

SCIENCE ()DIRECT.

BIOORGANIC & MEDICINAL CHEMISTRY

Bioorganic & Medicinal Chemistry 11 (2003) 4431-4447

New Highly Active Taxoids from 9β-Dihydrobaccatin-9,10acetals. Part 4

Yasuyuki Takeda,^a Kouichi Uoto,^a Jun Chiba,^a Takao Horiuchi,^a Michio Iwahana,^b Ryo Atsumi,^c Chiho Ono,^c Hirofumi Terasawa^b and Tsunehiko Soga^{a,*}

^aMedicinal Chemistry Research Laboratory, Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan

^bNew Product Research Laboratories III, Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan

^cDrug Metabolism & Physicochemical Property Research Laboratory, Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan

Received 26 March 2003; accepted 30 June 2003

Abstract—It was shown that a new taxane analogue 3, which exhibited both in vitro antitumor activity and in vivo efficacy by both iv and po administration, was prone to be metabolized by human liver microsomes. We identified a major metabolite, M-1, generated by human liver microsomes as 20a, a hydroxylated compound at the pyridine ring of 3. To improve the metabolic stability of 3, we designed and synthesized new taxane analogues based on the structure of M-1, and obtained some compounds that maintained excellent antitumor activity and were scarcely metabolized by human liver microsomes. \bigcirc 2003 Elsevier Ltd. All rights reserved.

Introduction

Paclitaxel (1, Taxol[®]) was isolated from the bark of the western yew Taxus brevifolia by Wani et al. in 1971¹ and has been shown to be clinically efficacious against several tumors that are refractory to other antitumor drugs. Paclitaxel is an antimitotic agent with a unique mode of action; it promotes the assembly of stable microtubules, which cannot be depolymerized by calcium, a variation of temperature, or microtubule-disassembling agents.² The excellent clinical activity of paclitaxel prompted intense research aimed at understanding the influence of structural modifications of the paclitaxel molecule on its biological activity and searching for new analogues with more desirable physicochemical properties and higher potency, such as docetaxel (2, Taxotere[®]).³ The search for novel taxane analogues has focused on regions such as the side chain at the C-13 position, C-2 benzoate and C-4 acetate, which interact directly with tubulin,⁴ and the modifications of such regions influenced the biological activity

0968-0896/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0968-0896(03)00454-1

significantly. On the other hand, modifications at the position C-7–C-10 regions of the diterpene moiety are tolerated very well,⁵ because these regions do not interact directly with tubulin. Under these circumstances, we focused on the C-7–C-10 region and, as a result, found that some of the new taxane analogues, 9- β -dihydro-9,10-*O*-acetal taxanes, showed activity against several tumor cell lines stronger than that of docetaxel.⁶ Following an extensive study, we discovered the compound **3**, which exhibited marked in vitro antitumor activity as well as in vivo efficacy by both iv and po administration (Fig. 1).⁷

During the exploration of the biological property of **3**, however, it was elucidated that the metabolic stability of **3** differed among species; compound **3** was scarcely metabolized by mouse or dog liver microsomes. On the other hand, the incubation of **3** with monkey or human liver microsomes provided the metabolite M-1 rapidly. Hence, it was considered that the excellent antitumor efficacy of **3** obtained by both po and iv administration in mouse might not be assured in the case of oral administration in humans. For this reason, we started to prepare taxane analogues that maintained antitumor efficacy but would be less prone to be metabolized (Fig. 2).

^{*}Corresponding author. Tel.: +81-3-3680-0151; fax: +81-3-5696-8344; e-mail: sogatf7t@daiichipharm.co.jp

Figure 1. Structures of taxane analogues.

Figure 2. Remaining rates of docetaxel (upper) and 3 (lower) after incubation with human, monkey, dog, and mouse liver microsomes.

Figure 3. Mass fragment patterns of 3.

Chemistry

Before beginning to synthesize new taxane analogues, we tried to identify the structure of M-1. The chemical structure of M-1 was partially determined by LC/MS/MS analysis. As a result of the LC/MS analysis, M-1 gave a strong signal at m/z 922, that is 16 mass units greater than the protonated molecular ion $(M + H)^+$ of 3 at m/z 906. Subsequently, LC/MS/MS analysis of 3 at m/z 906 and that of M-1 at m/z 922 were performed,

and both fragmentation patterns gave product ions at m/z 130 and 624, which corresponded to the core taxane ring. Therefore, the core taxane ring was assumed to be unchanged in M-1. The fragment ions at m/z 183, 209, and 227 were found in the spectrum of **3**, but were not present in the spectrum of M-1. These were replaced by new ions at m/z 199, 225, and 243, which were 16 mass unit greater than the respective corresponding ions. These results suggested that M-1 is the oxygenated compound of **3** and that the oxidation occurred on the pyridine ring moiety. Then, we tried to synthesize the pyridine N-oxide at first (Fig. 3).

Treating 3 with *m*-chloroperbenzoic acid (*m*CPBA) in CHCl₃ afforded the morpholine *N*-oxide 4 in good yield but not the pyridine *N*-oxide (Scheme 1).

Oxidation of 5,⁷ the precursor of 3, with OsO₄ gave the diol 6; then oxidation with *m*CPBA afforded the pyridine *N*-oxide 7. Cleavage of the diol moiety of 7 with NaIO₄ gave the aldehyde, to which the morpholine moiety was introduced by reductive amination to afford the targeted pyridine *N*-oxide 8 (Scheme 2).

As shown by HPLC analysis, the retention time of Noxide 8 did not agree with that of M-1. Therefore, it was assumed that M-1 was oxidized onto the pyridine ring. Then, we tried to synthesize compounds possessing the hydroxypyridine rings at the C-13 side chain. The synthesis of the key β -lactam intermediates (14a, 14b) is shown in Scheme 3. Protection of the phenol moiety of 9 with benzyl bromide gave the benzyl ether 10, which was converted to the aldehyde 11a in four steps according to a procedure similar to that reported by Blantz and co-workers.⁸ The 3-benzyloxypyridyl aldehyde 11b was synthesized from 12 via the protection followed by oxidation. Aldehydes **11a** and **11b** were converted to β lactams (13a, 13b) by the method of chiral enolate-imine cyclocondensation.^{9,10} Acylations of 13a and 13b were accomplished with di-tert-butyl dicarbonate [(Boc)₂O] and 4-dimethylaminopyridine (DMAP) to afford the respective targeted β -lactams (14a, 14b) in high yield.

The coupling of 16^7 with the respective β -lactams (14a, 14b) and the subsequent removal of the protecting group at C-2' were carried out following procedures similar to those reported by Ojima et al.⁹ to give the compounds 18a and 18b. Oxidation of 18a and 18b with OsO₄ followed by cleavage with NaIO₄ gave the aldehydes, which were converted to the compounds 19a and 19b by reductive amination. Finally, cleavage of the

Scheme 1. Reagents: (a) mCPBA, CHCl₃ (92%).

Scheme 2. Reagents: (a) OsO₄, NMO, THF, acetone, H₂O (90%); (b) *m*CPBA, CHCl₃ (51%); (c) (1) NalO₄, THF, MeOH, H₂O; (2) morpholine, AcOH, NaBH₃CN, EtOH (39%).

Scheme 3. Reagents: (a) BnBr, NaH, THF, DMF (82%); (b) (1) mCPBA, CHCl₃ (96%); (2) Ac₂O (77%); (3) NaOH, EtOH, H₂O (75%); (4) MnO₂, CHCl₃ (77%); (c) (1) BnBr, KOH, EtOH (66%); (2) MnO₂, CHCl₃ (73%); (d) (1) LiHMDS, TMSCl, THF; (2) 15, LDA, THF (39% for 13a, 37% for 13b); (e) (Boc)₂O, DMAP, THF (88% for 14a, 83% for 14b).

benzyl moiety of **19a** and **19b** by catalytic hydrogenation gave the targeted compounds **20a** and **20b** (Scheme 4). As a result of LC/MS/MS analysis, compound **20a** was found to give the same mass fragmentation patterns and the same retention time in HPLC chromatograms as those of M-1 generated by human liver microsomes. Therefore, it was elucidated that the metabolite of **3** produced by human liver microsomes was the compound oxidized onto the 5-position of the pyridine ring of **3**.

The cytotoxicity of four oxidized compounds (4, 8, 20a, 20b) was compared with those of paclitaxel (1), docetaxel (2), and 3 (Table 1). All compounds, with the exception of 20a exhibited decreased cytotoxicity. Although the cytotoxicity of 20a against cancer cell lines expressing P-glycoprotein (PC-12, PC-6/VCR29-9 and PC-6/VP1-1) was weak compared with that of 3, 20a retained the activity against P388 and PC-6. It was therefore considered that the introduction of the substituent onto the 5-position of the pyridine ring would not significantly alter the cytotoxicity of **3** but would effectively block hydroxylation. On this assumption, we synthesized the taxane analogues possessing the pyridine ring substituted at its 5-position at the C-13 side chain.

Synthesis of the β -lactams (23a–23f) possessing the pyridine ring with the introduced substituents on their 5positions was depicted in Scheme 5. Acylations of chiral β -lactams (22a–22f) with (Boc)₂O afforded the desired β -lactams (23a–23f) in good yield. The β -lactams (22a– 22f) were derived from the corresponding pyridylaldehydes (21a–21f) in various ways. The β -lactams (24a, 24d, 24e) were synthesized by the Staudinger reaction between the imine, which was derived from the corresponding aldehydes (21a, 21d, 21e) and *p*-anisidine, and the ketene derived in situ from 2-acetoxyacetyl

Scheme 4. Reagents: (a) LiHMDS, β-lactams (90% for 17a, 82% for 17b); (b) TBAF, THF (100% for 18a, 94% for 18b); (c) (1) OsO₄, NMO, THF, acetone, H₂O; (2) NaIO₄, THF, MeOH, H₂O; (3) morpholine, AcOH, NaBH₃CN, EtOH (74% for 19a, 69% for 19b); (d) H₂, Pd(OH)₂, EtOH (64% for 20a, 84% for 20b).

