JOC The Journal of Organic Chemistry

Subscriber access provided by UNIV OF NEWCASTLE

Article

Rh-Catalyzed Asymmetric Hydrogenation of 1,2-Dicyanoalkenes

Meina Li, Duanyang Kong, Guofu Zi, and Guohua Hou

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b02678 • Publication Date (Web): 13 Dec 2016

Downloaded from http://pubs.acs.org on December 19, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Rh-Catalyzed Asymmetric Hydrogenation of 1,2-Dicyanoalkenes

Meina Li, Duanyang Kong, Guofu Zi and Guohua Hou*

Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University,

Beijing 100875, China

E-mail: ghhou@bnu.edu.cn.

Abstract: A highly efficient enantioselective hydrogenation of 1,2-dicyanoalkenes catalyzed by the complex of rhodium and f-spiroPhos has been developed. A series of 1,2-dicyanoalkenes were successfully hydrogenated to the corresponding chiral 1,2-dicyanoalkanes under mild conditions with excellent enantioselectivities (up to 98% ee). This methodology provides efficient access to the asymmetric synthesis of chiral diamines.

Introduction

Chiral 1,2-dicyanoalkanes are an important class of compounds in organic synthesis and high valuable intermediates for synthesis of many biologically active compounds and pharmaceuticals (Figure 1).¹ They have been regarded as versatile synthetic intermediates due to their readily conversions to other useful chiral building blocks, such as chiral diamines,² dicarboxylic acids,³ diamides ⁴ and various heterocycles (pyrrolidines, succinimides, and pyrroles),⁵ which are highly valuable structures for natural and biologically active molecules. Although some significant approaches have been developed in the synthesis of racemic 1,2-dicyanoalkanes, such as the

Michael addition of lithium cyanide to vinyl sulfones,⁶ 1,2-dicyanation of alkynes followed by the reduction of the corresponding dicyanoalkenes,⁷ and the tandem double Michael addition of trimethylsilyl cyanide to nitroalkenes,⁸ there is no asymmetric synthesis of chiral 1,2-dicyanoalkanes reported up to now. Therefore, development of an efficient method for asymmetric catalytic synthesis of chiral 1,2-dicyanoalkanes is of importance and remains challenging.

Figure 1. Key Structural Elements in Chiral Pharmaceuticals and Biologically Active Compounds Derived from Chiral 1,2-Dicyanoalkanes.

Asymmetric catalytic hydrogenation has been developed as one of the most efficient, environmentally friendly, atom-economic approaches to generate enantiomerically enriched products from prochiral substrates,⁹ and great progress on its application in industry has also been made.¹⁰ Many transition-metal catalysts were developed and exhibited high activity and enantioselectivity in the asymmetric hydrogenation of various prochiral substrates including olefins, ketones and imines.⁹ However, to the best of our knowledge, the asymmetric hydrogenation of 1,2-dicyanoalkenes for straightforward synthesis of the corresponding chiral 1,2-dicyanoalkanes has not yet been explored so far.¹¹ The challenges imposed by both the linear geometry of the cyano group, which keeps a coordinated catalyst away from the C=C bond, and the strong binding affinity to transition-metal complexes resulting in catalyst deactivation.^{11c, 12} Thus, the asymmetric hydrogenation of 1,2-dicyanoalkenes remains challenging and efficient catalysts suitable for this class of substrates are scarce and highly desirable.

Recently, we reported the asymmetric hydrogenation of nitroolefins, imines, unsaturated nitriles and carboxylic acids using f-spiroPhos, a chiral ferrocenyl diphosphine ligand containing the privileged spirobiindane skeleton developed by Zhou and coworkers,¹³ and excellent enantioselectivity and activity were achieved.¹⁴ Herein, we wish to tackle the challenging 1,2-dicyanoalkene substrates in asymmetric hydrogenation and report the first, highly efficient and enantioselective hydrogenation of 1,2-dicyanoalkenes, which provides a straightforward route to prepare chiral 1,2-dicyanoalkanes (Scheme 1).

Scheme 1. Rh-Catalyzed Asymmetric Hydrogenation of 2-Aryl-1,2-dicyanoalkenes.

Results and Discussion

The investigation initially began with the hydrogenation of (*E*)-2-phenyl-1,2-dicyanoalkene **1a** as the model substrate under 10 atm of H₂ in CH₂Cl₂ at 40 °C for 1 hour using the catalyst generated in situ by $[Rh(COD)Cl]_2$ and (R,R)-f-spiroPhos. Although a full conversion was observed, only moderate enantioselectivity, 77% ee was achieved. To our delight, by decreasing the reaction temperature to 25 °C the enantioselectivity could be dramatically increased to 90% ee

without any erosion of conversion (Table 1, entries 1 and 2). However, a lower temperature would result in an incomplete conversion and decreased enantioselectivity (entry 3). Subsequently, several other chiral diphosphorus ligands illustrated in figure 2 including (*S*)-BINAP, (*S*,*R*)-DuanPhos, (*R*)-JosiPhos, (*S*)-f-Binaphane and (*R*)-DM-SegPhos were evaluated and the results revealed that all of them exhibited extremely lower activities and moderate enantioselectivities in this reaction (entries 4–8). The solvent effect was also investigated and it had significant influence on the conversion and enantioselectivity. While in THF this hydrogenation could accomplish with moderate enantioselectivity (entry 9), in some other solvents such as DME, 1,4-dioxane and toluene both incomplete conversions and lower enantioselectivitis were provided (entries 10–12). The polar solvent MeOH was not suitable for this transformation and extremely low activity was observed (entry 13).

Table 1. Rh-Catalyzed Asymmetric Hydrogenation of (E)-2-Phenyl-1,2-dicyanoalkene (1a), Optimizing the Reaction Conditions.^a

	NC CN 1a	+ H ₂ –	Rh catalyst solvent	NC * CN 2a	
entry	ligand	solvent	T (°C)	conv. $(\%)^b$	ee (%) ^c
1	(R,R)-f-spiroPhos	CH ₂ Cl ₂	40	>99	77
2	(R,R)-f-spiroPhos	CH ₂ Cl ₂	25	>99	90
3	(R,R)-f-spiroPhos	CH_2Cl_2	0	65	82
4	(S)-f-Binaphane	CH_2Cl_2	25	28	52
5	(S)-Binap	CH ₂ Cl ₂	25	trace	ND
б	(R)-DM-SegPhos	CH_2Cl_2	25	3	41

7	(S,R)-DuanPhos	CH ₂ Cl ₂	25	6	27
8	(R)-JosiPhos-1	CH ₂ Cl ₂	25	12	63
9	(R,R)-f-spiroPhos	THF	25	>99	71
10	(R,R)-f-spiroPhos	toluene	25	45	54
11	(R,R)-f-spiroPhos	DME	25	95	71
12	(R,R)-f-spiroPhos	dioxane	25	77	34
13	(R,R)-f-spiroPhos	MeOH	25	trace	ND
<i>a</i> Un	less otherwise men	tioned all	reactions	were carried	out with a

[Rh(COD)Cl]₂/(*R*,*R*)-f-spiroPhos/substrate ratio of 0.5 : 1.1 : 100, 10 atm of H₂, 1 h. ^b Determined by ¹H NMR spectroscopy or GC analysis. ^c Determined by HPLC analysis using a chiral stationary phase or chiral GC analysis.

reactions

were

carried

out

with

a

all

Figure 2. Structures of the Ligands Screened.

