δ 133.4, 132.8 (2C), 132.7, 132.3 (2C) (totally 6C–Ph), 54.2 (C- α), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₁₄H₂₆N₃ 236.2127, found 236.2121.

4.3.32. N^{1} -(3-Benzylamino-1,1-²H₂-propyl)-butane-1,4-diamine trihydrochloride **2e**

Prepared as **2a** from **12e** (1.81 g, 2.45 mmol) to give **2e** (542 mg, 64%, 99% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3050–2380, 1611, 1447, 843, 744, 698 cm⁻¹; ¹H NMR (D₂O):

δ 7.55–7.48 (5H, m, Ph), 4.29 (2H, s, H-α), 3.22–3.17 (2H, m, H-1), 3.14–3.09 (2H, m, H-5), 3.08–3.03 (2H, m, H-8), 2.16–2.10 (2H, m, H-2), 1.84–1.72 (4H, m, H-6,7); ¹³C NMR (D₂O): δ 133.3, 132.7 (2C), 132.6, 132.2 (2C) (totally 6C–Ph), 54.1 (C-α), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₁₄H₂₄N₃D₂ 238.2252, found 238.2241. Isotope distribution: 0% *d*₀, 3% *d*₁, 97% *d*₂.

4.3.33. N^{1} -(3-Isopropylamino-propyl)-butane-1,4-diamine trihydrochloride **2f**

Prepared as **2a** from **12f** (1.26 g, 1.84 mmol), but the stirring was continued at room temperature for 70 h to give **2f** (438 mg, 80%) as a colourless solid, mp 236–239 °C. IR (KBr): 3000–2361, 1606, 1457, 1387, 1099, 964 cm⁻¹; ¹H NMR (D₂O): δ 3.44 (1H, sep., *J*=6.5 Hz, H- α), 3.22–3.02 (8H, m, H-1,3,5,8), 2.15–2.05 (2H, m, H-2), 1.84–1.71 (4H, m, H-6,7), 1.33 (6H, d, *J*=6.5 Hz, H- β); ¹³C NMR (D₂O): δ 54.0 (C- α), 21.1 (2C- β), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₁₀H₂₆N₃ 188.2127, found 188.2123.

4.3.34. N^1 -(3-Cyclohexylamino-propyl)-butane-1,4-diamine trihydrochloride **2**g

Prepared as **2f** from **12g** (1.33 g, 1.83 mmol) to give **2g** (478 mg, 78%) as a colourless solid, mp 277–278 °C. IR (KBr): 3000–2368, 1607, 1456, 1050, 775 cm⁻¹; ¹H NMR (D₂O): δ 3.22–3.00 (9H, m, H- α ,1,3,5,8), 2.15–2.02 (4H, m, H-2, β_{eq}), 1.89–1.71 (6H, m, H-6,7, γ_{eq}), 1.70–1.63 (1H, m, H- δ_{eq}), 1.40–1.26 (4H, m, H- β_{ax} , γ_{ax}), 1.24–1.12 (1H, m, H- δ_{ax}); ¹³C NMR (D₂O): δ 60.4 (C- α), 31.8 (2C- β), 27.4 (C- δ), 26.8 (2C- γ), rest in Table 5; HRMS (ESI-MS): calcd for (M+H) C₁₃H₃₀N₃ 228.2440, found 228.2434.

4.3.35. N^1 -(3-Amino-1,1-²H₂-propyl)butane-1,4-diamine trihydrochloride **2h**

Prepared as **11** from **2e** (300 mg, 0.87 mmol) to give **2h** (122 mg, 55%, 99% *d*) as a colourless solid, mp 251–252 °C (lit. mp for unlabelled SPD: 250–254 °C).⁴⁸ IR (KBr): 3000–2370, 1596, 1451, 1171, 845 cm⁻¹; ¹H NMR (D₂O): δ 3.14–3.02 (6H, m, H-1,5,8), 2.11–2.05 (2H, m, H-2), 1.83–1.72 (4H, m, H-6,7); ¹³C NMR (D₂O): δ in Table 5; HRMS (ESI-MS): calcd for (M+H) C₇H₁₈N₃D₂ 148.1783, found 148.1787. Isotope distribution: 0% *d*₀, 1% *d*₁, 99% *d*₂.

4.3.36. [3-(2-Nitro-benzenesulfonylamino)-propyl]-carbamic acid tert-butyl ester **9**

Prepared from (3-amino-propyl)-carbamic acid *tert*-butyl ester (3.5 mL, 20 mmol), TEA (3.7 mL, 26.5 mmol) and NsCl (4.7 g, 21 mmol) as described earlier for (*R*)-*N*¹-(*o*-nitrophenylsulfonyl)- N^3 -(*tert*-butyloxycarbonyl)-1,3-diaminobutane^{32,33} to give **9** (7.0 g) as yellow solid with 97% yield (lit.⁴⁹ yield 89%). ¹H and ¹³C NMR chemical shift are in accordance with published data.⁵⁰

4.3.37. 3-[(4-Chlorobutyl)-(2-nitrobenzenesulfonyl)amino]propyl}carbamic acid tert-butyl ester **10a**

To a stirred mixture of 9 (7.2 g, 20 mmol) and K₂CO₃ (8.9 g, 64 mmol) in dry DMF (170 mL), 1-bromo-4-chlorobutane (14.9 mL, 129 mmol) was added and stirring was continued for 65 h at room temperature. The precipitates were filtered off, the filtrate was evaporated to dryness in vacuo, and the residue was suspensed in EtOAc, washed with water (350 mL), brine (350 mL) and dried over MgSO₄. The solvent was evaporated in vacuo to give 10a (8.9 g, 99% yield based on 9) as a pale yellow oil. IR (neat): 3423 (br), 3095–2850, 1701, 1365, 1163, 746 cm⁻¹; ¹H NMR (CDCl₃): δ 8.03–7.98 (1H, m, Ph), 7.74–7.66 (2H, m, Ph), 7.65–7.61 (1H, m, Ph), 4.78 (1H, br, NH), 3.54-3.49 (2H, m, H-8), 3.38-3.31 (4H, m, H-3,5), 3.18-3.12 (2H, m, H-1), 1.79-1.66 (6H, m, H-2,6,7), 1.44 (9H, s, Me₃C); ¹³C NMR (CDCl₃): δ 156.0 (C=O), 148.1, 133.6, 133.3, 131.7, 130.7, 124.3 (totally 6C-Ph), 79.3 (O-C), 28.4 (3C-Me₃), rest in Table 9; HRMS (ESI-MS): calcd for (M+Na) C₁₈H₂₈ClN₃O₆SNa 472.1285, found 472.1283.

4.3.38. 3-[(4-lodobutyl)-(2-nitrobenzenesulfonyl)amino]propyl}carbamic acid tert-butyl ester **10b**

A mixture of **10a** (8.6 g, 19.1 mmol) and NaI (28.7 g, 191 mmol) in acetone (250 mL) was heated at reflux with stirring for 48 h. The precipitate was filtered off and the filtrate was evaporated to dryness in vacuo. The residue was dissolved in EtOAc, washed with water (250 mL) and brine (250 mL), and dried over MgSO₄. Solvent was evaporated in vacuo and the residue was purified on silica gel using EtOAc–hexane 1:1 as an eluent, to give **10b** (7.3 g, 70%) as a yellow oil. R_f 0.54 (EtOAc–hexane 1:1); IR (neat): 3422 (br), 2975, 2935, 1701, 1366, 1162, 748, 584 cm⁻¹; ¹H NMR (CDCl₃): δ 8.03–7.98 (1H, m, Ph), 7.74–7.67 (2H, m, Ph), 7.66–7.61 (1H, m, Ph), 4.78 (1H, br, NH), 3.40–3.29 (4H, m, H-3,5), 3.19–3.11 (4H, m, H-1,8), 1.81–1.72 (4H, m, H-2,7), 1.69–1.61 (2H, m, H-6), 1.44 (9H, s, Me₃C); ¹³C NMR (CDCl₃): δ 156.0 (C=O), 148.1, 133.6, 133.3, 131.7, 130.7, 124.3 (totally 6C–Ph), 79.3 (O–C), 28.4 (3C–Me₃), rest in Table 9; HRMS (ESI-MS): calcd for (M+Na) C₁₈H₂₈IN₃O₆SNa 564.0641, found 564.0633.