Table 1. Cytotoxicity and metabolic stability of 7-deoxy-9,10-O-acetal taxane analogues

Compd	Cytotoxicity GI ₅₀ (ng/mL) ^a					Remaining rate (%) ^b
	P388	PC-6	PC-12	PC-6/VCR29-9	PC-6/VP1-1	
1	2.93	1.27	539	455	1000	NT
2	0.78	0.26	19.1	62.1	442	88.7
3	0.18	0.26	0.13	2.43	19.3	60.2
4	10	4.45	4.12	30.5	NT	NT
8	42.4	17.1	331	> 1000	NT	NT
20a	0.05	0.02	2.66	54.3	585	NT
20b	11.3	7.31	40.5	199	NT	NT
35a	0.06	0.34	0.05	0.97	14.1	28.8
35b	3.69	3.97	4.66	14.6	74.2	NT
35c	0.05	0.31	0.11	1.11	13.5	98.8
35d	0.14	0.78	0.43	4.4	39.3	87.8
35e	9.2	5.84	10.5	38	209	NT
35f	0.16	0.07	0.14	1.13	28.7	87.8

NT, not tested.

^aConcentration that inhibited the growth of cells by 50% at 72 h continuous exposure for the five cell lines [mouse leukemia (P388), human lung cancer cell lines (PC-6 and PC-12), and resistant cancer cell lines (PC-6/VCR29-9 and PC-6/VP1-1)].¹² ^bRemaining rate of the substrate after 5 min of incubation with human liver microsomes.

chloride. Sequential deacetylation and silylation gave the β -lactams (25a, 25d, 25e). After removal of the *p*methoxyphenyl moieties, the racemic mixtures were resolved by using a chiral HPLC column to afford the optically pure β -lactams [(+)-22a, (+)-22d, (+)-22e]. Formation of (+)-27 was achieved via chiral ester-enolate imine cyclocondensation utilizing 15 as a chiral auxiliary and the imine 26 derived from the aldehyde **21b.** Finally, the *p*-methoxyphenyl moiety was removed with ceric ammonium nitrate (CAN) to afford the desired β -lactam (+)-22b, whose enantiomeric excess was 79% ee. Synthesis of (+)-22c was accomplished according to a published procedure utilizing L-threonine methyl ester (28) as a chiral auxiliary,¹¹ and its enantiomeric excess was 54% ee. The β -lactam (+)-22f,¹⁰ possessing the methoxyl group, was synthesized by following a procedure analogous to that for the preparation of 13a, possessing the benzyloxy group.

The targeted compounds (35a-35f) were synthesized according to a procedure similar to that described for the preparation of **19a** utilizing **16** and the corresponding β -lactams (23a-23f) (Scheme 6).

Results and Discussion

Activities of the synthetic compounds were evaluated in cytotoxicity assays against five cell lines (P388, PC-6, PC-12, PC-6/VCR29-9 and PC-6/VP1-1), and activities were compared with those of paclitaxel and docetaxel. The activities of **35a**, **35c**, and **35f**, which possessed, respectively, a methyl, fluoro, and methoxyl group on the pyridine ring, were similar to that of **3** against all cell lines, and **35d** possessing the chloro moiety showed slightly weaker cytotoxicity compared with that of these three compounds. On the other hand, **35b** and **35e**,

Scheme 5. Reagents: (a) (Boc)₂O, DMAP, THF (96% for 23a, 92% for 23b, 93% for 23c, 100% for 23d, 99% for 23e, 91% for 23f; (b) (1) 4anisidine, Na₂SO₄, benzene; (2) AcOCH₂COCl, Et₃N, CH₂Cl₂ (88% for 24a, 61% for 24d, 23% for 24e); (c) (1) K₂CO₃, THF, MeOH; (2) TIPSCl, imidazole, DMF (85% for 25a, 78% for 25d, 36% for 25e); (d) (1) CAN, CH₃CN, H₂O; (2) Chiralcel OD or AD (27% for 22a, 25% for 22d, 33% for 22e); (e) 4-anisidine, Na₂SO₄, benzene (84%); (f) 15, LDA, THF (30%); (g) CAN, CH₃CN, H₂O (59%); (h) (1) TBDPSCl, imidazole, DMAP, CH₂Cl₂; (2) 21c, benzene; (3) AcOCH₂COCl, Et₃N, CH₂Cl₂ (72%); (i) TBAF, THF (85%); (j) (1) K₂CO₃, THF MeOH; (2) TIPSCl, imidazole, DMF (61%); (k) NaHCO₃, KMnO₄, acetone, H₂O (35%); (l) (1) LiHMDS, TMSCl, THF; (2) 15, LDA, THF (57%).

Scheme 6. Reagents: (a) LiHMDS, β-lactams (80% for 33a, 95% for 33b, 74% for 33c, 71% for 33d, 92% for 33e, 100% for 33f); (b) TBAF, THF (94% for 34a, 85% for 34b, 99% for 34c, 100% for 34d, 76% for 34e, 91% for 34f); (c) (1) OsO₄, NMO, THF, acetone, H₂O; (2)NaIO₄, THF, MeOH, H₂O; (3) morpholine, AcOH, NaBH₃CN, EtOH (58% for 35a, 61% for 35b, 64% for 35c, 77% for 35d, 81% for 35e, 51% for 35f).

which possessed, respectively, an ethyl and trifluoromethyl group on the pyridine ring, gave significantly decreased cytotoxicity. This reduction of cytotoxicity might be due to a steric hindrance.

The metabolic stability of **35a**, **35c**, **35d**, and **35f**, which all showed nearly the same cytotoxicity as **3**, was examined, and the results were shown as the remaining rate of substrate after 5 min of incubation with human liver microsomes. All compounds, except **35a**, exhibited good metabolic stability compared with **3**, as we had expected. Compound **35a** possessing a methyl group might be oxidized at its methyl moiety of the pyridine ring.

In conclusion, to improve the metabolic stability of **3**, we designed and synthesized taxane analogues based on the structure of M-1, the major metabolite of **3**. Some compounds maintained the strong cytotoxicity and were scarcely metabolized by human liver microsomes. Further study to improve the metabolic stability of **3** is in progress, and we expect that this study will lead us to obtain a compound that will exhibit good antitumor activity not only in mice but also in humans.

Experimental

All chemicals and solvents used in synthesis were reagent-grade products and were used without additional purification. The solvent and reagent names are abbreviated as follows: acetic anhydride (Ac₂O), ethyl acetate (AcOEt), benzyl bromide (BnBr), di-tert-butyl dicarbonate [(Boc)₂O], ceric ammonium nitrate (CAN), 4-dimethylaminopyridine (DMAP), N,N-dimethylformamide (DMF), diethyl ether (Et₂O), lithium bis(trimethylsilyl)amide (LiHMDS), m-chloroperbenzoic acid (mCPBA), N-methylmorpholine-N-oxide (NMO), tetrabutylammonium fluoride (TBAF), tert-butyldiphenylsilyl chloride (TBDPSCl), tetrahydrofuran (THF), triisopropylsilyl chloride (TIPSCl), and trimethylsilyl chloride (TMSCI). Melting points were obtained on a Yanaco micro melting point apparatus and are uncorrected. NMR spectra were obtained on a JEOL EX-400 spectrometer with tetramethylsilane as an internal standard. Chemical shifts are reported in parts per million (ppm, δ units). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broad. Infrared (IR) spectra were obtained on a Hitachi 270-30 spectrometer with KBr disks. Mass spectra were recorded on a JEOL AX-505W, or a JMS-700 spectrometer. Elementary analysis was carried out with a Perkin-Elmer Model 240C elemental analyzer. Optical rotations were measured with a Horiba SEPA-200 polarimeter. Merck Kieselgel 60 (70-230 mesh) was used for column chromatography. The HPLC system consisted of a model L-6200, L-6000 system (Hitachi) with a 717 plus autosampler (Waters), a model L-7400 UV detector (Hitachi), and a 250×4.6 mm Symmetry C_{18} column (Waters) maintained at 30 °C. The conditions for LC/MS/MS were as follows: mass spectrometry, TSQ LC/MS/MS system (ThermoQuest); HPLC system, an Alliance 2690 (Waters); column, 150×2.1 mm Symmetry C₁₈ (Waters); mobile phase, 0.2% AcOH

and acetonitrile [70:30 (v/v)]; flow rate, 0.2 mL/min; column temperature, 30 °C; detection, ESI/MS/MS (positive mode); capillary temperature, 225 or 275 °C; sheath gas (N₂), 70–80 psi; auxiliary gas (N₂), 5–10 units; collision energy, -40 eV; collision gas (Ar), 1.8 m torr; electron multiplier, 1000 or 1200 V.

Identification of M-1

As a result of the LC/MS analysis of 8, 20a and 20b, all samples gave a strong signal at m/z 922, and LC/MS/ MS spectrum of them at m/z 922 gave product ions at m/z 199, 225, and 243, which were consistent with that of M-1. The HPLC analysis was performed using two diverse mobile phases, 0.01 M AcONa (pH 3.8) and acetonitrile [55:45 (v/v)] (condition A) and 0.01 M AcONa (pH 5.0) and acetonitrile [50:50 (v/v)] (condition B) at a constant flow rate of 1.0 mL/min. The retention times of 3, M-1, 8, 20a and 20b of each mobile phase were as follows: Condition A; 3 (about 17.2 min), M-1 (about 9.5 min). 8 (about 6.4 min). 20a (about 9.5 min), 20b (10.3 min). Condition B; 3 (about 27.3 min), M-1 (about 14.6 min), 8 (about 10.3 min), 20a (about 14.6 min), 20b (about 17.7 min). And the mixture of the extracts from human liver microsomes and 20a gave a single peak in both conditions.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino-N-oxide)ethylidenedioxy/tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(2-pyridyl)propionate (4). To a solution of 3 (100 mg, 0.119 mmol) in CHCl₃ (2 mL) was added *m*CPBA (21 mg, 0.12 mmol) with ice cooling, and the mixture was stirred at the same temperature for 1 h. After saturated aqueous NaHCO₃ was added to the reaction mixture, the whole was extracted with AcOEt. The extract was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by preparative TLC (CHCl₃–MeOH = 10:1) and lyophilized with 1,4-dioxane to give the title compound (93) mg, 92%) as a white amorphous powder, mp 159-164 °C. ¹H NMR (CDCl₃) δ: 1.25 (3H, s), 1.45 (9H, s), 1.49 (3H, s), 1.60 (3H, s), 1.74 (3H, s), 1.89-2.04 (3H, m), 2.20–2.37 (1H, m), 2.47 (3H, s), 2.94 (1H, d, J=5.5 Hz), 3.37-3.78 (8H, m), 4.19 (2H, m), 4.33 (1H, d, J=8.3 Hz), 4.39–4.48 (2H, m), 4.94 (1H, s), 4.98 (1H, d, J = 2.0 Hz, 5.36 (2H, d, J = 8.0 Hz), 5.94–6.00 (2H, m), 6.05 (1H, t-like, J=8.3 Hz), 7.19 (1H, dd, J=2.0, 7.5 Hz), 7.45–7.49 (3H, m), 7.60 (1H, d, J=8.0 Hz), 8.13 (2H, d, J=8.0 Hz), 8.55 (1H, d, J=5.0 Hz); FAB-MS (m/z): 922 $(M + H)^+$. Anal. calcd for C₄₈H₆₃N₃O₁₅·2H₂O: C, 60.18; H, 7.05; N, 4.39. Found: C, 60.33; H, 6.93; N, 4.28; IR: 3423, 2971, 1712, 1592, 1569, 1490 cm⁻¹; $[\alpha]_D^{26}$ -2.9° (c 0.11, CHCl₃).