Encouraged by the promising result hydrogenation of obtained in the (E)-2-phenyl-1,2-dicyanoalkene 1a, we then prepared a variety of (E)-1,2-dicyanoalkene 1 and applied them to the asymmetric hydrogenation under the optimized reaction conditions. As the

Unless

otherwise

mentioned.

results revealed in table 2, the electronic properties of the substituent at the *meta-* or *para-*position of the aromatic ring had no obvious influence on the enantioselectivity. For example, substrates bearing regardless of electron-withdrawing substituents (**F**, **1b** and **Br**, **1c**) or electron-donating substituents (MeO, **1d** and Me, **1e**) at the *para-*position of the aromatic ring could be smoothly hydrogenated to produce the corresponding chiral 1,2-dicyanoalkanes with full conversions and high enantioselectivities (entries 2–5). Despite a slightly higher hydrogen pressure needed for the full conversion, substrates with a MeO (**1i**) or Me group (**1j**) at the *ortho-*position as well as the 1-naphthyl substrate **1k** provided much higher enantioselectivities, up to 98% ee, which could presumably be attributed to the steric hindrance (entries 9–11). However, electron-withdrawing substituents at the *ortho-*position, such as F or Cl group, resulted in lower enantioselecitivities, 88% ee (entry 7–8). Notably, the alkyl substrate **1l** could be smoothly hydrogenated to provide the corresponding **2l** with 96% ee (entry 12).

Table 2. Rh-Catalyzed Asymmetric Hydrogenation of (E)-2-Aryl-1,2-dicyanoalkene 1.^a

	H NC Ar CN 1.1 mol% CH	H₂ (10 atm) I% [Rh(COD)Cl]₂ 6 (<i>R,R</i>)-f-spiroPh H₂Cl₂, rt, 1 h	Ar * CN 2	
entry	R	product	$\cos(\%)^b$	$ee(\%)^{c}$
1	$(E)-C_{6}H_{5}(1a)$	2a	>99(98%)	90
2^d	(E)-4-FC ₆ H ₄ (1b)	2b	>99(99%)	89
3 ^e	(<i>E</i>)-4-BrC ₆ H ₄ (1c)	2c	>99(98%)	88
4^d	(<i>E</i>)-4-MeOC ₆ H ₄ (1d)	2d	>99(97%)	86
5	(<i>E</i>)-4-MeC ₆ H ₄ (1e)	2e	>99(99%)	93
6^d	(<i>E</i>)-3-MeC ₆ H ₄ (1f)	2f	>99(97%)	90
7^{f}	(E)-2-ClC ₆ H ₄ (1g)	2g	>99(98%)	88

а

Unless

otherwise

mentioned,

8 ^{<i>f</i>}	(E)-2-FC ₆ H ₄ (1h)	2h	>99(97%)	89
9^d	(E)-2-MeOC ₆ H ₄ (1i)	2i	>99(96%)	96
10^d	(<i>E</i>)-2-MeC ₆ H ₄ (1j)	2j	>99(96%)	98
11^d	(<i>E</i>)-1-napthyl (1k)	2k	>99(99%)	93
12	$(E)^{-n} \text{Hexyl} (\mathbf{1l})$	21	>99(98%)	96

all

reactions

carried

out

at

a

were

[Rh(COD)Cl]₂/(*R*,*R*)-f-spiroPhos/substrate ratio of 0.5:1.1:100 in CH₂Cl₂ at 10 atm of H₂ and 25 °C for 1 h. ^{*b*} Conversion, determined by ¹H NMR spectroscopy or GC analysis; data in parentheses are isolated yields. ^{*c*} Determined by chiral GC analysis or HPLC analysis. ^{*d*} 7 h, 30 atm of H₂. ^{*e*} 24 h, 30 atm of H₂. ^{*f*} 12 h, 50 atm of H₂.

It was found that the Z-isomers of 1,2-dicyanoalkenes were also obtained in high yields together with the *E*-isomers in the synthesis of the substrates. We further investigated the asymmetric hydrogenation of (*Z*)-2-phenyl-1,2-dicyanoalkene **1a'** using Rh/(*R*,*R*)-f-spiroPhos catalyst under the optimized reaction conditions. However, only moderate enantioselectivity, 73% ee, was obtained with an opposite configuration, which indicated the geometric structure of the substrate had an obvious effect on the coordination of the C=C double bond to the metal center. (*Z*)- and (*E*)-Substrates coordinated to the catalyst from the opposite enantioface, which resulted in the hydrogenation products with opposite configuration.^{11d,14e-g} According to the research of halide effects in rhodium catalysts by Lautens and Fagnou,¹⁵ we changed the metal precursor with the [Rh(COD)₂]BF₄. Gratifyingly, the ee value of the hydrogenation product **2a'** was increased to 90 % still with a complete conversion (table 3, entry 1). Based on this promising result, a series of (*Z*)-1,2-dicyanoalkene **1'** were successfully hydrogenated to afford the desired products with comparable results with those obtained from (*E*)-substrates. As the results showed in table 3, the electronic properties of substituents on the phenyl ring of the substrate had a very little effect on the enantioselectivities. Electron-donating substituents at the identical position of phenyl ring generally could give a little higher enantioselectivity than electron-withdrawing ones. For instance, the substrates with a Me or MeO at *para*-position of the phenyl ring provided 91% ee, whereas the substrates bearing an electron-withdrawing F or Br substituent afforded the corresponding products with 89% and 88% ee, respectively (entries 2–5). The sterically hindered *ortho*-substituted substrates, **1h'**-**1k'**, could also be completely hydrogenated with higher enantioselectivities of up to 95% ee (entries 8, 10 and 11), compared with those provided by the corresponding *meta*- or *para*-substituted substrates. Both the 1-naphthyl and 2-naphthyl substrate **11'** and **1m'** afforded the products **21'** and **2m'** with high ee values. However, the 2-furyl and 2-thienyl substrates **1n'** and **10'** only provided moderate enantioselectivities, 65% and 57% ee, respectively (entries 14 and 15).

Table 3. Rh-Catalyzed Asymmetric Hydrogenation of (Z)-2-Aryl-1,2-dicyanoalkene 1'.^a

	Ar CN 1 ma Ar CN 1.1 ma CN C	H ₂ (10 atm) ol% [Rh(COD) ₂ ol% (<i>S</i> , <i>S</i>)-f-spir H ₂ Cl ₂ , 60 °C, 8	$\frac{\text{JBF}_{4}}{\text{h}}$	CN CN
entry	R	product	$\cos(\%)^b$	$ee(\%)^{c}$
1	$(Z)-C_{6}H_{5}(1a')$	2a'	>99(98%)	90
2	(Z)-4-FC ₆ H ₄ (1b')	2b'	>99(97%)	89
3	(Z)-4-BrC ₆ H ₄ (1c')	2c'	>99(99%)	88
4	(Z)-4-MeOC ₆ H ₄ (1d')	2d'	>99(98%)	91
5	(Z)-4-MeC ₆ H ₄ (1e')	2e'	>99(98%)	91
6	(Z)-3-MeC ₆ H ₄ (1f')	2f'	>99(99%)	88
7	(Z)-3-MeOC ₆ H ₄ (1g')	2g'	>99(99%)	87

15 ^e	(<i>Z</i>)-2-thienyl (10')	20'	>99(96%)	57
14^e	(<i>Z</i>)-2-furyl (1n')	2n'	>99(98%)	65
13	(<i>Z</i>)-2-napthyl (1m')	2m'	>99(98%)	92
12^e	(Z)-1-napthyl (11')	21′	>99(99%)	86
11	(Z)-2-FC ₆ H ₄ (1 k')	2k'	>99(98%)	90
10^{e}	(Z)-2-MeC ₆ H ₄ (1 j')	2 j ′	>99(98%)	95
9^d	$(Z)-2\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{1i'}\right)$	2i′	>99(99%)	85
8	(Z)-2-MeOC ₆ H ₄ (1h')	2h'	>99(98%)	92

[Rh(COD)₂]BF₄/(*S*,*S*)-f-spiroPhos/substrate ratio of 1.0:1.1:100 in CH₂Cl₂ at 10 atm of H₂ and 60 °C for 8 h. ^{*b*} Conversion, determined by ¹H NMR spectroscopy or GC analysis; data in parentheses are isolated yields. ^{*c*} Determined by chiral GC analysis or HPLC analysis. ^{*d*} 36 h, 50 atm of H₂, 60 °C. ^{*e*} 24 h, 50 atm of H₂, 60 °C.

all

reactions

carried

out

at

а

were

In addition, the hydrogenation on a gram scale using a lower catalyst loading was also explored. Using a loading of 0.2 mol% Rh-(R,R)-f-spiroPhos catalyst the asymmetric hydrogenation of (E)-1e could still be accomplished to produce the product 2e with maintained enantioselectivity, 93% ee (Scheme 2).