4.3.39. {3-[{4-[{3-[Ethyl-(2-nitrobenzenesulfonyl)-amino]-propyl}-(2-nitrobenzenesulfonyl)-amino]-butyl}-(2-nitrobenzenesulfonyl)amino]-propyl}-carbamic acid tert-butyl ester **13a**

To a stirred mixture of 11a (1.0 g, 2.12 mmol) and K₂CO₃ (0.88 g, 6.35 mmol) in dry DMF (21 mL) was added **10b** (1.26 g, 2.33 mmol) and the reaction mixture was stirred for 17 h at room temperature. The solids were filtered off, the filtrate was evaporated to dryness in vacuo and the residue was purified on silica gel using first EtOAc-hexane 2:1 and then 5:2 as an eluent, to give **13a** (1.3 g, 69%) as a colourless solid, mp 45–54 °C (amorphous solid), R_f 0.35 (EtOAc-hexane 2:1): IR (KBr): 3422 (br), 3096, 2940 (br), 1707, 1544, 1374, 1160, 744 cm⁻¹; ¹H NMR (CDCl₃): δ 8.02–7.97 (3H, m, Ph), 7.73-7.68 (6H, m, Ph), 7.64-7.59 (3H, m, Ph), 4.81 (1H, br, NH), 3.38-3.23 (12H, m, H-a,1,3,5,8,10), 3.16-3.09 (2H, m, H-12), 1.89-1.81 (2H, m, H-2), 1.76-1.69 (2H, m, H-11), 1.54-1.47 (4H, m, H-6,7), 1.43 (9H, s, Me₃C-), 1.11 (3H, t, J=7.1 Hz, H- β); ¹³C NMR (CDCl₃): δ 156.1 (C=O), 148.0 (2C), 148.0, 133.7, 133.7, 133.6, 133.3, 133.2, 133.0, 131.9, 131.9, 131.8, 130.8, 130.7, 130.6, 124.3, 124.2, 124.2 (totally 18C-Ph), 79.3 (O-C), 42.4 (C-α), 28.4 (3C-Me₃), 13.6 (C- β), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C35H47N7O14S3Na 908.2241, found 908.2234.

4.3.40. {3-[{4-[{3-[Ethyl-(2-nitrobenzenesulfonyl)-amino]-1,1-²H₂propyl}-(2-nitrobenzenesulfonyl)-amino]-butyl}-(2-nitrobenzenesulfonyl)-amino]-propyl}-carbamic acid tert-butyl ester **13b**

Prepared as **13a** from **11b** (1.0 g, 2.11 mmol) to give **13b** (1.40 g, 75%) as a colourless solid, mp 40–48 °C (amorphous solid). R_f 0.35 (EtOAc–hexane 2:1); IR (KBr): 3424 (br), 3096–2880, 1708, 1544, 1372, 1160, 748 cm⁻¹; ¹H NMR (CDCl₃): δ 8.02–7.96 (3H, m, Ph), 7.73–7.67 (6H, m, Ph), 7.64–7.59 (3H, m, Ph), 4.83 (1H, br, NH), 3.38–3.23 (10H, m, H-α,1,5,8,10), 3.16–3.09 (2H, m, H-12), 1.86–1.81 (2H, m, H-2), 1.75–1.68 (2H, m, H-11), 1.54–1.47 (4H, m, H-6,7), 1.43 (9H, s, Me₃C–), 1.11 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 156.1 (C=O), 148.0 (2C), 148.0, 133.7 (2C), 133.6, 133.3 133.2, 133.0, 131.9, 131.9, 131.8, 130.8, 130.7, 130.6, 124.3, 124.2, 124.2 (totally 18C–Ph), 79.2 (O–C), 42.4 (C-α), 28.4 (3C–Me₃), 13.6 (C-β), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₃₅H₄₅D₂N₇O₁₄S₃Na 910.2366, found 910.2392.

4.3.41. {3-[{4-[{3-[Benzyl-(2-nitrobenzenesulfonyl)-amino]-propyl}-(2-nitrobenzenesulfonyl)-amino]-butyl}-(2-nitrobenzenesulfonyl)amino]-propyl}-carbamic acid tert-butyl ester **13c**

Prepared as **13a** from **11d** (992 mg, 1.86 mmol) to give **13c** (1.42 g, 80%) as a colourless solid, mp 52–58 °C (amorphous solid). *R*_f 0.58 (EtOAc–hexane 3:1); IR (KBr): 3422 (br), 3096–2880, 1707, 1543, 1161, 742 cm⁻¹; ¹H NMR (CDCl₃): δ 8.00–7.90 (3H, m, Ph), 7.74–7.56 (9H, m, Ph), 7.33–7.22 (5H, m, Ph), 4.81 (1H, br, NH), 4.47 (2H, s, H- α), 3.32–3.03 (12H, m, H-1,3,5,8,10,12), 1.74–1.67 (2H, m,

H-11), 1.66–1.57 (2H, m, H-2), 1.48–1.30 (4H, m, H-6,7), 1.43 (9H, s, Me₃C–); ¹³C NMR (CDCl₃): δ 156.0 (*C*=O), 148.0, 148.0, 147.9, 135.5, 133.7, 133.7, 133.6, 133.2, 133.1, 133.0, 131.9, 131.9 (2C), 130.9, 130.7, 130.6, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.2, 124.2 (totally 24C–Ph), 79.3 (O–C), 52.0 (C– α), 28.4 (3C–Me₃), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₄₀H₄₉N₇O₁₄S₃Na 970.2397, found 970.2354.

4.3.42. {3-[{4-[{3-[Benzyl-(2-nitrobenzenesulfonyl)-amino]-1,1,2,2-²H₄-propyl}-(2-nitrobenzenesulfonyl)-amino]-butyl}-(2nitrobenzenesulfonyl)-amino]-propyl}-carbamic acid tert-butyl ester **13d**

Prepared as **13a** from **11f** (1.83 g, 3.39 mmol) to give **13d** (2.75 g, 85%) as a colourless solid, mp 44–54 °C (amorphous solid). R_f 0.58 (EtOAc–hexane 3:1); IR (KBr): 3423 (br), 3095–2880, 1707, 1544, 1162, 743 cm⁻¹; ¹H NMR (CDCl₃): δ 8.00–7.90 (3H, m, Ph), 7.74–7.56 (9H, m, Ph), 7.33–7.23 (5H, m, Ph), 4.82 (1H, br, NH), 4.47 (2H, s, H- α), 3.32–3.05 (10H, m, H-1,5,8,10,12), 1.74–1.66 (2H, m, H-11), 1.48–1.30 (4H, m, H-6,7) 1.43 (9H, s, Me₃C–); ¹³C NMR (CDCl₃): δ 156.0 (C=O), 148.0, 148.0, 147.9, 135.5, 133.8, 133.7, 133.6, 133.2, 133.1, 133.0, 132.0, 131.9 (2C), 130.9, 130.7, 130.6, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.2, 124.2 (totally 24C–Ph), 79.2 (O–C), 52.0 (C– α), 28.4 (3C–Me₃), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₄₀H₄₅D₄N₇O₁₄S₃Na 974.2648, found 974.2607.