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2,3-dihydroxypropylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*butoxycarbonylamino)-2-hydroxy-3-(2-pyridyl)propionate (6). To a solution of 5 (40 mg, 0.048 mmol) in a mixture of THF (1 mL), acetone (1 mL), and H₂O (1 mL) were added NMO (28 mg, 0.24 mmol) and OsO₄ (2.5 mg),

and the mixture was stirred at room temperature for 1 h. After AcOEt and 10% aqueous $Na_2S_2O_3$ were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt, and the combined organic layer was washed with saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by preparative TLC (CHCl₃-MeOH = 10:1) to give the title compound (37.5 mg, 90%) as a white amorphous powder. ¹H NMR (CDCl₃) δ: 1.27 (3H, s), 1.44 (9H, s), 1.50 (3H, s), 1.57 (3H, s), 1.73 (3H, s), 1.84–2.17 (3H, m), 2.36 (3H, s), 2.93 (1H, d, J=5.4 Hz), 3.75–3.88 (3H, m), 4.20–4.22 (2H, m), 4.32 (1H, d, J=7.8 Hz), 4.84–4.92 (3H, m), 5.28 (2H, d, J=7.0 Hz), 5.35 (1H, d, J=9.5 Hz), 5.96 (2H, m), 6.10 (1H, br t, J=8.0 Hz), 7.23 (1H, dd, J=2.0, 6.0 Hz), 7.41–7.61 (3H, m), 7.72 (1H, dd, J=2.0, 8.0H), 8.11 (2H, d, J = 8.0 Hz), 8.53 (1H, d, J = 4.5 Hz); HR-MS calcd for $C_{45}H_{59}N_2O_{15}$: 867.3915. Found, 867.3887.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2,3-dihydroxypropylidenedioxyltax-11-en-13-yl (2R, 3S)-3-(tertbutoxycarbonylamino)-2-hydroxy-3-(2-pyridyl-N-oxide)propionate (7). Compound 7 was obtained from 6 as a white amorphous powder (51%) by following a procedure analogous to that described for the preparation of 4 from 3. ¹H NMR (CDCl₃) δ: 1.27 (3H, s), 1.41 (9H, s), 1.50 (3H, s), 1.58 (3H, s), 1.81 (3H, s), 1.84-2.32 (2H, m), 2.39 (3H, s), 2.92 (1H, d, J = 5.4 Hz), 3.76–3.88 (3H, m), 4.19–4.24 (2H, m), 4.32 (1H, d, J=7.8 Hz), 4.87– 4.91 (2H, m), 5.15 (1H, s), 5.30–5.36 (2H, m), 5.97 (1H, d, J = 4.0 Hz), 6.19 (1H, t, J = 8.0 Hz), 7.23–7.28 (1H, m), 7.36 (1H, t, J=8.0 Hz), 7.44–7.48 (3H, m), 7.59 (1H, t, J=8.0 Hz), 8.12 (2H, d, J=8.0 Hz), 8.17 (1H, d, J = 6.5 Hz); HR-MS calcd for C₄₅H₅₉N₂O₁₆: 883.3865. Found, 883.3840.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzovloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxyltax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(2-pyridyl-N-oxide)propionate (8). To a solution of 7 (19 mg, 0.021 mmol) in a mixture of THF (1 mL), MeOH (1 mL), and H₂O (1 mL) was added NaIO₄ (44 mg, 0.21 mmol), and the mixture was stirred at room temperature for 30 min. After AcOEt and water were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt, and the combined organic layer was washed with saturated aqueous NaHCO₃, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was dissolved in EtOH (2 mL). To this solution were added morpholine (0.02 mL, 0.23 mmol), AcOH (0.012 mL, 0.23 mmol), and NaBH₃CN (13.5 mg, 0.23 mmol) with ice cooling, and the mixture was stirred at room temperature for 10 min. After AcOEt, saturated aqueous NaHCO₃, and water were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt, and the combined organic layer was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure. The

residue was purified by preparative TLC (CHCl₃-MeOH = 10:1) and lyophilized with 1,4-dioxane to give the title compound (7.5 mg, 39%) as a white amorphous powder, mp 165–168 °C. ¹H NMR (CDCl₃) δ: 1.27 (3H, s), 1.41 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.80 (3H, s), 1.85–2.11 (2H, m), 2.29–2.31 (1H, m), 2.35 (3H, s), 2.59–2.68 (4H, m), 2.71 (1H, dd, J=5.4, 13.2 Hz), 2.79 (1H, dd, J=4.0, 13.2 Hz), 2.93 (1H, d, J=4.9 Hz), 3.75 (4H, t, J=4.5 Hz), 4.12 (1H, d, J=7.3 Hz), 4.23 (1H, d, J=8.3 Hz), 4.32 (1H, d, J=8.3 Hz), 4.91 (1H, s), 5.05 (1H, t, J=4.5 Hz), 5.14 (1H, d, J=2.5 Hz), 5.25 (1H, d, J = 7.3 Hz), 5.77 (1H, d, J = 9.8 Hz), 6.00 (1H, d, J = 4.9Hz), 6.05 (1H, d, J=8.9 Hz), 6.18 (1H, t, J=8.0 Hz), 7.24-7.28 (1H, m), 7.34 (1H, t, J=7.0 Hz), 7.42-7.49 (3H, m), 7.60 (1H, t, J=7.0 Hz), 8.12 (2H, d, J=8.0 Hz), 8.20 (1H, d, J = 7.0 Hz); FAB-MS (m/z): 922 $(M+H)^+$; HR-MS calcd for $C_{48}H_{64}N_3O_{15}$: 922.4337. Found, 922.4382; IR: 3430, 2952, 1714, 1602, 1488, 1452, 1432 cm⁻¹; $[\alpha]_{D}^{25}$ -22.0° (c 0.03, CHCl₃).

5-Benzyloxy-2-methylpyridine (10). To a suspension of NaH (60% in oil, 2.05 g, 51.2 mmol) in THF (100 mL) was added a solution of 9 (5.0 g, 45.8 mmol) in DMF (50 mL) with ice cooling, and the mixture was stirred at the same temperature for 30 min. After BnBr (6.0 mL, 50.5 mmol) was added to the reaction mixture, the whole was stirred overnight at room temperature. To the reaction mixture was added saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The extract was washed with water, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (2:1). The eluate was concentrated under reduced pressure to give the title compound (7.5 g, 82%) as a yellow oil. ¹H NMR (CDCl₃) δ: 2.49 (3H, s), 5.08 (2H, s), 7.05 (1H, d, *J*=8.3 Hz), 7.16 (1H, dd, J=2.5, 8.3 Hz), 7.34–7.41 (5H, m), 8.26 (1H, d, J = 2.5 Hz).

5-Benzyloxy-2-formylpyridine (11a). (i) To a solution of **10** (7.5 g, 37.6 mmol) in CHCl₃ (200 mL) was added *m*CPBA (7.14 g, 41.4 mmol) with ice cooling, and the mixture was stirred at the same temperature for 1 h. To the reaction mixture was added 5% aqueous Na₂CO₃ and the whole was extracted with AcOEt. The extract was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure to give 5-benzyloxy-2-methylpyridine *N*-oxide (7.8 g, 96%) as colorless crystals.

(ii) To Ac₂O (39 mL) was added 5-benzyloxy-2-methylpyridine *N*-oxide (7.8 g, 36.2 mmol) at 80 °C and the mixture was stirred at 130 °C for 30 min. The reaction mixture was poured into ice-water and the whole was stirred at room temperature for 2 h. The mixture was extracted with AcOEt and the extract was washed with saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (2:1). The eluate was concentrated under reduced pressure to give 2-acetoxymethyl-5-benzyloxypyridine (7.2 g, 77%) as a yellow oil. (iii) To a solution of 2-acetoxymethyl-5-benzyloxypyridine (7.2 g, 28.0 mmol) in a mixture of EtOH (72 mL) and water (18 mL) was added NaOH (2.0 g, 50 mmol), and the mixture was stirred under reflux for 1.5 h. After cooled to room temperature, the reaction mixture was concentrated under reduced pressure and the residue was extracted with CHCl₃. The extract was washed with water, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was crystallized from *n*-hexane–AcOEt. The resulting precipitate was collected by filtration to give 5-benzyloxy-2hydroxymethylpyridine (4.5 g, 75%) as brown crystals.

(iv) To a solution of 5-benzyloxy-2-hydroxymethylpyridine (4.5 g, 20.9 mmol) in CHCl₃ (225 mL) was added MnO₂ (22.5 g) and the mixture was stirred under reflux for 5 min. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (4:1). The eluate was concentrated under reduced pressure to give the title compound (3.45 g, 77%) as colorless crystals. ¹H NMR (CDCl₃) δ : 5.21 (2H, s), 7.34–7.45 (6H, m), 7.95 (1H, d, *J*=8.8 Hz), 8.50 (1H, d, *J*=3.0 Hz), 9.99 (1H, d, *J*=1.0 Hz).