Scheme 2. Asymmetric Hydrogenation of the Substrate 1e under Lower Catalyst Loading.

Finally, we attempted to apply this method to the asymmetric synthesis of chiral 1,4-diamines, which was regarded as a very important class of building blocks in pharmaceutical synthesis and used extensively as chiral auxiliaries and catalysts. ¹⁶ The hydrogenation product **2i** with 96% ee

а

Unless

otherwise

mentioned,

value could be readily further reduced to afford the chiral 1,4-diamine with unchanged excellent

enantioselectivity (Schem 3).¹⁷

Scheme 3. Synthesis of 1,4-Diamine 3 from the Hydrogenation Product 2i.

Conclusions

In conclusion, we have developed a highly enantioselective hydrogenation of a series of 1,2-dicyanoalkenes including both E and Z-isomers to produce chiral 1,2-dicyanoalkanes with excellent enantioselectivities (up to 98% ee) and good activity (TON up to 500) using the complex of rhodium and f-spiroPhos as catalyst under mild reaction conditions. Moreover, this method is also successfully applied to the synthesis of a chiral 1,4-diamine with an excellent enantioselectivity.

Experimental Section

General Information: All the air or moisture sensitive reactions and manipulations were performed by using standard Schlenk techniques and in a nitrogen-filled glovebox. DME, THF, 1,4-dioxane and toluene were distilled from sodium benzophenone ketyl. CH₂Cl₂ was distilled from calcium hydride. Anhydrous MeOH was distilled from magnesium. ¹H NMR spectra were recorded on a 400 MHz spectrometer. ¹³C NMR (proton-decoupled) spectra were obtained at 100 MHz. CDC1₃ was the solvent used for the NMR analysis, with tetramethylsilane as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR. Optical rotation

was determined using a polarimeter. HRMS were recorded on a mass spectrometer with APCI or ESI.

General procedure for the synthesis of compound 1: Under a nitrogen atmosphere benzoyl chloride (25.0 mmol, 1.0 equiv) was slowly added at room temperature to a stirred suspension of copper (I) cyanide (50.0 mmol 2.0 equiv) in dry acetonitrile (80 mL). After about 4 hours of refluxing the resulting clear solution was cooled to room temperature and concentrated in vacuo. The residue was washed with ether, filtrated and concentrated in vacuo again. After additional distillation (0.12 mbar, 65 – 80 °C) the product benzoyl cyanide was obtained as a colorless solid.¹⁸ The corresponding benzoyl cyanide (9.1 mmol) was placed in a 100 mL round bottom flask, then Ph₃P=CHCN (13.59 mmol, 1.5 equiv) and toluene (20 mL) was added. The reaction mixture was stirred at 80 °C until no starting material was detected by TLC. Then the reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by chromatography on silica gel (PE:EA = 50:1 - 5:1) to give compound 1.¹⁷

2-Phenylfumaronitrile (**1a**): Purification by column chromatography (PE:EA = 10:1) afforded the product as a white solid; MP: 48-50 °C; 0.98 g, yield: 28%; ¹H NMR (400 MHz, CDCl₃) δ = 7.94-7.91 (m, 2H), 7.59-7.52 (m, 3H), 6.14 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 133.7, 133.3, 130.3, 128.8, 116.9, 115.2, 108.0; TOF-HRMS Calcd. for C₁₀H₅N₂ [M-H⁺]: 153.0458, found 153.0458.^{7a}

2-(4-Fluorophenyl)fumaronitrile (1b): Purification by column chromatography (PE:EA = 10:1) afforded the product as a white solid; MP: 64-66 °C; 0.91 g, yield: 30%; ¹H NMR (400 MHz, CDCl₃) δ = 7.89-7.86 (m, 2H), 7.18-7.13 (m, 2H), 6.05 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 164.9 (d, ¹*J*_{C-F} = 255.0 Hz), 131.8, 130.7, 130.6, 126.0, 125.9, 116.9, 116.7, 116.0, 114.5, 107.1.

TOF-HRMS Calcd. for $C_{10}H_6N_2F$ [M+H⁺]: 173.0509, found 173.0511.

2-(4-Bromophenyl)fumaronitrile (1c): Purification by column chromatography (PE:EA = 50:1) afforded the product as a white solid; MP: 62-64 °C; 1.05 g, yield: 30%; ¹H NMR (400 MHz, CDCl₃) δ = 7.79-7.77 (d, J = 8.8 Hz, 2H), 7.68-7.66 (d, J = 8.8 Hz, 2H), 6.17(s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.8, 131.9, 129.5, 128.6, 127.7, 115.9, 114.4, 107.9. TOF-HRMS Calcd. for C₁₀H₄N₂Br [M-H⁺]: 230.9563, found 230.9564.^{7b}

2-(4-Methoxyphenyl)fumaronitrile (1d): Purification by column chromatography (PE:EA = 10:1) afforded the product as a white solid; MP: 82-86 °C; 1.05 g, yield: 35%; ¹H NMR (400 MHz, CDCl₃) δ = 7.93-7.91 (m, 2H), 7.00-6.98 (m, 2H), 5.94 (s, 1H), 3.87 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 163.6, 132.7, 130.8, 122.9, 117.1, 115.9, 115.4, 104.3, 56.2. TOF-HRMS Calcd. for C₁₁H₉N₂O [M+H⁺]: 185.0709, found 185.0709.^{7b}

2-(*p*-Tolyl)fumaronitrile (1e): Purification by column chromatography (PE:EA = 20:1) afforded the product as light yellow solid; MP: 94-97 °C; 0.81 g, yield: 27%; ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.06 (s, 1H), 2.43 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 143.8, 132.8, 130.0, 128.1, 127.1, 116.4, 114.9, 106.0, 105.9, 21.6. TOF-HRMS Calcd. for C₁₁H₉N₂ [M+H⁺]: 169.0760, found 169.0759.

2-(*m***-Tolyl)fumaronitrile (1f):** Purification by column chromatography (PE:EA = 10:1) afforded the product as a light yellow solid; MP: 75-79 °C; 0.84 g, yield: 28%; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.74-7.69$ (m, 2H), 7.44-7.37 (m, 2H), 6.10 (s, 1H), 2.43 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 140.4, 134.3, 134.2, 130.4, 130.1, 127.9, 124.4, 115.3, 114.8, 107.6, 21.9. TOF-HRMS Calcd. for C₁₁H₉N₂ [M+H⁺]: 169.0760, found 169.0758.

2-(2-Chlorophenyl)fumaronitrile (1g): Purification by column chromatography (PE:EA = 20:1)

The Journal of Organic Chemistry

afforded the product as light yellow liquid; 0.78 g, yield: 26%; ¹H NMR (400 MHz, CDCl₃) δ = 7.55-7.42 (m, 4H), 6.36 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.9, 132.8, 131.9, 130.7, 130.5, 129.0, 127.7, 115.1, 114.8, 113.2. TOF-HRMS Calcd. for C₁₀H₆N₂Cl [M+H⁺]: 189.0214, found 189.0215.