4.3.43. {3-[{4-[{3-[Isopropyl-(2-nitrobenzenesulfonyl)-amino]propyl}-(2-nitrobenzenesulfonyl)-amino]-butyl}-(2-nitrobenzenesulfonyl)-amino]-propyl}-carbamic acid tert-butyl ester **13e**

Prepared as **13a** from **11g** (973 mg, 2.0 mmol) to give **13e** (1.53 g, 85%) as a colourless solid, mp 50–55 °C (amorphous solid). *R*_f 0.44 (EtOAc–hexane 2:1); IR (KBr): 3421 (br), 3097–2880, 1707, 1544, 1161, 744 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.96 (3H, m, Ph), 7.74–7.66 (6H, m, Ph), 7.64–7.57 (3H, m, Ph), 4.84 (1H, br, NH), 4.10 (1H, sep., *J*=6.7 Hz, H-α), 3.35–3.26 (8H, m, H-3,5,8,10), 3.22–3.09 (4H, m, H-1,12), 1.93–1.85 (2H, m, H-2), 1.76–1.68 (2H, m, H-11), 1.55–1.46 (4H, m, H-6,7), 1.43 (9H, s, Me₃C–), 1.11 (6H, d, *J*=6.7 Hz, H-β); ¹³C NMR (CDCl₃): δ 156.1 (*C*=O), 148.1, 148.0, 148.0, 133.7 (2C), 133.5, 133.2, 133.2, 131.9, 131.9, 131.7, 130.8 (2C), 130.6, 124.3, 124.2, 124.1 (totally 18C–Ph), 79.2 (O–C), 50.1 (C-α), 28.4 (3C–Me₃), 21.3 (2C-β), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₃₆H₄₉N₇O₁₄S₃Na 922.2397, found 922.2361.

4.3.44. {3-[{4-[{3-[Cyclohexyl-(2-nitrobenzenesulfonyl)-amino]propyl}-(2-nitrobenzenesulfonyl)-amino]-butyl}-(2-nitrobenzenesulfonyl)-amino]-propyl}-carbamic acid tert-butyl ester **13f**

Prepared as **13a** from **11h** (1.05 g, 2.0 mmol) to give **13f** (1.19 g, 63%) as a colourless solid, mp 54–63 °C (amorphous solid). R_f 0.44 (EtOAc–hexane 2:1); IR (KBr): 3442 (br), 3096, 2936, 2861, 1707, 1544, 1159, 742 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.95 (3H, m, Ph), 7.74–7.66 (6H, m, Ph), 7.64–7.56 (3H, m, Ph), 4.84 (1H, br, NH), 3.70–3.62 (1H, m, H-α), 3.37–3.25 (8H, m, H-3,5,8,10), 3.23–3.17 (2H, m, H-1), 3.16–3.09 (2H, m, H-12), 1.91–1.84 (2H, m, H-2), 1.78–1.68 (4H, m, H-11, γ_{eq}), 1.66–1.57 (3H, m, H- β_{eq} , δ_{eq}), 1.54–1.44 (4H, m, H-6,7), 1.43 (9H, s, Me₃C–), 1.38–1.24 (4H, m, H- β_{ax} , γ_{ax}), 1.10–0.99 (1H, m, H- δ_{ax}); ¹³C NMR (CDCl₃): δ 156.0 (C=0), 148.1, 148.0, 148.0, 133.8, 133.7 (2C), 133.5, 133.2, 131.9, 131.9, 131.7, 130.9, 130.6, 130.6, 124.3, 124.2, 124.0 (totally 18C–Ph), 79.2 (O–C), 58.4 (C-α), 31.9 (2C-β), 28.4 (3C–Me₃), 26.0 (2C-γ), 25.2 (C-δ), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₃₉H₅₃N₇O₁₄S₃Na 962.2710, found 962.2683.

4.3.45. N-(3-Aminopropyl)-N'-(3-ethylamino-propyl)butane-1,4-diamine tetrahydrochloride ${\bf 3a}^{51}$

A mixture of **13a** (1.27 g, 1.43 mmol), PhSH (0.67 mL, 6.48 mmol) and K_2CO_3 (1.78 g, 12.9 mmol) in DMF (13 mL) was stirred for 20 h

at room temperature and then evaporated to dryness in vacuo. The residue was dissolved in a mixture of DCM and 2 M KOH (4:3. 130 mL), the water layer was extracted with DCM (4×50 mL), and the combined organic extracts were dried over MgSO₄. The solvent was evaporated in vacuo, the residue was dissolved in 1.4-dioxane (12 mL) followed with concd HCl (3 mL) and the resulting mixture was stirred for 2 h at room temperature. The reaction mixture was evaporated to drvness in vacuo and co-evaporated once with dioxane (10 mL). DCM was added to the residue, the product was filtered and washed with DCM and cold ethanol. Recrystallization from ethanol-water-EtOAc yielded 3a (269 mg, 50%) as a colourless solid, mp >275 °C decomp. IR (KBr): 3000-2388, 1612, 1461, 1355, 1145, 806 cm $^{-1};~^{1}\text{H}$ NMR (D2O): δ 3.21–3.08 (14H, m, Hα,1,3,5,8,10,12), 2.16-2.06 (4H, m, H-2,11), 1.84-1.75 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H-β); ¹³C NMR (D₂O): δ 45.9 (C-α), 13.3 (C-β), rest in Table 6; HRMS (ESI-MS): calcd for $(M+H) C_{12}H_{31}N_4 231.2549$, found 231.2555.

4.3.46. N-(3-Aminopropyl)-N'-(3-ethylamino-1,1- $^{2}H_{2}$ -propyl)butane-1,4-diamine tetrahydrochloride **3b**

Prepared as **3a** from **13b** (1.0 g, 1.13 mmol) to give **3b** (199 mg, 47%, 98% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3000–2382, 1611, 1460, 1354, 1145, 844 cm⁻¹; ¹H NMR (D₂O): δ 3.20–3.08 (12H, m, H-α,1,5,8,10,12), 2.15–2.07 (4H, m, H-2,11), 1.84–1.76 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H-β); ¹³C NMR (D₂O): δ 46.0 (C-α), 13.4 (C-β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₂H₂₉N₄D₂ 233.2674, found 233.2666. Isotope distribution: 0% *d*₀, 3% *d*₁, 97% *d*₂.

4.3.47. N-(3-Aminopropyl)-N'-(3-Benzylamino-propyl)-butane-1,4-diamine tetrahydrochloride $3c^{52}$

Prepared as **3a** from **13c** (1.40 g, 1.48 mmol) to give **3c** (405 mg, 62%) as a colourless solid, mp >300 °C decomp. IR (KBr): 3000–2420, 1609, 1460, 874, 744, 698 cm⁻¹; ¹H NMR (D₂O): δ 7.55–7.47 (5H, m, Ph), 4.28 (2H, s, H- α), 3.25–3.05 (12H, m, H-1,3,5,8,10,12), 2.20–2.05 (4H, m, H-2,11), 1.85–1.73 (4H, m, H-6,7); ¹³C NMR (D₂O): δ 133.3, 132.7 (2C), 132.7, 132.2 (2C) (totally 6C–Ph), 54.1 (C- α), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₇H₃₃N₄ 293.2705, found 293.2698.

4.3.48. N-(3-Aminopropyl)-N'-(3-Benzylamino-1,1,2,2- $^{2}H_{4}$ -propyl)butane-1,4-diamine tetrahydrochloride **3d**

Prepared as **3a** from **13d** (2.73 g, 2.86 mmol) to give **3d** (904 mg, 71%, 98% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3050–2309, 1610, 1450, 825, 744, 698 cm⁻¹; ¹H NMR (D₂O): δ 7.55–7.47 (5H, m, Ph), 4.28 (2H, s, H- α), 3.25–3.05 (10H, m, H-1,5,8,10,12), 2.17–2.05 (2H, m, H-11), 1.85–1.73 (4H, m, H-6,7); ¹³C NMR (D₂O): δ 133.3, 132.7 (2C), 132.7, 132.2 (2C) (totally 6C–Ph), 54.1 (C- α), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₇H₂₉N₄D₄ 297.2956, found 297.2947. Isotope distribution: 0% *d*₀–*d*₂, 7% *d*₃, 92% *d*₄.