3-Benzyloxy-2-fromylpyridine (11b). (i) To a suspension of **12** (5.0 g, 26.3 mmol) in EtOH (100 mL) were added KOH (3.5 g, 53 mmol) and BnBr (3.15 mL, 26.5 mmol), and the mixture was stirred under reflux for 24 h. After cooled to room temperature, the reaction mixture was diluted with water and the whole was extracted with AcOEt. The extract was washed with water, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with CHCl₃–MeOH (20:1). The eluate was concentrated under reduced pressure to give 3-benzyloxy-2-hydroxymethylpyridine (3.76 g, 66%) as yellow crystals.

(ii) To a solution of 3-benzyloxy-2-hydroxymethylpyridine (3.75 g, 17.4 mmol) in CHCl₃ (100 mL) was added MnO₂ (15 g) and the mixture was stirred under reflux for 80 min. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (1:1). The eluate was concentrated under reduced pressure to give the title compound (2.7 g, 73%) as a yellow oil. ¹H NMR (CDCl₃) δ : 5.26 (2H, s), 7.34–7.47 (7H, m), 8.41 (1H, t, J=2.5 Hz), 10.40 (1H, s).

(3*R*, 4*S*)-4-(5-Benzyloxy-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (13a). (i) To a 1.0 M solution of LiHMDS in THF (5.0 mL, 5.0 mmol) was added a solution of 11a (1.0 g, 4.69 mmol) in THF (2.5 mL) at -78 °C, and the mixture was stirred at the same temperature for 5 min and then at 0 °C for 30 min. Then, to the reaction mixture was added TMSCl (0.68 mL, 5.51 mmol) and the mixture was stirred at the same temperature for 30 min to give a solution of *N*-trimethylsilylaldimine.

(ii) To a solution of diisopropylamine (0.7 mL, 5.0 mmol) in THF (5 mL) was added a 1.58 M solution of

*n*BuLi in *n*-hexane (3.2 mL, 5.0 mmol) at 0°C. The solution was stirred at the same temperature for 15 min and then cooled to -78 °C. To the mixture was added a solution of 15 (1.83 g, 4.69 mmol) in THF (5 mL). The solution was stirred for 2 h followed by addition of a solution of N-trimethylsilylaldimine, described above. The mixture was slowly allowed to warm to room temperature and further stirred overnight. After saturated aqueous NaHCO3 and AcOEt were added to the reaction mixture, the layers were separated. The aqueous layer was extracted with AcOEt and the combined extract was washed with water, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with n-hexane-AcOEt (2:1). The eluate was concentrated under reduced pressure to give the title compound (780 mg, 39%) as a yellow oil. ¹H NMR $(CDCl_3)$ δ : 0.88–1.00 (21H, m), 4.94 (1H, d, J = 4.4 Hz), 5.12 (2H, s), 5.22 (1H, dd, J=2.9, 4.4 Hz), 6.24 (1H, br s), 7.25–7.43 (7H, m), 8.30 (1H, d, J=2.9 Hz); HR-MS calcd for C₂₄H₃₅N₂O₃Si: 427.2417. Found, 427.2390.

(3*R*, 4*S*)-4-(3-Benzyloxy-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (13b). Compound 13b was obtained form 11b as a yellow oil (37%) by following a procedure analogous to that described for the preparation of 13a from 11a. ¹H NMR (CDCl₃) δ : 0.85–0.99 (21H, m), 5.07 (2H, ABq, *J*=12.0 Hz), 5.30 (2H, ABq, *J*=5.0 Hz), 6.35 (1H, br s), 7.15–7.19 (2H, m), 7.34–7.40 (5H, m), 8.23 (1H, dd, *J*=2.0, 2.5 Hz); HR-MS calcd for C₂₄H₃₅N₂O₃Si: 427.2417. Found, 427.2390.

(3*R*, 4*S*)-4-(5-Benzyloxy-2-pyridyl)-1-(*tert*-butoxycarbonyl)-3-triisopropylsilyloxy-2-azetidinone (14a). To a solution of 13a (780 mg, 1.83 mmol) and (Boc)₂O (0.50 mL, 2.17 mmol) in THF (15.6 mL) was added DMAP (45 mg, 0.37 mmol) and the mixture was stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane– AcOEt (9:1). The eluate was concentrated under reduced pressure to give the title compound (850 mg, 88%) as a colorless syrup. ¹H NMR (CDCl₃) & 0.87– 1.00 (21H, m), 1.42 (9H, s), 5.12 (2H, s), 5.20 (2H, s), 7.25–7.43 (7H, m), 8.33 (1H, d, J=3.0 Hz); HR-MS calcd for C₂₉H₄₃N₂O₅Si: 527.2941. Found, 527.2924.

(3*R*, 4*S*)-4-(3-Benzyloxy-2-pyridyl)-1-(*tert*-butoxycarbonyl)-3-triisopropylsilyloxy-2-azetidinone (14b). Compound 14b was obtained from 13b as a colorless syrup (83%) by following a procedure analogous to that described for the preparation of 14a from 13a. ¹H NMR (CDCl₃) δ : 0.87–1.01 (21H, m), 1.43 (9H, s), 5.05 (2H, ABq, *J*=11.5 Hz), 5.21 (1H, d, *J*=5.0 Hz), 5.61 (1H, br s), 7.12–7.19 (2H, m), 7.33–7.42 (5H, m), 8.21 (1H, d, *J*=3.0 Hz); HR-MS calcd for C₂₉H₄₃N₂O₅Si: 527.2941. Found, 527.2983.

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-propenylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(5-benzyloxy-2pyridyl)-3-(*tert*-butoxycarbonylamino)-2-triisopropylsilyloxypropionate (17a). To a solution of 16 (100 mg,