2-(2-Fluorophenyl)fumaronitrile (1h): Purification by column chromatography (PE:EA = 30:1) afforded the product as a white solid; MP: 88-90 °C; 0.63 g, yield: 21%; ¹H NMR (400 MHz, CDCl₃) δ = 7.54-7.46 (m, 2H), 7.25-7.14 (m, 2H), 6.24-6.23 (m, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 160.8 (d, ¹*J*_{*C-F*} = 255.0 Hz), 134.3, 134.2, 130.8, 128.4, 125.4, 118.2, 118.1, 117.3, 117.1, 114.6, 113.9, 112.6, 112.4. TOF-HRMS Calcd. for C₁₀H₆N₂F [M+H⁺]: 173.0509, found 173.0511.

2-(2-Methoxyphenyl)fumaronitrile (1i): Purification by column chromatography (PE:EA = 10:1) afforded the product as a white solid; MP: 58-60 °C; 1.14 g, yield: 38%; ¹H NMR (400 MHz, CDCl₃) δ = 7.53-7.48 (m, 2H), 7.09-7.00 (m, 2H), 6.17 (s, 1H), 3.94 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 157.0, 133.7, 131.1, 130.1, 121.1, 119.3, 116.1, 114.2, 111.9, 111.8, 55.7. TOF-HRMS Calcd. for C₁₁H₉N₂O [M+H⁺]: 185.0709, found 185.0708.^{7b}

2-(*o*-**Tolyl**)**fumaronitrile (1j):** Purification by column chromatography (PE:EA = 20:1) afforded the product as light yellow liquid; 0.9 g, yield: 30%; ¹H NMR (400 MHz, CDCl₃) δ = 7.43-7.31 (m, 4H), 6.27 (s, 1H), 2.45 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 136.2, 134.2, 131.5, 131.3, 129.7, 128.9, 126.7, 115.5, 113.6, 19.6. TOF-HRMS Calcd. for C₁₁H₉N₂ [M+H⁺]: 169.0760, found 169.0759.

2-(Naphthalen-1-yl)fumaronitrile (1k): Purification by column chromatography (PE:EA = 20:1) afforded the product as a light yellow solid; MP: 128-131 °C; 0.78 g, yield: 26%; ¹H NMR (400 MHz, CDCl₃) δ = 8.06-8.04 (m, 1H), 7.96-7.94 (m, 2H), 7.66-7.57 (m, 4H), 6.45 (s, 1H),

¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 133.7, 133.5, 132.6, 129.6, 129.1, 128.3, 128.0, 127.6, 127.3, 125.2, 123.6, 116.1, 114.3, 113.7. TOF-HRMS Calcd. for C₁₄H₉N₂ [M+H⁺]: 205.0760, found 205.0760.

2-Hexylfumaronitrile (11): Purification by column chromatography (PE:EA = 20:1) afforded the product as light yellow liquid; 0.25 g, yield: 21%; 1H NMR (400 MHz, CDCl3) δ = 5.96 (s, 1H), 2.59 (t, *J* = 7.44 Hz, 2H), 1.62-1.69 (m, 2H), 1.33-1.39 (m, 6H), 0.88-0.91 (m, 3H). ¹³C{1H}NMR (CDCl3, 100 MHz) δ : 137.6, 116.7, 114.0, 112.7, 34.2, 31.8, 28.8, 28.0, 22.9, 14.5. The analytical data are consistent with the literature.^{7a}

2-Phenylmaleonitrile (1a'): Purification by column chromatography (PE:EA = 5:1) afforded the product as a white solid; MP: 90-92 °C; 2.03 g, yield: 58%; 1H NMR (400 MHz, CDCl₃) δ = 7.67-7.65 (m, 2H), 7.58-7.53 (m, 1H), 7.51-7.50 (m, 2H), 6.39 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 133.5, 132.9, 129.9, 129.7, 126.7, 114.7, 114.2, 107.4. TOF-HRMS Calcd. for C₁₀H₅N₂ [M-H⁺]: 153.0458, found 153.0458.^{7a}

2-(4-Fluorophenyl)maleonitrile (1b'): Purification by column chromatography (PE:EA = 5:1) afforded the product as a white solid; MP: 112-115 °C; 1.89 g, yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ = 7.62-7.59 (m, 2H), 7.15-7.11 (m, 2H), 6.27 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 165.3 (d, ¹*J*_{C-F} = 255.0 Hz), 132.2, 129.1, 129.0, 126.2, 126.1, 117.2, 117.0, 114.6, 114.0, 107.3. TOF-HRMS Calcd. for C₁₀H₆N₂F [M+H⁺]: 173.0509, found 173.0510.

2-(4-Bromophenyl)maleonitrile (1c'): Purification by column chromatography (PE:EA = 30:1) afforded the product as a white solid; MP: 107-110 °C; 2.06 g, Yield: 59%; ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 2H), 6.39 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 133.0, 132.4, 128.8, 128.0, 127.9, 114.4, 113.7, 107.8. TOF-HRMS Calcd. for

C₁₀H₄N₂Br [M-H⁺]: 230.9563, found 230.9563.^{7b}

2-(4-Methoxyphenyl)maleonitrile (1d'): Purification by column chromatography (PE:EA = 5:1) afforded the product as a white solid; MP: 114-117 °C; 1.56 g, yield: 52%; ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 9.0 Hz, 2H), 6.98 (d, *J* = 8.9 Hz, 2H), 6.21 (s, 1H), 3.88 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 163.4, 132.7, 128.6, 122.4, 115.2, 115.1, 114.3, 103.9, 55.7. TOF-HRMS Calcd. for C₁₁H₉N₂O [M+H⁺]: 185.0709, found 185.0709.^{7b}

2-(*p*-Tolyl)maleonitrile (1e'): Purification by column chromatography (PE:EA = 10:1) afforded the product as light yellow solid; MP: 134-136 °C; 1.74 g, yield: 58%; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.55$ (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.33 (s, 1H), 2.43 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 144.0, 133.2, 130.3, 127.1, 126.6, 114.9, 114.2, 105.9, 21.5. TOF-HRMS Calcd. for C₁₁H₉N₂ [M+H⁺]: 169.0760, found 169.0759.

2-(*m***-Tolyl)maleonitrile (1f'):** Purification by column chromatography (PE:EA = 5:1) afforded the product as a light yellow solid; MP: 127-130 °C; 1.89 g, yield: 63%; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.45-7.39$ (m, 2H), 7.38-7.37 (m, 2H), 6.35 (s, 1H), 2.42 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 140.1, 134.2, 133.8, 129.9, 129.3, 127.9, 125.9, 124.4, 116.9, 107.7, 21.9. TOF-HRMS Calcd. for C₁₁H₉N₂ [M+H⁺]: 169.0760, found 169.0759.

2-(3-Methoxyphenyl)maleonitrile (1g'): Purification by column chromatography (PE:EA = 10:1) afforded the product as a light yellow solid; MP: 86-88 °C; 0.75 g, yield: 25%; ¹H NMR (400 MHz, CDCl₃) δ = 7.36-7.32 (m, 1H), 7.18-7.15 (m, 1H), 7.05-7.03 (m, 2H), 6.30 (s, 1H), 3.78 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 160.3. 133.3, 131.1, 130.8, 119.0, 118.5, 114.7, 114.1, 112.0, 107.7, 55.6. TOF-HRMS Calcd. for C₁₁H₉N₂O [M+H⁺]: 185.0709, found 185.0709.