4.3.49. N-(3-Aminopropyl)-N'-(3-isopropylaminopropyl)butane-1,4-diamine tetrahydrochloride **3e**

Prepared as **3a** from **13e** (1.51 g, 1.68 mmol) to give **3e** (452 mg, 69%) as a colourless solid, mp >269 °C decomp. IR (KBr): 3000–2364, 1625, 1460, 1376, 877 cm⁻¹; ¹H NMR (D₂O): δ 3.44 (1H, sep., *J*=6.5 Hz, H-α), 3.22–3.00 (12H, m, H-1,3,5,8,10,12), 2.18–2.00 (4H, m, H-2,11), 1.85–1.70 (4H, m, H-6,7), 1.33 (6H, d, *J*=6.5 Hz, H-β); ¹³C NMR (D₂O): δ 53.9 (C-α), 21.0 (2C-β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₃H₃₃N₄ 245.2705, found 245.2695.

4.3.50. N-(3-Aminopropyl)-N'-(3-cyclohexylaminopropyl)butane-1,4-diamine tetrahydrochloride **3f**

Prepared as **3a** from **13f** (1.15 g, 1.22 mmol) to give **3f** (380 mg, 72%) as a colourless solid, mp >285 °C decomp. IR (KBr):

3000–2419, 1610, 1460, 1051, 775 cm⁻¹; ¹H NMR (D₂O): δ 3.21– 3.07 (13H, m, H-α,1,3,5,8,10,12), 2.15–2.02 (6H, m, H-2,11,β_{eq}), 1.89–1.74 (6H, m, H-6,7,γ_{eq}), 1.71–1.64 (1H, m, H-δ_{eq}), 1.40–1.26 (4H, m, H-β_{ax},γ_{ax}), 1.23–1.13 (1H, m, H-δ_{ax}); ¹³C NMR (D₂O): δ 60.4 (C-α), 31.7 (2C-β), 27.3 (C-δ), 26.7 (2C-γ), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₆H₃₇N₄ 285.3018, found 285.3009.

4.3.51. N-(3-Amino-1,1,2,2-²H₄-propyl)-N'-(3-aminopropyl)butane-1,4-diamine tetrahydrochloride **4h**

Prepared as **11** from **3d** (400 mg, 0.90 mmol) to give **4h** (262 mg, 82%, 98% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3124–2010, 1594, 1479, 1158, 812 cm⁻¹; ¹H NMR (D₂O): δ 3.22–3.08 (10H, m, H-1,5,8,10,12), 2.16–2.07 (2H, m, H-11), 1.86–1.75 (4H, m, H-6,7); ¹³C NMR (D₂O): δ in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₀H₂₃N₄D₄ 207.2487, found 207.2486. Isotope distribution: 0% *d*₀–*d*₂, 8% *d*₃, 92% *d*₄.

4.3.52. N,N'-Bis-[3-(ethyl{2-nitrobenzenesulfonyl}amino)propyl]-N,N'-bis-(2-nitrobenzenesulfonyl)butane-1,4-diamine **14a**

To a stirred mixture of 11a (894 mg, 1.89 mmol) and K₂CO₃ (0.75 g, 5.4 mmol) in dry DMF (10 mL), 1,4-diiodobutane (279 g, 0.90 mmol) was added and stirring was continued for 24 h at room temperature. The solids were filtered off and the filtrate was evaporated to dryness in vacuo. The residue was treated with EtOAc (20 mL) and water (20 mL) and this resulted in precipitation of the product, which was filtered off and dried in vacuo yielding 14a (718 mg, 80%) as a sparingly soluble colourless solid, mp 151-156 °C. IR (KBr): 3102–2850, 1542, 1376, 1161, 744 cm⁻¹; ¹H NMR (CDCl₃+DMSO-*d*₆): δ 8.01–7.94 (4H, m, Ph), 7.79–7.71 (8H, m, Ph), 7.70-7.64 (4H, m, Ph), 3.39-3.23 (16H, m, H-a,1,3,5,8,10,12), 1.88-1.79 (4H, m, H-2,11), 1.55–1.48 (4H, m, H-6,7), 1.11 (6H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃+DMSO- d_6): δ 148.0 (2C), 148.0 (2C), 133.7 (2C), 133.6 (2C), 133.3 (2C), 132.9 (2C), 132.0 (2C), 131.9 (2C), 130.8 (2C), 130.6 (2C), 124.2 (2C), 124.2 (2C) (totally 24C-Ph), 42.4 (2C-α), 13.6 (2C- β), rest in Table 10; HRMS (ESI-MS): calcd for (M+K) C₃₈H₄₆N₈O₁₆S₄K 1037.1552, found 1037.1588.

4.3.53. N,N'-Bis-[3-(ethyl-{2-nitro-benzenesulfonyl}-amino)-1,1-²H₂-propyl]-N,N'-bis-(2-nitro-benzenesulfonyl)butane-1,4diamine **14b**

Prepared as **14a** from **11b** (1.50 g, 3.16 mmol) and 1,4-diiodobutane (467 mg, 1.51 mmol) to give **14b** (1.07 g, 71%) as a colourless solid, mp 155–158 °C. IR (KBr): 3102, 2941, 1541, 1374, 1160 cm⁻¹; ¹H NMR (CDCl₃+DMSO-*d*₆): δ 8.01–7.94 (4H, m, Ph), 7.78–7.70 (8H, m, Ph), 7.69–7.62 (4H, m, Ph), 3.39–3.23 (12H, m, H- α ,1,5,8,12), 1.87– 1.78 (4H, m, H-2,11), 1.56–1.46 (4H, m, H-6,7), 1.11 (6H, t, *J*=7.1 Hz, H- β); ¹³C NMR (CDCl₃+DMSO-*d*₆): δ 147.9 (2C), 147.9 (2C), 133.8 (2C), 133.7 (2C), 133.0 (2C), 132.7 (2C), 132.0 (2C), 131.9 (2C), 130.5 (2C), 130.4 (2C), 124.2 (2C), 124.1 (2C) (totally 24C–Ph), 42.4 (2C- α), 13.6 (2C- β), rest in Table 10; HRMS (ESI-MS): calcd for (M+K) C₃₈H₄₂D₄N₈O₁₆S₄K 1041.1803, found 1041.1773.

4.3.54. N,N'-Bis-[3-(isopropyl-{2-nitrobenzenesulfonyl}amino)propyl]-N,N'-bis-(2-nitrobenzenesulfonyl)butane-1,4-diamine **14c**

Prepared as **14a** from **11g** (3.08 g, 6.33 mmol) and 1,4-diiodobutane (934 mg, 3.02 mmol) to give **14c** (2.68 g, 87%) as a colourless solid, mp 202–204 °C. IR (KBr): 3090–2850, 1544, 1362, 1157 cm⁻¹; ¹H NMR (CDCl₃+DMSO-*d*₆): δ 8.03–7.91 (8H, m, Ph), 7.90–7.79 (8H, m, Ph), 3.97 (2H, sep., *J*=6.7 Hz, H-α), 3.31–3.22 (8H, m, H-3,5,8,10), 3.15–3.09 (4H, m, H-1–12), 1.79–1.71 (4H, m, H-2,11), 1.47–1.40 (4H, m, H-6,7), 1.02 (12H, d, *J*=6.7 Hz, H-β); ¹³C NMR (CDCl₃+DMSO-*d*₆): δ 147.4 (2C), 147.4 (2C), 134.4 (4C), 132.3 (2C), 132.2 (2C), 132.0 (2C), 131.7 (2C), 129.8 (4C), 124.2 (2C), 124.1 (2C) (totally 24C–Ph), 49.6 (2C-α), 20.6 (4C-β), rest in Table 10; HRMS (ESI-MS): calcd for (M+K) C₄₀H₅₀N₈O₁₆S₄K 1065.1865, found 1065.1844.