4439

0.175 mmol) in THF (2 mL) was added LiHMDS (1.0 M in THF, 0.21 mL, 0.21 mmol) at $-55 \,^{\circ}\text{C}$, and the mixture was stirred at the same temperature for 30 min. To the reaction mixture was added a solution of 14a (140 mg, 0.265 mmol) in THF (2 mL) at -55 °C, and the whole was stirred with ice cooling for 30 min. After saturated aqueous NaHCO₃ and AcOEt were added to the reaction mixture with ice cooling, the two layers were separated. The aqueous layer was extracted with AcOEt and the combined organic layer was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with n-hexane-AcOEt (4:1). The eluate was concentrated under reduced pressure to give the title compound (157 mg, 82%) as a white amorphous powder. ¹H NMR (CDCl₃) δ: 0.86–0.93 (21H, m), 1.31 (3H, s), 1.41 (9H, s), 1.52 (3H, s), 1.65 (3H, s), 1.79–2.07 (2H, m), 1.81 (3H, s), 2.26-2.30 (2H, m), 2.50 (3H, s), 2.97 (1H, d, J = 5.4 Hz), 4.19-4.22 (2H, m), 4.33 (1H, d, J=7.8 Hz), 4.96 (1H, br s), 5.12 (2H, s), 5.21 (1H, d, J = 6.0 Hz), 5.28 (2H, m), 5.44–5.60 (4H, m), 5.96–6.03 (2H, m), 6.11 (1H, br t, J = 8.0 Hz), 7.20–7.47 (9H, m), 7.57 (1H, t, J = 7.8 Hz), 8.13 (2H, d, J=7.8 Hz), 8.31 (1H, d, J=2.5 Hz); HR-MS calcd for C₆₁H₈₃N₂O₁₄Si: 1095.5614. Found, 1095.5623.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(3-benzyloxy-2pyridyl)-3-(tert-butoxycarbonylamino)-2-triisopropylsilyloxypropionate (17b). Compound 17b was obtained as a white amorphous powder (90%) by following a procedure analogous to that described for the preparation of 17a from 16 by replacing 15a with 15b. ¹H NMR (CDCl₃) δ: 0.86–0.91 (21H, m), 1.36 (3H, s), 1.37 (9H, s), 1.53 (3H, s), 1.64 (3H, s), 1.75–2.30 (6H, m), 1.79 (3H, s), 2.45 (3H, s), 2.95 (1H, d, J=6.0 Hz), 4.19–4.22 (2H, m), 4.30 (1H, d, J=7.8 Hz), 4.87 (1H, s), 5.12 (1H, d, J = 3.0 Hz), 5.19–5.27 (3H, m), 5.45 (1H, d, J = 10.5Hz), 5.57 (1H, d, J = 17.0 Hz), 5.70 (1H, d, J = 3.0, 10.0Hz), 5.95–6.04 (2H, m), 6.13 (1H, d, J = 10.0 Hz), 6.19 (1H, br t, J = 8.0 Hz), 7.08-7.15 (2H, m), 7.31-7.46 (7H, m))m), 7.57 (1H, t, J=7.8 Hz), 8.13–8.17 (3H, m); HR-MS calcd for C₆₁H₈₃N₂O₁₄Si: 1095.5614. Found, 1095.5537.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(5-benzyloxy-2pyridyl)-3-(tert-butoxycarbonylamino)-2-hydroxypropionate (18a). To a solution of 17a (150 mg, 0.137 mmol) in THF (3 mL) was added TBAF (1.0 M in THF, 0.27 mL, 0.27 mmol) with ice cooling, and the mixture was stirred at the same temperature for 15 min. After AcOEt and brine were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt and the combined organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by preparative TLC (*n*-hexane–AcOEt = 1:1) to give the title compound (128 mg, 100%) as a white amorphous powder. ¹H NMR (CDCl₃) δ: 1.26 (3H, s), 1.43 (9H, s), 1.49 (3H, s), 1.63 (3H, s), 1.70 (3H, s), 1.83-2.11 (2H, m), 2.34 (3H, s), 2.93 (1H, d, J = 5.4 Hz), 4.17 (1H, d, J = 7.0 Hz), 4.21 (1H, d, J = 8.3 Hz), 4.32 (1H, d, J = 8.3 Hz), 4.77 (1H, br s), 4.85 (1H, s), 4.92 (1H, s), 5.10 (2H, s), 5.23–5.27 (2H, m), 5.46 (1H, d, J = 10.3 Hz), 5.57 (1H, d, J = 17.0 Hz), 5.91 (1H, d, J = 10.3 Hz), 5.96–6.02 (2H, m), 6.08 (1H, t, J = 8.0 Hz), 7.28–7.48 (9H, m), 7.59 (1H, t, J = 7.8 Hz), 8.12 (2H, d, J = 7.8 Hz), 8.28 (1H, d, J = 2.5 Hz); HR-MS calcd for C₅₂H₆₃N₂O₁₄: 939.4279. Found, 939.4293.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(3-benzyloxy-2pyridyl)-3-(tert-butoxycarbonylamino)-2-hydroxypropionate (18b). Compound 18b was obtained from 17b as a white amorphous powder (94%) by following a procedure analogous to that described for the preparation of **18a** from **17a**. ¹H NMR (CDCl₃) δ: 1.28 (3H, s), 1.40 (9H, s), 1.50 (3H, s), 1.64 (3H, s), 1.86 (3H, s), 1.82-2.24 (5H, m), 2.24 (3H, s), 2.44–2.50 (1H, m), 2.94 (1H, d, J = 5.5 Hz, 4.19–4.23 (2H, m), 4.30 (1H, d, J = 8.3 Hz), 4.37 (1H, br s), 4.78 (1H, br s), 4.89 (1H, s), 5.22 (2H, s), 5.25 (1H, d, J = 5.9 Hz), 5.32 (1H, d, J = 6.0 Hz), 5.46 (1H,d, J=10.5 Hz), 5.68 (1H, d, J=17.0 Hz), 5.83 (1H, d, J = 10.3 Hz), 5.97–6.09 (3H, m), 6.25 (1H, t, J = 9.0Hz), 7.17–7.48 (9H, m), 7.58 (1H, t, J=7.8 Hz), 8.11 (2H, d, J=7.8 Hz), 8.18 (1H, d, J=4.5 Hz); HR-MS calcd for C₅₂H₆₃N₂O₁₄: 939.4279. Found, 939.4351.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy/tax-11-en-13-yl (2R, 3S)-3-(5-benzyloxy-2-pyridyl)-3-(tert-butoxycarbonylamino)-2-hydroxypropionate (19a). To a solution of 18a (128 mg, 0.136 mmol) in a mixture of THF (1.3 mL), acetone (1.3 mL), and H₂O (1.3 mL) were added NMO (80 mg, 0.68 mmol) and OsO_4 (7 mg), and the mixture was stirred at room temperature for 2.5 h. After AcOEt and 10% aqueous $Na_2S_2O_3$ were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt, and the combined organic layer was washed with saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was dissolved in a mixture of THF (1.5 mL), MeOH (1.5 mL), and H₂O (1.5 mL). To this solution was added NaIO₄ (192 mg, 0.9 mmol) and the mixture was stirred at room temperature for 0.5 h. After AcOEt and water were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt, and the combined organic layer was washed with saturated aqueous NaHCO₃, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was dissolved in EtOH (3 mL). To this solution were added morpholine (0.079 mL, 0.9 mmol), AcOH (0.051 mL, 0.9 mmol), and NaBH₃CN (56 mg, 0.9 mmol), and the mixture was stirred at room temperature for 15 min. After AcOEt, saturated aqueous NaHCO₃, and water were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt, and the combined organic layer was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by preparative TLC (CHCl₃-MeOH = 20:1) to give the title compound (82 mg, 74%) as a white amorphous powder. ¹H NMR (CDCl₃) δ : 1.26 (3H, s), 1.43 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.68 (3H, s), 1.82–2.11 (5H, m), 2.30–2.37 (1H, m), 2.34 (3H, s), 2.58–2.70 (4H, m), 2.69 (1H, d, *J*=3.9, 13.5 Hz), 2.77 (1H, d, *J*=4.9, 13.5 Hz), 2.91 (1H, d, *J*=5.4 Hz), 3.74 (4H, t, *J*=4.5 Hz), 4.11 (1H, d, *J*=7.3 Hz), 4.21 (1H, d, *J*=8.3 Hz), 4.32 (1H, d, *J*=8.3 Hz), 4.75 (1H, br s), 4.84 (1H, d, *J*=2.0 Hz), 4.92 (1H, s), 5.05 (1H, t, *J*=4.5 Hz), 5.10 (2H, s), 5.21 (1H, d, *J*=7.0 Hz), 5.28 (1H, d, *J*=8.3 Hz), 7.28–7.49 (9H, m), 7.59 (1H, t, *J*=8.3 Hz), 8.12 (2H, d, *J*=8.3 Hz), 8.28 (1H, d, *J*=2.5 Hz); HR-MS calcd for C₅₅H₇₀N₃O₁₅: 1012.4807. Found, 1012.4884.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxyltax-11-en-13-yl (2R, 3S)-3-(3-benzyloxy-2-pyridyl)-3-(tert-butoxycarbonylamino)-2-hydroxypropionate (19b). Compound 19b was obtained from 18b as a white solid (69%) by following a procedure analogous to that described for the preparation of 19a from 18a. ¹H NMR (CDCl₃) δ: 1.27 (3H, s), 1.40 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.84 (3H, s), 1.82-2.07 (5H, m), 2.24 (3H, s), 2.42–2.48 (1H, m), 2.58–2.68 (4H, m), 2.69 (1H, d, J=3.9, 14.0 Hz), 2.77 (1H, d, J=4.5, 14.0 Hz), 2.93 (1H, d, J = 5.5 Hz), 3.75 (4H, t, J = 4.5 Hz), 4.14 (1H, d, J=7.3 Hz), 4.21 (1H, d, J=8.3 Hz), 4.29 (1H, d, J=8.3 Hz), 4.34 (1H, br s), 4.77 (1H, s), 4.88 (1H, s), 5.05 (1H, t, J=4.5 Hz), 5.21 (2H, s), 5.25 (1H, d, J=8.0 Hz), 5.82 (1H, d, J=8.9 Hz), 5.98 (1H, d, J = 5.0 Hz), 6.07 (1H, t, J = 8.3 Hz), 6.24 (1H, d, J = 9.0Hz), 7.17–7.49 (9H, m), 7.58 (1H, t, J=8.3 Hz), 8.10 (2H, d, J=8.3 Hz), 8.17 (1H, d, J=3.5 Hz); HR-MS calcd for C₅₅H₇₀N₃O₁₅: 1012.4807. Found, 1012.4775.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(5-hydroxy-2-pyridyl)propionate (20a). 19a (82 mg, 0.081 mmol) was hydrogenated over 10% Pd(OH)₂ (40 mg) in EtOH (3 mL) at atmospheric pressure for 1 h. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (CHCl₃-MeOH = 20:1) and lyophilized from 1,4-dioxane to give the title compound (48 mg, 64%) as a white amorphous powder, mp 163–165°C. ¹H NMR (CDCl₃) δ: 1.25 (3H, s), 1.44 (9H, s), 1.48 (3H, s), 1.59 (3H, s), 1.69 (3H, s), 1.81-2.10 (5H, m), 2.33-2.36 (1H, m), 2.33 (3H, s), 2.60-2.70 (4H, m), 2.71 (1H, d, J=3.9, 13.5 Hz), 2.78 (1H, d, J=4.9, 13.5 Hz), 2.90 (1H, d, J = 5.4 Hz), 3.75 (4H, t, J = 4.5 Hz), 4.11 (1H, d, J = 4.5J = 7.3 Hz), 4.21 (1H, d, J = 8.3 Hz), 4.32 (1H, d, J = 8.3Hz), 4.84 (1H, s), 4.92 (1H, s), 5.04 (1H, t, J = 4.5 Hz), 5.21-5.26 (2H, m), 5.96-5.98 (2H, m), 6.08 (1H, t, J = 8.3 Hz), 7.05 (1H, dd, J = 2.5, 8.3 Hz), 7.19 (1H, d, J = 8.3 Hz), 7.47 (2H, t, J = 8.3 Hz), 7.60 (1H, t, J = 8.3Hz), 8.02 (1H, d, J = 2.5 Hz), 8.12 (2H, d, J = 8.3 Hz); FAB-MS (m/z): 922 $(M+H)^+$. Anal. calcd for C₄₈H₆₃N₃O₁₅·1.25H₂O: C, 61.04; H, 6.99; N, 4.45. Found: C, 61.05; H, 6.97; N, 4.28; IR: 3409, 2960, 1712, 1581, 1490, 1454 cm⁻¹; $[\alpha]_D^{24}$ –13.4° (*c* 0.1, CHCl₃).

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(3-hydroxy-2-pyridyl)propionate (20b). Compound 20b was obtained from 19b as a white amorphous powder (84%), mp 168–171 °C, by following a procedure analogous to that described for the preparation of **20a** from **19a**. ¹H NMR (CDCl₃) δ : 1.30 (3H, s), 1.43 (9H, s), 1.48 (3H, s), 1.61 (3H, s), 1.77 (3H, s), 1.88-2.31 (5H, m), 2.36 (3H, s), 2.59-2.68 (4H, m), 2.69 (1H, d, J=3.9, 14.0 Hz), 2.77 (1H, d, J=4.5, 14.0 Hz), 2.94 (1H, d, J=5.5 Hz), 3.74 (4H, t, J=4.5 Hz), 4.13 (1H, d, J=7.3 Hz), 4.21 (1H, d, J=8.3 Hz), 4.34 (1H, d, J=8.3 Hz), 4.92 (1H, s), 4.93 (1H, s), 4.96 (1H, d, J=2.5 Hz), 5.04 (1H, t, J=4.5 Hz), 5.23 (1H, d, J = 7.3 Hz), 5.30 (1H, dd, J = 2.5, 8.0 Hz), 5.98 (1H, d, J = 5.5 Hz), 6.17 (1H, t, J = 8.3 Hz), 6.48 (1H, d, J = 8.0Hz), 7.19–7.22 (1H, m), 7.30–7.33 (1H, m), 7.48 (2H, t, J = 8.3 Hz, 7.61 (1H, t, J = 8.3 Hz), 8.03 (1H, dd, J = 1.5, 4.5 Hz), 8.13 (2H, d, J=8.3 Hz); FAB-MS (m/z): 922 $(M+H)^+$. Anal. calcd for $C_{48}H_{63}N_3O_{15}\cdot 1.25H_2O$: C, 61.04; H, 6.99; N, 4.45. Found: C, 60.91; H, 6.89; N, 4.35; IR: 3411, 2956, 1712, 1600, 1579, 1488, 1452 cm^{-1} ; $[\alpha]_{D}^{23} - 28.0^{\circ}$ (c 0.03, CHCl₃).