2-(2-Methoxyphenyl)maleonitrile (1h'): Purification by column chromatography (PE:EA = 5:1)

afforded the product as a light yellow solid; MP: 146-149 °C; 1.44 g, yield: 48%; ¹H NMR (400 MHz, CDCl₃) δ = 7.68-7.66 (m, 1H), 7.51-7.47 (m, 1H), 7.04 (t, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.98 (s, 1H), 3.96 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 158.8, 133.7, 131.4, 130.6, 121.4, 118.8, 115.6, 114.9, 112.0, 111.2, 56.0. TOF-HRMS Calcd. for C₁₁H₉N₂O [M+H⁺]: 185.0709, found 185.0709.^{7b}

2-(2-Chlorophenyl)maleonitrile (1i'): Purification by column chromatography (PE:EA = 10:1) afforded the product as a white solid; MP: 70-74 °C; 1.68 g, yield: 56%; ¹H NMR (400 MHz, CDCl₃) δ = 7.53-7.26 (m, 4H), 6.43 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.8, 132.6, 131.4, 131.3, 130.6, 129.5, 127.9, 115.0, 113.9, 113.8. TOF-HRMS Calcd. for C₁₀H₆N₂Cl [M+H⁺]: 189.0214, found 189.0214.

2-(*o***-Tolyl)maleonitrile (1j'):** Purification by column chromatography (PE:EA = 10:1) afforded the product as a white solid; MP: 63-67°C; 1.77 g, yield: 59%; ¹H NMR (400 MHz, CDCl₃) δ = 7.36-7.32 (m, 1H), 7.24-7.18 (m, 3H), 6.02 (s, 1H), 2.42 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 136.4, 134.3, 131.7, 131.6, 130.8, 128.9, 127.0, 114.3, 114.1, 113.3, 20.3. TOF-HRMS Calcd. for C₁₁H₉N₂ [M+H⁺]: 169.0760, found 169.0759.

2-(2-Fluorophenyl)maleonitrile (1k'): Purification by column chromatography (PE:EA = 20:1) afforded the product as a white solid; MP: 105-108 °C; 1.71 g, yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ = 7.66-7.61 (m, 1H), 7.50-7.45 (m, 1H), 7.28-7.24 (m, 1H), 7.18-7.13 (m, 1H), 6.62-6.61 (m, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 160.8 (d, ¹*J*_{*C*-*F*} = 255.0 Hz), 134.3, 134.2, 130.8, 128.4, 125.4, 117.3, 117.1, 114.6, 112.6, 112.4. TOF-HRMS Calcd. for C₁₀H₆N₂F [M+H⁺]: 173.0509, found 173.0511.

2-(Naphthalen-1-yl)maleonitrile (11'): Purification by column chromatography (PE:EA = 10:1)

The Journal of Organic Chemistry

afforded the product as a light yellow liquid; 1.62 g, yield: 54%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.09-7.93$ (m, 3H), 7.66-7.54 (m, 4H), 6.32 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 133.6, 133.2, 132.6, 129.4, 129.1, 128.8, 128.2, 128.0, 127.2, 125.2, 123.4, 114.9, 114.3, 114.0. TOF-HRMS Calcd. for C₁₄H₉N₂ [M+H⁺]: 205.0760, found 205.0759.

2-(Naphthalen-2-yl)maleonitrile (1m'): Purification by column chromatography (PE:EA = 10:1) afforded the product as a light yellow solid; MP: 147-151 °C; 1.74 g, yield: 58%; ¹H NMR (400 MHz, CDCl₃) δ = 8.22 (s, 1H), 7.96-7.88 (m, 3H), 7.64-7.59 (m, 3H), 6.47 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 134.9, 133.3, 132.7, 129.8, 129.4, 129.3, 129.1, 127.9, 127.8, 127.1, 120.8, 114.9, 114.2, 106.8. TOF-HRMS Calcd. for C₁₄H₉N₂ [M+H⁺]: 205.0760, found 205.0760.

2-(Furan-2-yl)maleonitrile (1n'): Purification by column chromatography (PE:EA = 10:1) afforded the product as a light yellow liquid; 1.62 g, yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ = 7.70 (s, 1H), 7.22-7.21 (m, 1H), 6.65-6.64 (m, 1H), 5.80 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 147.4, 146.2, 120.2, 118.4, 114.7, 114.2, 113.4, 100.9. TOF-HRMS Calcd. for C₈H₄N₂ONa [M+Na⁺]: 167.0215, found 167.0212.

2-(Thiophen-2-yl)maleonitrile (10'): Purification by column chromatography (PE:EA = 10:1) afforded the product as a light yellow liquid; 1.8 g, yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ = 7.58-7.57 (m, 2H), 7.18-7.17 (m, 1H), 6.11 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 134.9, 134.7, 133.6, 128.9, 126.5, 115.9, 115.7, 102.1. TOF-HRMS Calcd. for C₈H₄N₂SNa [M+Na⁺]: 182.9987, found 182.9988.

General procedure for asymmetric hydrogenation of 1: A stock solution was made by mixing $[Rh(COD)Cl]_2$ with (R,R)-f-spirophos in a 1:2.2 molar ratio in CH_2Cl_2 at room temperature for 20 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (1.0 mL, 0.001 mmol) was

transferred by syringe into the vials charged with different substrates (0.1 mmol for each) in anhydrous CH_2Cl_2 (2.0 mL). The vials were subsequently transferred into an autoclave which hydrogen gas was charged. The reaction was then stirred under H_2 (10 atm) at room temperature for 7 h for the substrates **1** or 60 °C 8 h for the substrates **1'**. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of silica gel to remove the metal complex. The ee values of products **2** or **2'** were determined by GC analysis on a chiral stationary phase. The crude products **2j**, **2l'**, **2m'** were concentrated and purified by column chromatography and the ee values were determined by HPLC analysis on a chiral stationary phase.

(+)-2-Phenylsuccinonitrile (2a): 19.1 mg, yield 98%; 90% ee; $[\alpha]_D^{20} = +30.2$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.9 min (minor), t_R = 78.3 min (major). (2a'): 18.9 mg, yield 97%; 90% ee; $[\alpha]_D^{20} = +30.0$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.9 min (minor), t_R = 78.4 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.41 (m, 5H), 4.16 (t, *J* = 6.9 Hz, 1H), 3.03-2.91 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.8, 130.3, 130.2, 127.8, 118.3, 115.7, 34.7, 25.3. TOF-HRMS Calcd. for C₁₀H₉N₂ [M+H⁺]:157.0760, found 157.0759.^{7a, 19}

(+)-2-(4-Fluorophenyl)succinonitrile (2b): 21.5 mg, yield 99%; 89% ee; $[\alpha]_D^{20}$ = +46.0 (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 67.3 min (minor), t_R = 68.2 min (major). (2b'): 21.1 mg, yield 97%; 89% ee; $[\alpha]_D^{20}$ = +46.2 (c = 0.5, CH₂Cl₂); GC condition:

Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 $^{\circ}$ C - 1 $^{\circ}$ C/min - 200 $^{\circ}$ C - 50 min; t_R = 67.2 min (major), t_R = 68.7 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.42-7.39 (m, 2H), 7.17-7.13 (m, 2H), 4.16 (t, *J* = 6.8 Hz, 1H), 3.02-2.90 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 163.1 (d, ^{*1*}*J*_{*C-F*} = 249.0 Hz), 129.2, 129.1, 128.0, 127.9, 117.5, 116.9, 116.6, 115.0, 33.3, 24.7. TOF-HRMS Calcd. for C₁₀H₆N₂F [M-H⁺]: 173.0520, found 173.0521.