4.3.55. N,N'-Bis-[3-(cyclohexyl-{2-nitrobenzenesulfonyl}amino)propyl]-N,N'-bis-(2-nitrobenzenesulfonyl)butane-1,4diamine **14d**

To a stirred mixture of **11h** (1.18 g, 2.24 mmol) and K₂CO₃ (0.88 g, 6.39 mmol) in dry DMF (12 mL), 1,4-diiodobutane (330 mg, 1.06 mmol) was added and stirring was continued for 24 h at room temperature. Solids were filtered off and the filtrate was evaporated to drvness in vacuo. The residue was treated with EtOAc (25 mL) and water (25 mL), the water layer was extracted with EtOAc (2×25 mL), and the combined organic phases were washed with brine (25 mL) and dried over MgSO₄. Solvent was evaporated in vacuo and the residue was purified on silica gel using first EtOAchexane 3:2 and then 3:1 as an eluent, affording 14d (993 mg, 84% vield based on 1,4-diiodobutane) as a colourless solid, mp 62–72 °C (amorphous solid). Rf 0.31 (EtOAc-hexane 3:2); IR (KBr): 3096, 2935, 2858, 1543, 1158, 741 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.97 (4H, m, Ph), 7.74-7.66 (8H, m, Ph), 7.63-7.55 (4H, m, Ph), 3.72-3.63 (2H, m, H-a), 3.35-3.26 (8H, m, H-3,5,8,10), 3.24-3.18 (4H, m, H-1,12), 1.92-1.83 (4H, m, H-2,11), 1.78-1.71 (4H, m, H-γ_{eq}), 1.67-1.57 (6H, m, H- β_{eq} , δ_{eq}), 1.52–1.45 (4H, m, H-6,7), 1.39–1.25 (8H, m, H- β_{ax} , γ_{ax}), 1.09–0.98 (2H, m, H-δ_{ax}); ¹³C NMR (CDCl₃): δ 148.1 (2C), 147.9 (2C), 133.8 (2C), 133.7 (2C), 133.4 (2C), 133.2 (2C), 132.0 (2C), 131.7 (2C), 130.8 (2C), 130.6 (2C), 124.2 (2C), 124.0 (2C) (totally 24C-Ph), 58.4 (2C-α), 31.9 (4C-β), 26.0 (4C-γ), 25.2 (2C-δ), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C46H58N8O16S4Na 1129.2751, found 1129.2792.

4.3.56. N,N'-Bis-(3-ethylamino-propyl)butane-1,4-diamine tetrahydrochloride **4a**⁵³

A mixture of 14a (700 mg, 0.70 mmol), PhSH (0.43 mL, 4.20 mmol) and K₂CO₃ (1.16 g, 8.41 mmol) in DMF (7 mL) was stirred for 20 h at room temperature and then the reaction mixture was evaporated to dryness in vacuo. The residue was dissolved in a mixture of DCM and 2 M KOH (4:3, 60 mL), the water layer was extracted with a mixture of ethanol and DCM (1:2, 4×20 mL), and the combined organic extracts were dried over MgSO₄. Solvents were evaporated in vacuo, the residue was dissolved in 1,4-dioxane (6 mL) followed by the addition of concd HCl (1.5 mL) and the resulting mixture was stirred for 5 min at room temperature. The reaction mixture was evaporated to dryness in vacuo and co-evaporated once with dioxane (10 mL). DCM was added to the residue and the product was filtered, washed with DCM and cold ethanol. Recrystallization from ethanol-water-EtOAc yielded 4a (144 mg, 51%) as a colourless solid, mp >300 °C decomp. IR (KBr): 3000-2389, 1596, 1460, 1354, 1142, 806 cm⁻¹; ¹H NMR (D₂O) chemical shifts as reported earlier; ⁵³ ¹³C NMR (D₂O): δ 45.9 (2C- α), 13.3 (2C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C14H35N4 259.2862, found 259.2854.

4.3.57. N,N'-Bis-(3-ethylamino-1,1- $^{2}H_{2}$ -propyl)butane-1,4-diamine tetrahydrochloride **4b**

Prepared as **4a** from **14b** (1.04 g, 1.04 mmol) to give **4b** (190 mg, 45%, 99% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3000–2265, 1595, 1461, 1348, 1145, 843, 803 cm⁻¹; ¹H NMR (D₂O): δ 3.19–3.07 (12H, m, H- α ,1,5,8,12), 2.15–2.06 (4H, m, H-2,11), 1.85–1.74 (4H, m, H-6,7), 1.30 (6H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 45.9 (2C- α), 13.3 (2C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₄H₃₁N₄D₄ 263.3113, found 263.3103. Isotope distribution: 0% *d*₀–*d*₂, 3% *d*₃, 97% *d*₄.

4.3.58. N,N'-Bis-(3-isopropylaminopropyl)butane-1,4-diamine tetrahydrochloride $4c^{53}$

Prepared as **4a** from **14c** (1.03 g, 1.0 mmol), PhSH (0.64 mL, 6.2 mmol) and K_2CO_3 (1.66 g, 12 mmol) in DMF (10 mL), but stirring was continued for 70 h to give **4c** (282 mg, 65%) as a colourless

solid, mp >281 °C decomp. IR (KBr): 3000–2360, 1636, 1478, 1386, 1150, 762 cm⁻¹; ¹H NMR (D₂O) chemical shifts as reported earlier; ⁵³ ¹³C NMR (D₂O): δ 53.9 (2C- α), 21.0 (4C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₆H₃₉N₄ 287.3175, found 287.3165.

4.3.59. N,N'-Bis-(3-cyclohexylaminopropyl)butane-1,4-diamine tetrahydrochloride $\mathbf{4d}^{54}$

Prepared as **4c** from **14d** (968 mg, 0.87 mmol) to give **4d** (364 mg, 82%) as colourless solid, mp >300 °C decomp. IR (KBr): 3000–2420, 1596, 1456, 1052, 775 cm⁻¹; ¹H NMR (D₂O): δ 3.21–3.07 (14H, m, H-α,1,3,5,8,10,12), 2.15–2.02 (8H, m, H-2,11,β_{eq}), 1.89–1.74 (8H, m, H-6,7,γ_{eq}), 1.71–1.63 (2H, m, H-δ_{eq}), 1.40–1.26 (8H, m, H- β_{ax} , γ_{ax}), 1.24–1.12 (2H, m, H- δ_{ax}); ¹³C NMR (D₂O): δ 60.4 (2C, C-α), 31.7 (4C, C-β), 27.3 (2C, C- δ), 26.7 (4C, C- γ), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₂₂H₄₇N₄ 367.3801, found 367.3785.

4.3.60. N¹-(4-Chlorobutyl)-N³-ethyl-N,N³-bis-(2nitrobenzenesulfonyl)propane-1,3-diamine **15a**

To a stirred mixture of 11a (2.02 g, 4.26 mmol) and K₂CO₃ (1.76 g, 12.77 mmol) in dry DMF (34 mL) was added 1-bromo-4chlorobutane (2.94 mL, 25.55 mmol) and stirring was continued for 65 h at room temperature. Solids were filtered off and the filtrate was evaporated to dryness in vacuo. The residue was treated with EtOAc, washed with water (35 mL), brine (35 mL) and dried over MgSO₄. Solvent was evaporated in vacuo affording **15a** (2.45 g, ~100%) as a yellow oil. IR (neat): 3096, 2940 (br), 1544, 1159, 745 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.98 (2H, m, Ph), 7.73-7.66 (4H, m, Ph), 7.64-7.59 (2H, m, Ph), 3.55-3.51 (2H, m, H-8), 3.41-3.27 (8H, m, H-a,1,3,5), 1.94-1.86 (2H, m, H-2), 1.80-1.66 (4H, m, H-6,7), 1.12 (3H, t, I=7.1 Hz, H- β); ¹³C NMR (CDCl₃): δ 148.0 (2C), 133.7, 133.5, 133.3, 133.0, 131.9, 131.8, 130.9, 130.8, 124.2, 124.2 (totally 12C–Ph), 42.3 (C-α), 13.6 (C-β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₁H₂₈ClN₄O₈S₂ 563.1037, found 563.1038.