Compounds 23a–f were obtained by following a procedure analogous to that described for the preparation of 14a from 13a by replacing 13a with the corresponding β -lactams 22a–f.

(3*R*, 4*S*)-1-(*tert*-Butoxycarbonyl)-4-(5-methyl-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (23a). A pale yellow syrup (96%); ¹H NMR (CDCl₃) δ : 0.87–0.98 (21H, m), 1.43 (9H, s), 2.32 (3H, s), 5.21 (1H, d, *J*=4.9 Hz), 5.25 (1H, d, *J*=4.9 Hz), 7.22 (1H, d, *J*=7.8 Hz), 7.49 (1H, d, *J*=7.8 Hz), 8.39 (1H, s); HR-MS calcd for C₂₃H₃₉N₂O₄Si: 435.2629. Found, 435.2661.

(3*R*, 4*S*)-1-(*tert*-Butoxycarbonyl)-4-(5-ethyl-2-pyridyl)-3triisopropylsilyloxy-2-azetidinone (23b). A colorless syrup (92%); ¹H NMR (CDCl₃) δ : 0.86–1.02 (21H, m), 1.22 (3H, t, *J* = 7.3 Hz), 1.43 (9H, s), 2.64 (2H, q, *J* = 7.3 Hz), 5.22 (2H, s), 7.25 (1H, d, *J* = 8.0 Hz), 7.51 (1H, dd, *J* = 2.0, 8.0 Hz), 8.41 (1H, s); HR-MS calcd for C₂₄H₄₁N₂O₄Si: 449.2836. Found, 449.2843.

(3*R*, 4*S*)-1-(*tert*-Butoxycarbonyl)-4-(5-fluoro-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (23c). A colorless syrup (93%); ¹H NMR (CDCl₃) δ : 0.88–1.01 (21H, m), 1.44 (9H, s), 5.20 (1H, d, *J*=4.9 Hz), 5.25 (1H, d, *J*=4.9 Hz), 7.33–7.45 (2H, m), 8.44 (1H, d, *J*=2.9 Hz); HR-MS calcd for C₂₂H₃₆FN₂O₄Si: 439.2428. Found, 439.2400.

(3*R*, 4*S*)-1-(*tert*-Butoxycarbonyl)-4-(5-chloro-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (23d). A colorless syrup (100%); ¹H NMR (CDCl₃) δ : 0.88–1.02 (21H, m), 1.44 (9H, s), 5.20 (1H, d, *J*=4.9 Hz), 5.24 (1H, d, *J*=4.9 Hz), 7.29 (1H, d, *J*=8.3 Hz), 7.68 (1H, dd, *J*=8.3 Hz, 2.4 Hz), 8.54 (1H, d, *J*=2.4 Hz); HR-MS calcd for C₂₂H₃₆ClN₂O₄Si: 455.2133. Found, 455.2133.

(3*R*, 4*S*)-1-(*tert*-Butoxycarbonyl)-4-(5-trifluoromethyl-2pyridyl)-3-triisopropylsilyloxy-2-azetidinone (23e). A colorless syrup (99%); ¹H NMR (CDCl₃) δ : 0.86–1.00 (21H, m), 1.46 (9H, s), 5.27 (1H, d, *J*=5.4 Hz), 5.33 (1H, d, *J*=5.4 Hz), 7.47 (1H, d, *J*=8.3 Hz), 7.95 (1H, d, *J*=8.3 Hz), 8.86 (1H, s); HR-MS calcd for C₂₃H₃₆F₃N₂O₄Si: 489.2396. Found, 489.2364.

(3*R*, 4*S*)-4-(5-Methoxy-2-pyridyl)-1-(*tert*-butoxycarbonyl)-3-triisopropylsilyloxy-2-azetidinone (23f). A colorless syrup (91%); ¹H NMR (CDCl₃) δ : 0.88–1.01 (21H, m), 1.43 (9H, s), 3.85 (3H, s), 5.18 (1H, d, *J*=5.8 Hz), 5.24 (1H, d, *J*=5.8 Hz), 7.18–7.28 (2H, m), 8.27 (1H, d, *J*=3.0 Hz); HR-MS calcd for C₂₃H₃₉N₂O₅Si: 451.2635. Found, 451.2635.

 $cis-(\pm)$ -Acetoxy-1-(4-methoxyphenyl)-4-(5-methyl-2-pyridyl)-2-azetidinone (24a). A mixture of 21a (0.79 g, 6.55 mmol), 4-anisidine (0.81 g, 6.62 mmol), and Na₂SO₄ (2.0 g) in benzene (15 mL) was stirred at room temperature for 1 h. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (25 mL) and to this solution were added Et₃N (1.07 mL, 7.69 mmol) and 2-acetoxyacetyl chloride (0.57 mL, 5.1 mmol) at -78 °C, and the mixture was allowed to come to room temperature overnight. To the reaction mixture was added water and the whole was extracted with AcOEt. The extract was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (2:1). The eluate was concentrated under reduced pressure to give the title compound (1.5 g, 88%) as a pale orange solid. ¹H NMR (CDCl₃) δ: 1.77 (3H, s), 2.34 (3H, s), 3,75 (3H, s), 5.45 (1H, d, J = 5.0 Hz), 6.09 (1H, d, J = 5.0 Hz), 6.80 (2H, m),7.22 (1H, d, J=7.8 Hz), 7.27 (2H, m), 7.43 (1H, dd, J=1.9 Hz, 8.3 Hz), 8.42 (1H, dd, J = 1.5 Hz); FAB-MS (m/z): 327 $(M+H)^+$. Anal. calcd for $C_{18}H_{18}N_2O_4$: C, 66.25; H, 5.56; N, 8.58. Found: C, 66.03; H, 5.55; N, 8.50.

Compounds **24d** and **24e** were obtained by following a procedure analogous to that described for the preparation of **24a** from **21a** by replacing **21a** with the corresponding β -lactams **21d** and **21e**.

cis-(\pm)-Acetoxy-4-(5-chloro-2-pyridyl)-1-(4-methoxyphenyl)-2-azetidinone (24d). Colorless crystals (61%); ¹H NMR (CDCl₃) δ : 1.81 (3H, s), 3.76 (3H, s), 5.46 (1H, d, J = 5.3 Hz), 6.11 (1H, d, J = 5.3 Hz), 6.80–6.84 (2H, m), 7.23–7.27 (2H, m), 7.29 (1H, d, J = 8.3 Hz), 7.66 (1H, dd, J = 8.3 Hz, 2.4 Hz), 8.59 (1H, d, J = 2.4 Hz); HR-MS calcd for C₁₇H₁₆ClN₂O₄: 347.0799. Found, 347.0771.

cis-(\pm)-3-Acetoxy-4-(5-trifluoromethyl-2-pyridyl)-1-(4methoxyphenyl)-2-azetidinone (24e). A pale orange solid (23%); ¹H NMR (CDCl₃) δ : 1.78 (3H, s), 3.77 (3H, s), 5.56 (1H, d, J=5.3 Hz), 6.17 (1H, d, J=5.3 Hz), 6.83 (2H, d, J=8.3 Hz), 7.25 (2H, d, J=8.3 Hz), 7.47 (1H, d, J=7.8 Hz), 7.93 (1H, d, J=7.8 Hz), 8.91 (1H, s).

cis-(\pm)-1-(4-Methoxyphenyl)-4-(5-methyl-2-pyridyl)-3triisopropylsilyloxy-2-azetidinone (25a). To a solution of 24a (1.5 g, 4.5 mmol) in a mixture of MeOH (15 mL) and THF (15 mL) was added K₂CO₃ (2.5 mg) with ice cooling, and the mixture was stirred at room temperature for 1 h. To the reaction mixture was added Dowex 50 (H^+ form) and the whole was stirred at room temperature for 5 min. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in DMF (10 mL) and to this solution were added imidazole (0.73 g, 10.8 mmol) and TIPSCl (1.15 mL, 5.39 mmol) with ice cooling, and the mixture was stirred at room temperature for 14 h. The reaction mixture was poured into ice-water and the mixture was extracted with Et₂O. The extract was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with n-hexane-AcOEt (3:1). The eluate was concentrated under reduced pressure to give the title compound (1.65 g, 85%) as a white powder. ¹H NMR (CDCl₃) δ : 0.90–1.02 (21H, m), 2.32 (3H, s), 3,74 (3H, s), 5.30 (1H, d, J=4.8)Hz), 5.31 (1H, d, J = 4.8 Hz), 6.78–6.79 (2H, m), 7.23– 7.28 (2H, m), 7.43 (1H, dd, J=1.9 Hz, 8.3 Hz), 8.42 (1H, dd, J=1.5 Hz); FAB-MS (m/z): 441 $(M+H)^+$. Anal. calcd for C₂₅H₃₆N₂O₃Si: C, 68.14; H, 8.23; N, 6.36. Found: C, 67.99; H, 7.95; N, 6.31.

Compounds 25d and 25e were obtained by following a procedure analogous to that described for the preparation of 25a from 24a by replacing 24a with the corresponding β -lactams 24d and 24e.

cis-(\pm)-4-(5-Chloro-2-pyridyl)-1-(4-methoxyphenyl)-3triisopropylsilyloxy-2-azetidinone (25d). Colorless crystals (78%); ¹H NMR (CDCl₃) δ : 0.91–1.02 (21H, m), 3.75 (3H, s), 5.30 (1H, d, *J*=4.9 Hz), 5.32 (1H, d, *J*=4.9 Hz), 6.78–6.82 (2H, m), 7.23–7.28 (2H, m), 7.30 (1H, d, *J*=8.3 Hz), 7.61 (1H, dd, *J*=8.3 Hz, 2.4 Hz), 8.57 (1H, d, *J*=2.4 Hz); FAB-MS (*m*/*z*): 461 (M+H)⁺; HR-MS calcd for C₂₄H₃₃ClN₂O₃Si: 460.1949. Found, 460.1955.

cis-(\pm)-1-(4-Methoxyphenyl)-4-(5-trifluoromethyl-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (25e). A white powder (36%); ¹H NMR (CDCl₃) δ : 0.89–1.02 (21H, m), 3.75 (3H, s), 5.37 (1H, d, *J*=4.9 Hz), 5.41 (1H, d, *J*=4.9 Hz), 6.81 (2H, d, *J*=8.8 Hz), 7.25 (2H, d, *J*=8.8 Hz), 7.47 (1H, d, *J*=8.3 Hz), 7.86 (1H, dd, *J*=1.9, 8.3 Hz), 8.88 (1H, s). Anal. calcd for C₂₅H₃₃F₃N₂O₃Si: C, 60.71; H, 6.72; N, 5.66; F, 11.52. Found: C, 60.81; H, 6.81; N, 5.59; F, 11.24.