(+)-2-(4-Bromophenyl)succinonitrile (2c): 28.7 mg, yield 98%; 88% ee; $[\alpha]_D^{20} = +27.6$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.9 min (minor), t_R = 78.3 min (major). (2c'): 29.0 mg, yield 99%; 88% ee; $[\alpha]_D^{20} = +27.7$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.9 min (minor), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.9 min (minor), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.9 min (minor), t_R = 78.4 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.61-7.58 (m, 2H), 7.31-7.28 (m, 2H), 4.14 (t, *J* = 6.8 Hz, 1H), 3.01-2.90 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.8, 131.1, 128.9, 123.9, 117.3, 114.9, 33.5, 24.5. TOF-HRMS Calcd. for C₁₀H₆N₂Br [M-H⁺]: 232.9719, found 232.9719.

(+)-2-(4-Methoxyphenyl)succinonitrile (2d): 22.5 mg, yield 97%; 86% ee; $[\alpha]_D^{20} = +33.4$ (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 85.5 min (minor), t_R = 86.4 min (major). (2d'): 22.8 mg, yield 98%; 91% ee; $[\alpha]_D^{20} = +35.6$ (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 85.6 min (minor), t_R = 86.7 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.31 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 4.12 (t, *J* = 6.9 Hz, 1H), 3.82 (s, 3H),

2.99-2.87 (m, 2H). ${}^{13}C{}^{1}H{}NMR$ (CDCl₃, 100 MHz) δ : 160.4, 128.5, 124.1, 118.1, 115.4, 115.0,

55.4, 33.3, 24.9. TOF-HRMS Calcd. for $C_{11}H_{11}N_2O$ [M+H⁺]: 187.0865, found 187.0867.

(+)-2-(p-Tolyl)succinonitrile (2e): 21.0 mg, yield 99%; 93% ee; $[\alpha]_D^{20}$ = +36.9 (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 68.7 min (minor), t_R = 69.6 min (major). (2e'): 20.8 mg, yield 98%; 91% ee; $[\alpha]_D^{20}$ = +36.2 (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 68.8 min (minor), t_R = 69.8 min (major).¹H NMR (400 MHz, CDCl₃) δ = 7.23-7.16 (m, 4H), 4.05 (t, *J* = 6.9 Hz, 1H), 2.93-2.81 (m, 2H), 2.30 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ: 139.6, 130.3, 129.2, 127.0, 117.9, 115.3, 33.7, 24.7, 21.1. TOF-HRMS Calcd. for C₁₁H₉N₂ [M-H⁺]:169.0771, found 169.0772.

(+)-2-(m-Tolyl)succinonitrile (2f): 20.6 mg, yield 97%; 90% ee; $[\alpha]_D^{20}$ = +45.9 (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.0 min (minor), t_R = 77.3 min (major). (2f'): 21.0 mg, yield 99%; 88% ee; $[\alpha]_D^{20}$ = +45.0 (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 77.5 min (minor), t_R = 77.9 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.25-7.12 (m, 4H), 4.04 (t, *J* = 6.9 Hz, 1H), 2.93-2.82 (m,2H), 2.31 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ: 139.7, 132.1, 130.3, 129.6, 127.8, 124.3, 117.9, 115.3, 34.0, 24.8, 21.4. TOF-HRMS Calcd. for C₁₁H₉N₂ [M-H⁺]:169.0771, found 169.0771.

(+)-2-(2-Chlorophenyl)succinonitrile (2g): 22.3 mg, yield 98%; 88% ee; $[\alpha]_D^{20} = +96.3$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0

mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; $t_R = 84.9$ min (major), $t_R = 86.4$ min (minor). (**2i'**): 23.5 mg, yield 99%; 85% ee; $[\alpha]_D^{20} = +95.6$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; $t_R = 84.9$ min (major), $t_R = 86.3$ min (minor). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.69-7.66$ (m, 1H), 7.47-7.38 (m, 3H), 4.66 (t, J = 5.6 Hz, 1H), 3.10-2.94 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.5, 131.1, 130.4, 129.8, 129.4, 128.2, 117.3, 115.1, 31.6, 22.7. TOF-HRMS Calcd. for C₁₀H₆N₂Cl [M-H⁺]:189.0224, found 189.0226.

(+)-2-(3-Methoxyphenyl)succinonitrile (2g'): 23.0 mg, yield 99%; 87% ee; $[\alpha]_D^{20}$ = +45.2 (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 2.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R =72.8 min (minor), t_R = 73.8 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.37-7.33 (m, 1H), 6.98-6.93 (m, 3H), 4.14 (t, *J* = 6.8 Hz, 1H), 3.82 (s, 3H), 2.97-2.95 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 160.4, 133.6, 130.8, 119.3, 117.9, 115.4, 114.9, 113.1, 55.5, 34.0, 24.6. TOF-HRMS Calcd. for C₁₁H₁₁N₂O [M+H⁺]:187.0865, found 187.0867.²⁰

(+)-2-(2-Fluorophenyl)succinonitrile (2h): 21.1 mg, yield 97%; 89% ee; $[\alpha]_D^{20} = +59.1$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 74.2 min (minor), t_R = 74.6 min (major). (2k'): 21.3 mg, yield 98%; 90% ee; $[\alpha]_D^{20} = +59.8$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 73.6 min (minor), t_R = 73.8 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (t, *J* = 7.6 Hz, 1H), 7.31-7.30 (m, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 9.4 Hz, 1H), 4.34 (t, *J* = 6.4 Hz, 1H), 2.94-2.82 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ :

159.6 (d, ${}^{I}J_{C-F}$ = 247.0 Hz), 129.2, 129.1, 128.0, 127.9, 117.5, 116.9, 116.6, 115.0, 33.3, 24.7. 131.8, 131.7, 129.2, 129.1, 125.5, 125.4, 119.5, 119.4, 116.9, 116.4, 116.2, 114.9, 28.5, 28.4, 23.1, 23.0. TOF-HRMS Calcd. for C₁₀H₆N₂F [M-H⁺]: 173.0520, found 173.0521.

(+)-2-(2-Methoxyphenyl)succinonitrile (2i): 22.4 mg, yield 96%; 96% ee; $[\alpha]_D^{20} = +106.7$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 81.2 min (minor), t_R = 81.9 min (major). (2h'): 22.8 mg, yield 98%; 92% ee; $[\alpha]_D^{20} = +105.2$ (c = 0.5, CH₂Cl₂); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 81.3 min (minor), t_R = 82.1 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 4.51 (t, *J* = 6.6 Hz, 1H), 3.89 (s, 3H), 3.04-2.92 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 155.9, 130.9, 128.7, 121.4, 120.2, 118.0, 115.7, 111.1, 55.6, 29.2, 22.2. TOF-HRMS Calcd. for C₁₁H₁₁N₂O [M+H⁺]:187.0865, found 187.0867.

(+)-2-(o-Tolyl)succinonitrile (2j): 20.4 mg, yield 96%; 98% ee; $[\alpha]_D^{20} = +132.2$ (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 67.6 min (major), t_R = 68.1 min (minor). (2j'): 20.8 mg, yield 98%; 95% ee; $[\alpha]_D^{20} = +131.6$ (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 67.4 min (minor), t_R = 68.2 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.41-7.40 (m, 1H), 7.24-7.18 (m, 3H), 4.28 (t, *J* = 6.9 Hz, 1H), 2.92-2.81 (m, 2H), 2.32 (s, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 135.6, 132.1, 131.1, 130.2, 128.1, 128.0, 118.7, 115.8, 31.4, 23.9, 19.7. TOF-HRMS Calcd. for C₁₁H₉N₂ [M-H⁺]: 169.0771, found 169.0772.