4.3.61. N^1 -(4-Chlorobutyl)- N^3 -ethyl-1,1,2,2- 2H_4 - N^1 , N^3 -bis-(2-nitrobenzenesulfonyl)propane-1,3-diamine **15b**

Prepared as **15a** from **11c** (953 mg, 2.0 mmol) with subsequent purification on silica gel using EtOAc–hexane 3:2 as an eluent to give **15b** (1.07 g, 95%) as a pale yellow oil. IR (neat): 3096, 2939 (br), 2226, 1544, 1161, 745 cm⁻¹; ¹H NMR (CDCl₃): δ 8.05–7.96 (2H, m, Ph), 7.74–7.65 (4H, m, Ph), 7.65–7.57 (2H, m, Ph), 3.55–3.51 (2H, m, H-8), 3.42–3.25 (6H, m, H-α,1,5), 1.80–1.65 (4H, m, H-6,7), 1.12 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.0 (2C), 133.7, 133.6, 133.3, 133.1, 131.9, 131.8, 130.8, 130.7, 124.2, 124.2 (totally 12C–Ph), 42.4 (C-α), 13.6 (C-β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₁H₂₄D₄ClN₄O₈S₂ 567.1288, found 567.1302.

4.3.62. N¹-(4-Iodobutyl)-N³-ethyl-N¹,N³-bis-(2nitrobenzenesulfonyl)-propane-1,3-diamine **15c**

Prepared as **10b** from **15a** (2.4 g, 4.26 mmol) to give **15c** (2.49 g, 89%) as a slightly yellowish oil. R_f 0.44 (EtOAc–hexane 3:2); IR (neat): 3096, 2939 (br), 1542, 1159, 744 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.98 (2H, m, Ph), 7.74–7.66 (4H, m, Ph), 7.65–7.58 (2H, m, Ph), 3.40–3.26 (8H, m, H- α ,1,3,5), 3.17 (2H, t, *J*=6.6 Hz, H-8), 1.95–1.86 (2H, m, H-2), 1.83–1.75 (2H, m, H-7), 1.70–1.62 (2H, m, H-6), 1.12 (3H, t, *J*=7.1 Hz, H- β); ¹³C NMR (CDCl₃): δ 148.0 (2C), 133.7, 133.6, 133.4, 133.0, 131.9, 131.8, 130.9, 130.8, 124.2, 124.2 (totally 12C–Ph), 42.4 (C- α), 13.6 (C- β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₁H₂₈IN₄O₈S₂ 655.0393, found 655.0393.

4.3.63. N^1 -(4-Iodobutyl)- N^3 -ethyl-1,1,2,2-²H₄- N^1 , N^3 -bis-(2-nitrobenzenesulfonyl)propane-1,3-diamine **15d**

Prepared as **10b** from **15b** (1.04 g, 1.84 mmol) to give **15d** (1.15 g, 95%) as a yellowish oil. R_f 0.44 (EtOAc-hexane 3:2); IR

(neat): 3096, 2937 (br), 2224, 1541, 1772, 1160, 744 cm⁻¹; ¹H NMR (CDCl₃): δ 8.04–7.97 (2H, m, Ph), 7.74–7.66 (4H, m, Ph), 7.65–7.58 (2H, m, Ph), 3.40–3.26 (6H, m, H- α ,1,5), 3.17 (2H, t, *J*=6.6 Hz, H-8), 1.83–1.74 (2H, m, H-7), 1.70–1.61 (2H, m, H-6), 1.12 (3H, t, *J*=7.1 Hz, H- β); ¹³C NMR (CDCl₃): δ 148.0 (2C), 133.7, 133.6, 133.3, 133.0, 131.9, 131.8, 130.8, 130.7, 124.2, 124.2 (totally 12C–Ph), 42.4 (C- α), 13.6 (C- β), rest in Table 9; HRMS (ESI-MS): calcd for (M+H) C₂₁H₂₄D₄IN₄O₈S₂ 659.0644, found 659.0656.

4.3.64. N-[3-(Benzyl-{2-nitrobenzenesulfonyl}amino)-propyl]-N'-[3-(ethyl-{2-nitro-benzenesulfonyl}amino)-propyl]-N,N'-bis-{2nitrobenzenesulfonyl}butane-1,4-diamine **14e**

To a stirred mixture of 11d (535 mg, 1.0 mmol) and K₂CO₃ (414 mg, 3.0 mmol) in dry DMF (10 mL), 15c (720 mg, 1.1 mmol) was added and stirring was continued for 24 h at room temperature. Solids were filtered off, the filtrate was evaporated to dryness in vacuo, and the precipitate was dissolved in EtOAc (20 mL) and water (20 mL). The water layer was extracted with EtOAc (20 mL) and the combined organic extracts were washed with brine (20 mL) and dried over MgSO₄. After evaporation of the solvent in vacuo, the residue was purified on silica gel using first EtOAc-hexane 3:2 and then 3:1 as the eluent, to give 14e (939 mg, 88%) as a colourless solid, mp 45-56 °C (amorphous solid). Rf 0.44 (EtOAc-hexane 3:1); IR (KBr): 3096, 2940 (br), 1543, 1374, 1160, 744 cm⁻¹; ¹H NMR (CDCl₃): δ 8.02–7.90 (4H, m, Ph), 7.74-7.57 (12H, m, Ph), 7.33-7.23 (5H, m, Ph), 4.47 (2H, s, Ph-CH₂-), 3.35 (2H, q, J=7.1 Hz, H-α), 3.30-3.04 (12H, m, H-1.3.5.8.10.12), 1.88-1.80 (2H, m, H-11), 1.67-1.59 (2H, m, H-2), 1.47–1.31 (4H, m, H-6,7), 1.10 (3H, t, I=7.1 Hz, H- β); ¹³C NMR (CDCl₃): δ 148.0, 148.0, 148.0, 147.9, 135.5, 133.7, 133.7, 133.7, 133.6, 133.3, 133.1, 133.0 (2C), 132.0, 132.0, 131.9, 131.8, 130.8, 130.8, 130.7, 130.6, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.2 (2C), 124.2 (totally 30C-Ph), 52.0 (Ph-CH₂-), 42.4 (C-α), 13.6 (C-β), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₄₃H₄₈N₈O₁₆S₄Na 1083.1969, found 1083.2011.

4.3.65. N-[3-(Benzyl-{2-nitrobenzenesulfonyl}amino)-1,1,2,2-²H₄propyl]-N'-[3-(ethyl-{2-nitro-benzenesulfonyl}amino)propyl]-N,N'bis-{2-nitrobenzenesulfonyl}butane-1,4-diamine **14f**

Prepared as **14e** from **11f** (1.62 g, 3.0 mmol) and **15c** (2.16 g, 3.3 mmol) to give **14f** (2.67 g, 83%) as a colourless solid, mp 44–56 °C (amorphous solid). R_f 0.39 (EtOAc–hexane 2:1); IR (KBr): 3096, 2938 (br), 1544, 1373, 1160, 743 cm⁻¹; ¹H NMR (CDCl₃): δ 8.02–7.89 (4H, m, Ph), 7.75–7.57 (12H, m, Ph), 7.33–7.23 (5H, m, Ph), 4.47 (2H, s, Ph–CH₂–), 3.35 (2H, q, *J*=7.1 Hz, H-α), 3.31–3.21 (6H, m, H-8,10,12), 3.19 (2H, s, H-1), 3.14–3.07 (2H, m, H-5), 1.88–1.79 (2H, m, H-11), 1.46–1.30 (4H, m, H-6,7), 1.10 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.0, 148.0, 148.0, 147.9, 135.5, 133.8, 133.7, 133.7, 133.6, 133.3, 133.1, 133.0, 133.0, 132.0, 132.0, 132.0, 131.9, 130.8, 130.8, 130.6, 130.6, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.2 (2C), 124.2 (totally 30C–Ph), 52.0 (Ph–CH₂–), 42.4 (C-α), 13.6 (C–β), rest in Table 10; HRMS (ESI-MS): calcd for (M+K) C₄₃H₄₄D₄N₈O₁₆S₄K 1103.1959, found 1103.1908.