(3*R*,4*S*)-4-(5-Methyl-2-pyridyl)-3-triisopropylsilyloxy-2azetidinone (22a). To a solution of 25a (0.98 g, 2.2 mmol) in CH₃CN (40 mL) was added a solution of CAN (3.82 g, 6.6 mmol) in H₂O (30 mL) with ice cooling, and the mixture was stirred at the same temperature for 1.5 h. After saturated aqueous NaHCO₃, saturated aqueous Na₂SO₃, and AcOEt were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt and the combined organic layer was washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (1:1). The eluate was concentrated under reduced pressure to give the racemic compound, which was resolved by using a chiral HPLC column (Daicel Chiralcel OD, with *n*-hexane–2-propanol [94:6 (v/v)] as the solvent) to give the title compound (434 mg, 27%) as a white solid. ¹H NMR (CDCl₃) δ : 0.88–1.01 (21H, m), 2.33 (3H, s), 4.95 (1H, d, *J*=4.9 Hz), 5.25 (1H, dd, *J*=2.4, 4.9 Hz), 6.11 (1H, br s), 7.37 (1H, d, *J*=8.3 Hz), 7.51 (1H, dd, *J*=1.5, 8.3 Hz), 8.37 (1H, s); FAB-MS (*m*/*z*): 335 (M+H)⁺. Anal. calcd for C₁₈H₃₀N₂O₂Si: C, 64.63; H, 9.04; N, 8.37. Found: C, 64.37; H, 8.90; N, 8.16; [α]₂₅²⁵ + 80.8° (*c* 1.0, CHCl₃).

Compounds **22d** and **22e** were obtained by following a procedure analogous to that described for the preparation of **22a** from **25a** by replacing **25a** with the corresponding β -lactams **25d** and **25e**. A Daicel Chiralcel AD, with *n*-hexane–2-propanol [95:5 (v/v)] as the solvent, was used for the resolution of (\pm) -**22d**, and a Daicel Chiralcel OD, with *n*-hexane–2-propanol [96:4 (v/v)] as the solvent, was used for the resolution of (\pm) -**22e**.

(3*R*, 4*S*)-4-(5-Chloro-2-pyridyl)-3-triisopropylsilyloxy-2azetidinone (22d). Colorless crystals (25%); mp: 106– 108 °C; ¹H NMR (CDCl₃) δ : 0.88–1.01 (21H, m), 4.98 (1H, d, *J*=4.9 Hz), 5.25 (1H, dd, *J*=4.9 Hz, 3.0 Hz), 6.85 (1H, br s), 7.45 (1H, d, *J*=8.3 Hz), 7.69 (1H, dd, *J*=8.3 Hz, 2.4 Hz), 8.50 (1H, d, *J*=2.4 Hz); FAB-MS (*m*/*z*): 355 (M+H)⁺. Anal. calcd for C₁₇H₂₇ClN₂O₂Si: C, 57.52; H, 7.67; N, 7.89; Cl, 9.99. Found: C, 57.69; H, 7.65; N, 7.76; Cl, 10.23; IR: 2942, 2865, 1743 cm⁻¹; [α]_D²³ +93.0° (*c* 0.52, EtOH).

(3*R*, 4*S*)-4-(5-Trifluoromethyl-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (22e). A white solid (33%); ¹H NMR (CDCl₃) δ : 0.87–1.01 (21H, m), 5.08 (1H, d, J=4.9 Hz), 5.32 (1H, dd, J=4.9, 3.0 Hz), 6.31 (1H, br s), 7.63 (1H, d, J=8.3 Hz), 7.94 (1H, d, J=8.3 Hz), 8.83 (1H, s); FAB-MS (m/z): 389 (M+H)⁺. Anal. calcd for C₁₈H₂₇F₃N₂O₂Si: C, 55.65; H, 7.00; N, 7.21. Found: C, 55.64; H, 7.06; N, 7.08; [α]₂^D + 75.7° (c 0.17, CHCl₃).

N-(4-Methoxyphenyl)-(5-ehtyl-2-pyridyl)methanaldimine (26). A mixture of 21b (3.0 g, 22.2 mmol), 4-anisidine (2.75 g, 22.3 mmol), and Na₂SO₄ (10 g) in benzene (60 mL) was stirred at room temperature for 1 h. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was crystallized from *n*-pentane to give the title compound (4.5 g, 84%) as yellow crystals. ¹H NMR (CDCl₃) δ : 1.30 (3H, t, *J*=7.3 Hz), 2.72 (2H, q, *J*=7.3 Hz), 3.84 (3H, s), 6.93–6.97 (2H, m), 7.30–7.34 (2H, m), 7.63 (1H, dd, *J*=2.0, 8.0 Hz), 8.10 (1H, d, *J*=8.0 Hz), 8.53 (1H, d, *J*=2.0 Hz), 8.61 (1H, s).

(3*R*, 4*S*)-4-(5-Ethyl-2-pyridyl)-1-(4-methoxyphenyl)-3triisopropylsilyloxy-2-azetidinone (27). To a solution of diisopropylamine (0.35 mL, 2.5 mmol) in THF (4 mL) was added a 1.59 M solution of *n*BuLi in *n*-hexane (1.57 mL, 2.5 mmol) at 0 °C. The solution was stirred at the same temperature for 15 min and then cooled to -78 °C. To the mixture was added a solution of 15 (0.92 g, 2.35 mmol) in THF (3.5 mL). The solution was stirred for 2 h followed by addition of a solution of 26 (565 mg, 2.35 mmol) in THF (3.5 mL). The mixture was slowly allowed to warm to room temperature and further stirred overnight. After saturated aqueous NaHCO₃ and AcOEt were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt and the combined organic layer was washed with water, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (9:1). The eluate was concentrated under reduced pressure to give the title compound (316 mg, 30%) as a yellow oil. ¹H NMR (CDCl₃) δ : 0.89–1.03 (21H, m), 1.22 (3H, t, *J*=7.3 Hz), 2.63 (2H, q, *J*=7.3 Hz), 3.74 (3H, s), 5.31 (2H, s), 6.77–6.81 (2H, m), 7.25–7.30 (3H, m), 7.45 (1H, dd, *J*=2.0, 8.0 Hz), 8.44 (1H, d, *J*=2.0 Hz); HR-MS calcd for C₂₆H₃₈N₂O₃Si: 454.2652. Found, 454.2668.

4S)-4-(5-Ethyl-2-pyridyl)-3-triisopropylsilyloxy-2-(*3R*, azetidinone (22b). To a solution of 27 (315 mg, 0.69 mmol) in CH₃CN (12.6 mL) was added a solution of CAN (1.14 g, 2.07 mmol) in H_2O (6.3 mL) with ice cooling, and the mixture was stirred at the same temperature for 10 min. After saturated aqueous NaHCO₃, saturated aqueous Na₂SO₃, and AcOEt were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt and the combined extract was washed with saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with n-hexane-AcOEt (2:1). The eluate was concentrated under reduced pressure to give the title compound (143 mg, 59%, 79% ee) as yellow crystals. Enantiomeric purity was determined by HPLC analysis on a chiral column, Daicel Chiralcel OD, with *n*-hexane–2-propanol as the solvent. ¹H NMR (CDCl₃) δ: 0.87–1.00 (21H, m), 1.22 (3H, t, *J*=7.3 Hz), 2.64 (2H, q, *J*=7.3 Hz), 4.97 (1H, d, J = 4.5 Hz), 5.25 (1H, dd, J = 3.0, 4.5 Hz), 6.35 (1H, br s), 7.39 (1H, d, J=8.0 Hz), 7.53 (1H, dd, J=2.0, 8.0 Hz), 8.30 (1H, d, J=2.0 Hz). Anal. calcd for C₁₉H₃₂N₂O₂Si: C, 65.47; H, 9.25; N, 8.04. Found : C, 65.27; H, 9.18; N, 7.94.

Methyl (2S,3R)-2-[(3R,4S)-3-acetoxy-4-(5-fluoro-2-pyridyl)-2-oxo-1-azetidinyl]-3-(tert-butyldiphenylsilyloxy)butyrate (29), methyl (2S,3R)-2-[(3S,4R)-3-acetoxy-4-(5fluoro-2-pyridyl)-2-oxo-1-azetidinyl]-3-(tert-butyldiphenylsilyloxy)butyrate (30). To a suspension of 28 (0.5 g, 2.95) mmol) in CH₂Cl₂ (10 mL) were added imidazole (0.44 g, 6.5 mmol), DMAP (5 mg), and TBDPSCl (0.85 mL, 3.3 mmol), and the mixture was stirred at room temperature for 72 h. After AcOEt and water were added to the reaction mixture, the two layers were separated. The aqueous layer was extracted with AcOEt and the combined organic layer was washed with water, saturated aqueous NaHCO₃, brine, and dried over Na_2SO_4 . The solvent was removed under reduced pressure and the residue was dissolved in benzene (20 mL). To this solution was added 21c (0.37 g, 2.95 mmol) and the mixture was stirred under reflux for 1 h. Then, the reaction mixture was concentrated under reduced pressure and the residue was dissolved in CH₂Cl₂ (12 mL). To this solution were added Et₃N (0.45 mL, 3.2 mmol) and 2acetoxyacetyl chloride (0.35 mL, 3.2 mmol) at -40 °C

and the whole was stirred at -40 °C to room temperature overnight. After removal of the solvent, water and AcOEt were added to the residue and the two layers were separated. The aqueous layer was extracted with AcOEt and the combined organic layer was washed with water, saturated aqueous NH₄Cl, saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (3:1). The eluate was concentrated under reduced pressure to give the mixture of the title compounds (1.23 g, 72%, 29/30 = 3.5:1) as a yellow oil. ¹H NMR (CDCl₃) δ : 0.86 (9H, s), 1.07 (3H, d, J = 6.4Hz), 1.74 and 1.76 (total 3H, each s), 3.33 and 3.65 (total 3H, each s), 4.31 and 4.38 (total 1H, each m), 4.45-4.49 (1H, m), 5.41 and 5.67 (total 1H, each d, J = 4.9 Hz), 5.96 and 6.08 (total 1H, each d, J = 4.9 Hz), 7.06-7.08 (2H, m), 7.23-7.67 (10H, m), 8.37 and 8.52 (total 1H, each d, J = 2.4 Hz).