(+)-2-(Naphthalen-1-yl)succinonitrile (2k): 25.5 mg, yield 99%; 93% ee; $[\alpha]_D^{20} = +52.0$ (c = 0.5, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60mm), ipa : hex = 35:65, 1mL/min, 254 nm; t_R = 10.7 min (major), t_R = 14.6 min (minor). (2l'): 25.5 mg, yield 99%; 86% ee; $[\alpha]_D^{20} = +45.0$ (c = 0.5, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60mm), ipa : hex = 35:65, 1mL/min, 254 nm; t_R = 10.5 min (minor), t_R = 14.0 min (major). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.95-7.85$ (m, 2H), 7.83-7.79 (m, 2H), 7.67-7.54 (m, 3H), 4.94 (t, *J* = 6.7 Hz, 1H), 3.20-3.06 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 133.7, 130.1, 129.4, 128.8, 127.3, 127.1, 126.2, 125.9, 125.1, 120.5, 117.5, 114.8, 30.8, 23.1. TOF-HRMS Calcd. for C₁₄H₁₁N₂ [M+H⁺]: 207.0916, found 207.0914.

(*S*)-2-Hexylsuccinonitrile (2l): 20.1 mg, yield 98%; 96% ee; $[α]_D^{20} = -62.0$ (c = 0.5, EtOH); GC condition: Supelco gamma DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 3.0 mL/min, programmed 100 °C - 2 °C/min - 190 °C - 30 min; t_R = 35.6 min (minor), t_R = 35.7 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 2.91 (s, 1H), 2.72 (s, 2H), 1.76-1.77 (m, 2H), 1.55-1.57 (m, 1H), 1.46-1.47 (m, 1H), 1.24-1.30 (s, 6H), 0.87-0.89 (m, 3H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 119.5, 116.2, 32.0, 31.9, 29.0, 27.2, 23.0, 21.6, 14.5, 1.56. The analytical data are consistent with the literature.²¹

(+)-2-(Naphthalen-2-yl)succinonitrile (2m'): 25.2 mg, yield 98%; 92% ee; $[\alpha]_D^{20} = +51.4$ (c = 0.5, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60mm), ipa : hex = 35:65, 1mL/min, 254 nm; t_R = 9.9 min (major), t_R = 11.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.94-7.87 (m, 4H), 7.58-7.56 (m, 2H), 7.45-7.43 (m, 1H), 4.32 (t, *J* = 6.8 Hz, 1H), 3.10-2.99 (m, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 132.6, 132.5, 129.2, 128.7, 127.4, 127.1, 126.6, 126.5, 126.3, 123.2, 117.1, 114.5, 33.6, 24.0. TOF-HRMS Calcd. for C₁₄H₁₁N₂ [M+H⁺]: 207.0916, found

207.0915.

(+)-2-(Furan-2-yl)succinonitrile (2n'): 17.9 mg, yield 98%; 65% ee; $[\alpha]_D^{20} = +37.6$ (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 43.3 min (minor), t_R = 44.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.46 (s, 1H), 6.52-6.42 (m, 2H), 4.32 (t, *J* = 6.7 Hz, 1H), 3.06 (d, *J* = 6.7 Hz, 2H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 144.8, 144.5, 116.2, 115.5, 111.7, 28.8, 22.1. TOF-HRMS Calcd. for C₈H₆N₂ONa [M+Na⁺]: 169.0372, found 169.0374.

(+)-2-(Thiophen-2-yl)succinonitrile (2o'): 19.4 mg, yield 96%; 57% ee; $[\alpha]_D^{20} = +54.8$ (c = 0.5, CH₂Cl₂); GC condition: Supelco alpha DexTM 225 column (30 m × 0.25 mm × 0.25 µm), N₂ 1.0 mL/min, programmed 100 °C - 1 °C/min - 200 °C - 50 min; t_R = 63.7 min (minor), t_R = 65.1 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.37-7.36 (m, 1H), 7.21-7.20 (m, 1H), 7.05-7.02 (m, 1H), 4.47 (t, *J* = 6.7 Hz, 1H), 3.04-3.02 (m, 1H). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 134.0, 128.2, 128.1, 127.6, 117.6, 115.6, 29.9, 25.5. TOF-HRMS Calcd. for C₈H₆N₂SNa [M+Na⁺]: 185.0143, found 185.0146.

General procedure for the synthesis of 1,4-diamines: To a stirring solution of the hydrogenation product (0.2 mmol) in MeOH (3 mL) Boc₂O (0.8 mmol) and NiCl₂.6H₂O (0.8 mmol) were first added, then NaBH₄ (3.2mmol) was added portionwise at 0 $^{\circ}$ C over 1 h. The mixture was stirred at room temperature until no starting material was detected by TLC and carefully quenched with H₂O. The aqueous layer was extracted with ethyl acetate, dried over MgSO₄. After the solvent was removed in vacuo, the residue was purified by silica gel column chromatography using petroleum ether/AcOEt as an eluent.¹⁷

1,4-Bis((tert-butoxycarbonyl)amino)-2-(4-methoxyphenyl)butane (3): 25.5 mg, yield: 65%; 96%

ee; $[\alpha]_D^{25} = -8.8$ (c = 0.5, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60mm), ipa : hex = 10:90, 1mL/min, 254 nm; t_R = 8.4 min (major), t_R = 9.9 min (minor). ¹H NMR (CDCl₃, 400 MHz) δ : 7.22-6.85 (m, 4H),4.65 (s, 1H), 4.45 (s, 1H), 3.81(s, 3H), 3.46-3.45 (m, 1H), 3.30-3.25 (m, 2H), 3.10-3.06 (m, 1H), 2.88-2.83 (m, 1H), 2.03 (s, 1H), 1.86-1.81 (m, 1H), 1.41-1.38(m, 18H) . ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ : 158.1, 156.5, 156.4, 131.4, 130.2, 128.3, 128.2, 121.6, 111.2, 79.5, 79.4, 55.9, 45.4, 39.1, 36.8, 33.4, 31.5, 28.9, 28.8, 19.7, 1.5. TOF-HRMS Calcd. for C₂₁H₃₅N₂O₅ [M+H⁺]: 395.2540, found 395.2539.

ACKNOWLEDGMENT

We thank the National Natural Science Foundation of China (Grant Nos. 21672024, 21272026, and 21472013), the Ministry of Education of China (the Fundamental Research Funds for the Central Universities, Program for Changjiang Scholars and Innovative Research Team in University), and Beijing Municipal Commission of Education for generous financial support.

SUPPORTING INFORMATION

NMR, GC and HPLC spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

[1] (a) Finke, P. E.; Meurer, L. C.; Oates, B. et al. *Bioorg. Med. Chem. Lett.* 2001, *11*, 265. (b)
Macfarlane, D. E.; Manzel, L. *J. Immunol.* 1998, *160*, 1122. (c) Young, W. B.; Rai, R.; Shrader, W.
D.; Burgess-Henry, J.; Hu, H.; Elrod, K. C.; Sprengeler, P. A.; Katz, B. A.; Sukbuntherng, J.;
Mordenti, J. *Bioorg. Med. Chem. Lett.* 2006, *16*, 2034. (d) Meyers, M. J.; Sun, J.; Carlson, K. E.;
Marriner, G. A.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. *J. Med. Chem.* 2001, *44*, 4230.

[2] (a) Aizencang, G.; Frydman, R. B.; Giorgieri, S.; Sambrotta, L.; Guerra, L.; Frydman, B. J.

Med. Chem. 1995, 38, 4337. (b) T. C. Adams, D. W. Combs, G. D. Daves, Jr., F. M. Hauser, J. Org. Chem. 1981, 46, 4582.

[3] (a) Wang, C.-H.; Kingsbury, C. A. J. Org. Chem. 1975, 40, 3811. (b) Das, S.; Yasmin, H.;

Masud, M. M.; Roy, S. C.; Nahar, L.; Rahman, M. M.; Gibbons, S.; Bachar, S. C.; Sarker, S. D. *Tetrahedron*, **2008**, *64*, 8642.