4.3.66. $N-[3-(Benzyl-\{2-nitro-benzenesulfonyl\}amino)-1,1,2,2-^2H_4-propyl]-N'-[3-(ethyl-\{2-nitro-benzenesulfonyl\}amino)-1,1,2,2-^2H_4-propyl]-N,N'-bis-{2-nitrobenzenesulfonyl}butane-1,4-diamine$ **14g**

Prepared as **14e** from **11f** (792 mg, 1.47 mmol) and **15d** (1.07 g, 1.62 mmol) to give **14g** (1.32 g, 84%) as a colourless solid, mp 43–54 °C (amorphous solid). *R*_f 0.39 (EtOAc-hexane 2:1); IR (KBr): 3096, 2937 (br), 1541, 1373, 1161, 743 cm⁻¹; ¹H NMR (CDCl₃): δ 8.01–7.89 (4H, m, Ph), 7.74–7.56 (12H, m, Ph), 7.32–7.23 (5H, m, Ph), 4.47 (2H, s, Ph–CH₂–), 3.34 (2H, q, *J*=7.1 Hz, H- α), 3.27 (2H, s, H-12), 3.25–3.21 (2H, m, H-8), 3.19 (2H, s, H-1), 3.13–3.07

(2H, m, H-5) 1.46–1.31 (4H, m, H-6,7), 1.10 (3H, t, *J*=7.1 Hz, H-β); ¹³C NMR (CDCl₃): δ 148.0, 148.0, 148.0, 147.9, 135.5, 133.8, 133.7, 133.7, 133.6, 133.3, 133.1, 133.0 (2C), 132.0, 132.0, 132.0, 131.9, 130.8, 130.8, 130.6, 130.6, 128.8 (2C), 128.4 (2C), 128.2, 124.3, 124.2 (2C), 124.2 (totally 30C–Ph), 52.0 (Ph–CH₂–), 42.5 (C-α), 13.6 (C-β), rest in Table 10; HRMS (ESI-MS): calcd for (M+Na) C₄₃H₄₀D₈N₈O₁₆S₄Na 1091.2471, found 1091.2467.

4.3.67. N-(3-Benzylaminopropyl)-N'-(3-ethylaminopropyl)butane-1,4-diamine tetrahydrochloride **4e**

Prepared as **4a** from **14e** (927 mg, 0.87 mmol) to give **4e** (284 mg, 70%) as a colourless solid, mp >275 °C decomp. IR (KBr): 3050–2389, 1593, 1460, 873, 743, 698 cm⁻¹; ¹H NMR (D₂O): δ 7.56–7.47 (5H, m, Ph), 4.28 (2H, s, PhCH₂–), 3.24–3.05 (14H, m, H- α ,1,3,5,8,10,12), 2.19–2.06 (4H, m, H-2,11), 1.85–1.73 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 133.3, 132.7 (2C), 132.7, 132.2 (2C) (totally 6C–Ph), 54.1 (Ph–CH₂–), 45.9 (C- α), 13.3 (C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₉H₃₇N₄ 321.3018, found 321.3003.

4.3.68. N-(3-Benzylamino-1,1,2,2-²H₄-propyl)-N'-(3-ethylamino-propyl)butane-1,4-diamine tetrahydrochloride **4f**

Prepared as **4a** from **14f** (2.65 g, 2.48 mmol) to give **4f** (790 mg, 68%, 98% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3050–2311, 1594, 1455, 825, 743, 698 cm⁻¹; ¹H NMR (D₂O): δ 7.56–7.47 (5H, m, Ph), 4.29 (2H, s, PhCH₂–), 3.24–3.06 (12H, m, H- α ,1,5,8,10,12), 2.18–2.06 (2H, m, H-11), 1.86–1.75 (4H, m, H-6,7), 1.31 (3H, t. *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 133.3, 132.7 (2C), 132.6, 132.2 (2C) (totally 6C–Ph), 54.1 (Ph–CH₂–), 45.9 (C- α), 13.3 (C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₉H₃₃N₄D₄ 325.3269, found 325.3260. Isotope distribution: 0% *d*₀–*d*₂, 8% *d*₃, 92% *d*₄.

4.3.69. N-(3-Benzylamino-1,1,2,2- $^{2}H_{4}$ -propyl)-N'-(3-ethylamino-1,1,2,2- $^{2}H_{4}$ -propyl)butane-1,4-diamine tetrahydrochloride **4g**

Prepared as **4a** from **14g** (1.29 g, 1.21 mmol) to give **4g** (381 mg, 66%, 98% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3050–2312, 1593, 1452, 822, 744, 698 cm⁻¹; ¹H NMR (D₂O): δ 7.56–7.46 (5H, m, Ph), 4.29 (2H, s, PhCH₂–), 3.24–3.05 (10H, m, H- α ,1,5,8,12), 1.85–1.74 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 133.3 (Ph), 132.7 (2C), 132.6, 132.2 (2C) (totally 6C–Ph), 54.1 (Ph–CH₂–), 45.9 (C- α), 13.3 (C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₉H₂₉N₄D₈ 329.3520, found 329.3518. Isotope distribution: 0% *d*₀–*d*₅, 1% *d*₆, 12% *d*₇, 87% *d*₈.

4.3.70. N-(3-Amino-1,1,2,2- $^{2}H_{4}$ -propyl)-N'-(3-ethylamino-propyl)butane-1,4-diamine tetrahydrochloride **3g**

Prepared as **11** from **4f** (400 mg, 0.85 mmol) to give **3g** (259 mg, 80%, 98% *d*) as a colourless solid, mp >300 °C decomp. IR (KBr): 3000–2388, 1610, 1459, 1353, 1147, 823 cm⁻¹; ¹H NMR (D₂O): δ 3.22–3.07 (12H, m, H- α ,1,3,5,8,12), 2.18–2.06 (2H, m, H-2), 1.86–1.75 (4H, m, H-6,7), 1.30 (3H, t, *J*=7.3 Hz, H- β); ¹³C NMR (D₂O): δ 45.9 (C- α), 13.3 (C- β), rest in Table 6; HRMS (ESI-MS): calcd for (M+H) C₁₂H₂₇N₄D₄ 235.2800, found 235.2788. Isotope distribution: 0% *d*₀–*d*₂, 6% *d*₃, 93% *d*₄.

Acknowledgements

We thank Ms. Maritta Salminkoski, Department of Biosciences, Laboratory of Chemistry, University of Kuopio, for her help with the synthesis work. This work was supported by Academy of Finland (project 124 185) and the Russian Foundation for Basic Research (project 06-04-49638).