[4] Murahashi, S.; Naota, T.; Saito, E. J. Am. Chem. Soc. 1986, 108, 7846.

[5] (a) Babler, J. H.; Spina, K. P. Tetrahedron Lett. 1984, 25, 1659. (b) Crider, A. M.; Hemdi, T. F.;

Hassan, M. N.; Fahn, S. J. Pharm. Sci. 1984, 73, 1585. (c) Wall, G. M.; Baker, J. K. J. Med. Chem.

1989, 32, 1340. (d) Gavagan, J. E.; Fager, S. K.; Fallon, R. D.; Folsom, P. W.; Herkes, F. E.;

Eisenberg, A.; Hann, E. C.; DiCosmo, R. J. Org. Chem. 1998, 63, 4792. (e) Ram fez-Rodr guez,

A.; M. Méndez, J.; Jim éndez, C. C.; León, F. L.; Vazquez, A. Synthesis 2012, 44, 3321.

[6] Bailey, P. L.; Jackson, R. F. W. Tetrahedron Lett. 1991, 32, 3119.

[7] (a) Arai, S.; Sato, T.; Koike, Y.; Hayashi, M.; Nishida, A. Angew. Chem. Int. Ed. 2009, 48,

4528. (b) Arai, S.; Sato, T.; Koike, Y.; Nishida, A. Adv. Synth. Catal. 2009, 351, 1897.

[8] Kiyokawa, K.; Nagata, T.; Hayakawa, J.; Minakata, S. Chem. -Eur. J. 2015, 21, 1280.

[9] (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima,

I., Ed.; Wiley, New York, 2000, p 1. (b) Blaser, H.-U.; Spindler, F. In *Comprehensive Asymmetric Caatalysis*, Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer, Berlin, 1999, p 247. (c) Tang, W.; Zhang, X. *Chem. Rev.* 2003, *103*, 3029. (d) Roseblade, S. J.; Pfaltz, A. *Acc. Chem. Res.* 2007, *40*, 1402. (e) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. *Chem. Rev.* 2011, *111*, 1713. (f) Dong, K.; Wang, Z.; Ding, K. *J. Am. Chem. Soc.* 2012, *134*, 12474. (g) Wang, D.-S.; Chen, Q.-A.; Zhou,

The Journal of Organic Chemistry

Y.-G. Chem. Rev. 2012, 112, 2557. (h) Li, Y.; Dong, K.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed.
2013, 52, 6748. (i) Dong, K.; Li, Y.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 14191.
(j) Verendel, J. J.; Pàmies, O.; Di éguez, M. Andersson, P. G. Chem. Rev. 2014, 114, 2130. (k)
Dong, K.; Li, Y.; Wang, Z.; Ding, K. Org. Chem. Front. 2014, 1, 155.
[10] (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, O. J. J. Am.

Chem. Soc. 1977, 99, 5946. (b) Tani, K.; Yamagata, T.; Akutagawa, S.; Kumpbayashi, H.;
Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka, T. *J. Am. Chem. Soc.* 1984, *106*, 5208.
(c) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. *J. Org. Chem.* 1987, *52*, 3174. (d)
Blaser, H.-U.; Buser, H. P.; Loers, K.; Hanreich, R.; Jalett, H. P.; Jelsch, E.; Pugin, B.; Schneider, H. D.; Spindler, F.; Wagmann, A. *Chimia* 1999, *53*, 275.

[11] For selected examples on asymmetric hdyrogenation of unsatruated nitriles see: (a) Burk, M.

J.; de Kon-ing, P. D.; Grote, T. M.; Hoekstra, M. S.; Hoge, G.; Jennings, R. A.; Kissel, W. S.; Le, T.

V.; Lennon, I. C.; Mulhern, T. A.; Ramsden, J. A.; Wade, R. A. J. Org. Chem. 2003, 68, 5731. (b)

Ma, M.; Hou, G.; Sun, T.; Zhang, X.; Li, W.; Wang, J.; Zhang, X. Chem. -Eur. J. 2010, 16, 5301.

(c) Müller, M.-A.; Pfaltz, A. Angew.Chem., Int. Ed. 2014, 53, 8668. (d) Yan, Q.; Kong, D.; Li, M.;
Hou, G.; Zi, G. J. Am. Chem. Soc. 2015, 137, 10177.

[12] (a) Keinan, E.; Perez, D. J. Org. Chem. 1987, 52, 2576. (b) Keinan, E.; Greenspoon, N. J. Am. Chem. Soc. 1986, 108, 7314. (c) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7559. (d) Lee, D.; Kim, D.; Yun, J. Angew.Chem., Int. Ed. 2006, 45, 2785.

[13] (a) Zhou, Q.-L., Ed. Privileged Chiral Ligands and Catalysts, Wiley-VCH: Weinheim, 2011.

(b) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581. (c) Ding, K.; Han, Z.; Wang, Z. Chem.

Asian J. 2009, 4, 32. (d) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2014, 72, 778.

[14] (a) Yan, Q.; Liu, M.; Kong, D.; Zi, G.; Hou, G. Chem. Commun. 2014, 50, 12870. (b) Liu, M.;

Kong, D.; Li, M.; Zi, G.; Hou, G. Adv. Synth. Catal. 2015, 357, 3875. (c) Kong, D.; Li, M.; Wang,

R.; Zi, G.; Hou, G. Org. Lett. 2016, 18, 4916. (d) Kong, D.; Li, M.; Zi, G.; Hou, G. He, Y. J. Org.

Chem. 2016, 81, 6640. (e) Yan, Q.; Kong, D.; Zhao, W.; Zi, G.; Hou, G. J. Org. Chem. 2016, 81,

2070. (f) Kong, D.; Li, M.; Wang, R.; Zi, G.; Hou, G. Org. Biomol. Chem. 2016, 14, 1216. (g)

Kong, D.; Li, M.; Wang, R.; Zi, G.; Hou, G. Org. Biomol. Chem. 2016, 14, 4046.

[15] Lautens, M.; Fagnou, K.; Yang, D. J. Am. Chem. Soc. 2003, 125, 14884.

[16] (a) Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580. (b)
Miyamoto, Y.; Banno, Y.; Yamashita, T.; Fujimoto, T.; Oi, S.; Moritoh, Y.; Asakawa, T.; Kataoka,
O.; Yashiro, H.; Tomoko, A.; Osamu, K.; Hiroaki, Y.; Koji, T.; Nobuhiro, S.; Koji, I.; Takuo,
K.; Shigetoshi, T.; Akiyoshi, T.; Masako, S.; Miyuki, F.; Michiko, A.; Yoshio, Y.; Kathleen,
A.; Jason, Y.; Hironobu, M. J. Med. Chem. 2011, 54, 831. (c) Whitesell, J. K. Chem. Rev. 1989, 89, 1581.

[17] Brenna, E.; Gatti, F. G.; Manfredi, A.; Monti, D.; Parmeggiani, F. *Catal. Sci. Technol.* 2013, *3*, 1136.

- [18] Bednarova, E.; Colacino, E.; Lamaty, F.; Kotora, M. Adv. Synth. Catal. 2016, 358, 1916.
- [19] Sung, H.-L.; Hsu, H.-L. J. Organomet. Chem. 2011, 696, 1280.

[20] Crider, A.; Sylvestri, S.; Tschappat, K.; Dick, R.; Leader, W. J. Heterocycl. Chem. 1988, 25, 1407.

[21] Hasegawa, T.; Kawanaka, Y.; Kasamatsu, E.; Ohta, C.; Nakabayashi, K.; Okamoto, M.;
Hamano, M.; Takahashi, K.; Ohuchida, S.; Hamada, Y. Org. Process Res. Dev. 2005, 9, 774.