References and notes

- Jänne, J.; Alhonen, L.; Keinänen, T. A.; Pietilä, M.; Uimari, A.; Pirinen, E.; Hyvönen, M. T.; Järvinen, A. J. Cell. Mol. Med. 2005, 9, 865–882.
- 2. Wallace, H. M.; Fracer, A. V.; Hughes, A. Biochem. J. 2003, 376, 1-14.
- 3. Gugliucci, A. Clin. Chim. Acta 2004, 344, 23–35.
- 4. Karigiannis, G.; Papaioannou, D. Eur. J. Org. Chem. 2000, 1841-1863.
- 5. Casero, R. A., Jr.; Marton, L. J. Nat. Rev. Drug Discov. 2007, 6, 373-389.
- 6. Casero, R. A., Jr.; Woster, P. M. J. Med. Chem. 2001, 44, 1-26.
- Boncher, T.; Bi, X.; Varghese, S.; Casero, R. A., Jr.; Woster, P. M. Biochem. Soc. Trans. 2007, 35, 356–363.
 Wallace H. M.; Nijiranen K. Amino Acids 2007, 33, 261–265.
- Wallace, H. M.; Niiranen, K. Amino Acids 2007, 33, 261–265.
 Seiler, N. Pharmacol. Ther. 2005, 107, 99–119.
- 10. Bergeron, R. J.; Wiegand, J.; Weimar, W. R.; Snyder, P. S. *Pharmacol. Res.* **1998**, 38,
- 367–380. 11. Prakash, C.; Shaffer, C. L.; Nedderman, A. *Mass Spectrom. Rev.* **2007**, *26*, 340–369.
- 12. Kostiainen, R.; Kotiaho, T.; Kuuranne, T.; Auriola, S. J. Mass Spectrom. **2003**, 38, 357–372.
- Hakkinen, M. R.; Keinänen, T. A.; Vepsäläinen, J.; Khomutov, A. R.; Alhonen, L.; Jänne, J.; Auriola, A. J. Pharm. Biomed. Anal. 2007, 45, 625–634.
- Hakkinen, M. R.; Keinänen, T. A.; Vepsäläinen, J.; Khomutov, A. R.; Alhonen, L.; Jänne, J.; Auriola, A. J. Pharm. Biomed. Anal. 2008, 48, 414–421.
- Stokvis, E.; Rosing, H.; Beijnen, J. H. Rapid Commun. Mass Spectrom. 2005, 19, 401–407.
- 16. Cleland, W. W. Arch. Biochem. Biophys. 2005, 433, 2-12.
- 17. Lee, K. Y.; Na, J. E.; Lee, M. J.; Kim, J. N. Tetrahedron Lett. 2004, 45, 5977-5981.
- 18. Kuksa, V.; Buchan, R.; Kong Thoo Lin, P. Synthesis 2000, 1189-1207.
- Gawandi, V.; Fitzpatric, P. F. J. Labelled Compd. Radiopharm. 2007, 50, 666–670.
 Maruyoshi, K.; Demura, T.; Sagane, T.; Matsumori, N.; Oishi, T.; Murata, M.
- Tetrahedron **2004**, 60, 5163–5170.
- 21. Smith, R. G.; Daves, G. D., Jr. Biomed. Mass Spectrom. 1977, 4, 146-151.
- 22. Jentgens, C.; Bienz, S.; Hesse, M. Helv. Chim. Acta 1997, 80, 1133-1143.
- Schere, G.; Limbach, H.-H. J. Am. Chem. Soc. **1994**, *116*, 1230–1239.
 Van Den Berg, G. A.; Elzinga, H.; Nagel, G. T.; Kingma, A. W.; Muskiet, F. A.
- J. Biochim. Biophys. Acta 1984, 802, 175–187.
 25. Fodor-Csorba, K.; Galli, G.; Holly, S.; Gács-Baitz, E. Tetrahedron Lett. 2002, 43, 3789–3792.
- Moser, M.; Hudlicky, T.; Sadechi, S.; Sternin, E. J. Labelled Compd. Radiopharm. 2007, 50, 671–674.
- Concellón, J. M.; Rodríguez-Solla, H.; Concellón, C. Tetrahedron Lett. 2004, 45, 2129–2131.
- 28. Whitmore, F. C.; Mosher, H. S.; Adams, R. R.; Taylor, R. B.; Chapin, E. C.; Weisel,
- C.; Yanko, W. J. Am. Chem. Soc. 1944, 66, 725–731.
 29. Richard, J. P.; Williams, G.; Gao, J. J. Am. Chem. Soc. 1999, 121, 715–726.
- Iwasaki, M.; Sakka, T.; Ohashi, S.; Matsushita, H. J. Phys. Chem. 1989, 93, 5139– 5143.
- 31. Hidai, Y.; Kan, T.; Fukuyama, T. Chem. Pharm. Bull. 2000, 48, 1570-1576.
- Järvinen, A. J.; Cerrade-Gimenez, M.; Grigorenko, N. A.; Khomutov, A. R.; Vepsäläinen, J. J.; Sinervirta, R. M.; Keinänen, T. A.; Alhonen, L. I.; Jänne, J. E. J. Med. Chem. 2006, 49, 399–406.
- Grigorenko, N. A.; Khomutov, A. R.; Keinänen, T. A.; Järvinen, A.; Alhonen, L.; Jänne, J.; Vepsäläinen, J. *Tetrahedron* 2007, 63, 2257–2262.
- Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds: Tables of Spectral Data 3rd Completely revised and enlarged Engl. ed.; Springer: Berlin, 2000; p 247.
- 35. Rouvier, E.; Pastor, R.; Musso, J.; Cambon, A. Org. Magn. Reson. 1974, 6, 640-643.
- 36. Zhang, H.; Zhang, Y.; Liu, L.; Xu, H.; Wang, Y. Synthesis 2005, 13, 2129-2136.
- 37. Pearson, D. E.; Jones, W. H.; Cope, A. C. J. Am. Chem. Soc. 1946, 68, 1225-1229.
- 38. Dawber, J. G.; Massey-Shaw, J. J. Chem. Soc., Perkin Trans. 2 **1989**, 1249–1254.
- Compounds 1a, 1h and 1j as free base: Tarbell, D. S.; Shakespeare, N.; Claus, C. J.; Bunnett, J. F. J. Am. Chem. Soc. 1946, 68, 1217–1219.
- 40. King, J. A.; McMillan, F. H. J. Am. Chem. Soc. 1946, 68, 1468-1470.
- Martin, B.; Possémé, F.; Le Barbier, C.; Carreaux, F.; Carboni, B.; Seiler, N.; Moulinoux, J.-P.; Delcros, J.-G. J. Med. Chem. 2001, 44, 3653–3664.
- 42. Bolkenius, F. N.; Seiler, N. Biol. Chem. Hoppe-Seyler 1989, 370, 525-531.
- 43. Compound 1e as free base: Surrey, A. J. Am. Chem. Soc. 1949, 71, 3354-3356.
- 44. Wysocka-Skrzela, B.; Cholody, W. M.; Ledochowski, A. Pol. J. Chem. 1981, 55, 2211–2214.
- 45. Wagner-Jauregg, T. Helv. Chim. Acta 1961, 44, 1237-1249.
- Callery, P. S.; Subramayam, B.; Yuan, Z.-M.; Pou, S.; Geelhaar, L. A.; Reynolds, K. A. Chem.-Biol. Interact. 1992, 85, 15–26.
- Bergeron, R. J.; Feng, Y.; Weimar, W. R.; McManis, J. S.; Dimova, H.; Porter, C.; Raisler, B.; Phanstiel, O. J. Med. Chem. 1997, 40, 1475–1494.
- 48. Carboni, B.; Benalil, A.; Vaultier, M. J. Org. Chem. **1993**, 58, 3736–3741.
- 49. da Silva, E. T.; Fona, F. S.; Lima, E. L. S. J. Braz. Chem. Soc. 2004, 15, 433-436.
- 50. Olsen, C. A.; Jorgensen, M. R.; Witt, M.; Mellor, I. R.; Usherwood, P. N. R.;
- Jaroszewski, J. W.; Franzyk, H. *Eur. J. Org. Chem.* **2003**, 3288–3299. 51. Bergeron, R. J.; McManis, J. S.; Liu, C. Z.; Feng, Y.; Weimar, W. R.; Luchetta, G. R.; Will O. Ortig Occied L: Viscon J. B.; Viscon D.; Berter, C. J. Med. Chem. **1004**.
- Wu, Q.; Ortiz-Ocasio, J.; Vinson, J. R. T.; Kramer, D.; Porter, C. *J. Med. Chem.* 1994, 37, 3464–3476.
 52. Tomasi, S.; Le Roch, M.; Renault, J.; Corbel, J.-C.; Uriac, P.; Carboni, B.; Moncoq,
- D.; Martin, B.; Delcors, J.-G. Bioorg. Med. Chem. Lett. 1998, 8, 635–640.
 D.; Martin, B.; Delcors, J.-G. Bioorg. Med. Chem. Lett. 1998, 8, 635–640.
- 53. Bergeron, R. J.; Wiegand, J.; McManis, J. S.; Weimar, W. R.; Smith, R. E.; Algee, S. E.; Fannin, T. L.; Slusher, M. A.; Snyder, P. S. J. Med. Chem. 2001, 44, 232–244.
- 54. Weitl, F. L.; Raymond, K. N. J. Org. Chem. 1981, 46, 5234-5237.