2-[(3R,4S)-3-Acetoxy-4-(5-fluoro-2-pyridyl)-2-Methyl oxo-1-azetidinyll-2-butenoate (31). To a solution of the mixture of 29 and 30 (3.5:1) (1.23 g, 2.12 mmol) in THF (12.3 mL) was added TBAF (1.0 M in THF, 2.25 mL, 2.25 mmol) with ice cooling, and the mixture was stirred at the same temperature for 15 min. To the reaction mixture was added saturated aqueous NH₄Cl and the whole was extracted with AcOEt. The extract was washed with water, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (2:1). The eluate was concentrated under reduced pressure to give the title compound (0.58)g, 85%) as a colorless syrup. ¹H NMR (CDCl₃) δ : 1.80 (3H, s), 2.12 (3H, d, J = 6.8 Hz), 3.75 (3H, s), 5.73 (1H, s)d, J = 5.4 Hz), 6.02 (1H, d, J = 5.4 Hz), 6.95 (1H, q, J = 6.8 Hz), 7.25-7.31 (1H, m), 7.39 (1H, dd, 1H, J = 2.9, 8.3 Hz), 8.45 (1H, d, J=2.9 Hz).

Methyl 2-[(3R,4S)-4-(5-fluoro-2-pyridyl)-2-oxo-3-triisopropylsilyloxy-1-azetidinyll-2-butenoate (32). To a solution of **31** (0.57 g, 1.76 mmol) in a mixture of THF (6.75 mL) and MeOH (6.75 mL) was added K_2CO_3 (15 mg) and the mixture was stirred at room temperature for 15 min. To the reaction mixture was added Dowex 50 (H⁺ form) and the mixture was stirred at room temperature for 5 min. The whole was filtered and the filtrate was concentrated under reduced pressure. After drying in vacuo, the residue was dissolved in DMF (6.8 mL) and to this solution were added imidazole (0.18 g, 2.64 mmol) and TIPSCl (0.56 mL, 2.61 mmol) with ice cooling. The whole was stirred at room temperature for 72 h and poured into ice-water. The mixture was extracted with AcOEt and the extract was washed with water, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with *n*-hexane–AcOEt (4:1). The eluate was concentrated under reduced pressure to give the title compound (0.47 g, 61%) as a colorless syrup. ¹H NMR (CDCl₃) δ : 0.90–1.05 (21H, m), 2.04 (3H, d, J = 7.3 Hz), 3.73 (3H, s), 5.32 (1H, d, J = 4.9Hz), 5.55 (1H, d, J = 4.9 Hz), 6.86 (1H, q, J = 7.3 Hz), 7.37-7.40 (2H, m), 8.41 (1H, s).

(3R,4S)-4-(5-Fluoro-2-pyridyl)-3-triisopropylsilyloxy-2azetidinone (22c). To a solution of 32 (0.47 g, 1.09 mmol) in a mixture of acetone (9.4 mL) and water (3 mL) were added NaHCO₃ (458 mg, 5.45 mmol) and KMnO₄ (181 mg, 1.14 mmol) at -20 °C, and the mixture was stirred at the same temperature for 20 min. To the reaction mixture was added water and the whole was extracted with AcOEt. The extract was washed with water, saturated aqueous NH₄Cl, brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel eluting with n-hexane-AcOEt (2:1). The eluate was concentrated under reduced pressure to give the title compound (128 mg, 35%, 54% ee) as colorless crystals. Enantiomeric purity was determined by HPLC analysis on a chiral column, Daicel Chiralcel AD, with n-hexane–2-propanol as the solvent. ¹H NMR (CDCl₃) δ : 0.89-1.02 (21H m), 5.00 (1H, d, J=4.9 Hz), 5.26 (1H, dd, J = 2.9, 4.9 Hz), 6.32 (1H, br s), 7.41–7.52 (2H, m), J = 2.9 Hz). Anal. calcd for 8.41 (1H, d, C₁₇H₂₇FN₂O₂Si: C, 60.32; H, 8.04; N, 8.28; F, 5.61. Found: C, 60.40; H, 7.97; N, 8.14; F, 5.47.

(3*R*,4*S*)-4-(5-Methoxy-2-pyridyl)-3-triisopropylsilyloxy-2-azetidinone (22f). Compound 22f was obtained from 21f as yellow crystals (57%) by following a procedure analogous to that described for the preparation of 13a from 11a. ¹H NMR (CDCl₃) δ : 0.89–1.02 (21H, m), 3.86 (3H, s), 4.95 (1H, d, *J*=4.9 Hz), 5.23 (1H, dd, *J*=2.4, 4.9 Hz), 6.20 (1H, br s), 7.23 (1H, dd, *J*=2.9, 8.3 Hz), 7.42 (1H, d, *J*=8.3 Hz), 8.30 (1H, d, *J*=2.9 Hz); HR-MS calcd for C₁₈H₃₁N₂O₃Si: 351.2104. Found, 351.2138.

Compounds 33a–f were obtained by following a procedure analogous to that described for the preparation of 17a from 16 by replacing 14a with the corresponding β lactams 23a–f.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2-benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-3-(5-methyl-2-pyridyl)-2-triisopropylsilyloxypro**pionate (33a).** A white amorphous powder (80%); ¹H NMR (CDCl₃) δ: 0.83–0.93 (21H, m), 1.32 (3H, s), 1.42 (9H, s), 1.52 (3H, s), 1.65 (3H, s), 1.82 (3H, s), 1.59–1.78 (2H, m), 1.87 (1H, s), 2.04–2.13 (1H, m), 2.32 (3H, s), 2.51 (3H, s), 2.26–2.32 (1H, m), 2.97 (1H, d, J = 5.4 Hz), 4.20 (1H, d, J=7.8 Hz), 4.22 (1H, d, J=7.3 Hz), 4.33 (1H, d, J=7.8 Hz), 4.96 (1H, br s), 5.21 (1H, d, J=6.4Hz), 5.28 (1H, d, J = 7.3 Hz), 5.44–5.48 (2H, m), 5.58 (1H, d, J=17.1 Hz), 5.78 (1H, s), 5.97–6.00 (2H, m), 6.09 (1H, br t), 7.42-7.46 (3H, m), 7.56 (1H, m), 7.60 (1H, t, J=7.8 Hz), 8.13 (2H, dd, J=1.0, 7.3 Hz), 8.38(1H, d, J=1.5 Hz); HR-MS calcd for $C_{55}H_{79}N_2O_{13}Si$: 1003.5351. Found, 1003.5289.

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-propenylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbonylamino)-3-(5-ethyl-2-pyridyl)-2-triisopropylsilyloxypropionate (33b). A white amorphous powder (95%); ¹H NMR (CDCl₃) δ : 0.86–1.05 (21H, m), 1.22 (3H, t, J=7.5 Hz), 1.32 (3H, s), 1.42 (9H, s), 1.43 (3H, s), 1.65 (3H, s), 1.82 (3H, s), 1.91–1.99 (1H, m), 2.23–2.35 (2H, m), 2.53 (3H, s), 2.61–2.67 (3H, m), 2.97 (1H, d, J=5.5 Hz), 4.19–4.23 (2H, m), 4.34 (1H, d, J=8 Hz), 4.97 (1H, s), 5.21 (1H, d, J=5.5 Hz), 5.24–5.31 (2H, m), 5.43–5.60 (3H, m), 5.96–6.05 (2H, m), 6.12 (1H, t, J=8 Hz), 7.24–7.31 (1H, m), 7.42–7.58 (4H, m), 8.13 (2H, d, J=7 Hz), 8.41 (1H, d, J=2 Hz); HR-MS calcd for C₅₆H₈₁N₂O₁₃Si: 1017.5508. Found, 1017.5532.

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-propenylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbonylamino)-(5-fluoro-2-pyridyl)-2-triisopropylsilyloxypropionate (33c). A white amorphous powder (74%); ¹H NMR(CDCl₃) δ : 0.87–0.94 (21H, m), 1.20–1.70 (2H, m), 1.31 (3H, s), 1.42 (9H, s), 1.52 (3H, s 1.65 (3H, s), 1.82 (3H, s), 1.75–2.07 (2H, m), 2.26–2.32 (2H, m), 2.49 (3H, s), 2.97 (1H, d, J=5.4 Hz), 4.19–4.23 (2H, m), 4.33 (1H, d, J=8 Hz), 4.96 (1H, s), 5.21 (1H, d, J=5.9 Hz), 5.27–5.32 (2H, m), 5.43–5.49 (3H, m), 5.58 (1H, d, J=17.5 Hz), 5.96–6.04 (2H, m), 6.12 (1H, t, J=8 Hz), 7.36–7.47 (4H, m), 7.57 (1H, t, J=7.3 Hz), 8.13 (2H, d, J=7.3 Hz), 8.43 (1H, d, J=2.4 Hz); HR-MS calcd for C₅₄H₇₆FN₂O₁₃Si: 1007.5101. Found, 1007.5144.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-3-(5-chloro-2-pyridyl)-2-triisopropylsilyloxypropionate (33d). A white amorphous powder (71%); ¹H NMR (CDCl₃) δ: 0.87–0.94 (21H, m), 1.18–1.69 (2H, m), 1.31 (3H, s), 1.41 (9H, s), 1.52 (3H, s), 1.65 (3H, s), 1.82 (3H, s), 1.72–2.05 (2H, m), 2.24–2.34 (2H, m), 2.48 (3H, s), 2.97 (1H, d, J = 5.4 Hz), 4.19-4.23 (2H, m), 4.33(1H, d, J = 7.8 Hz), 4.95 (1H, s), 5.21 (1H, d, J = 5.8 Hz),5.27–5.31 (2H, m), 5.42–5.47 (3H, m), 5.58 (1H, d, J=17.5 Hz), 5.96–6.04 (2H, m), 6.11 (1H, t, J=8.8 Hz), 7.38 (1H, d, J=8.3 Hz), 7.44 (2H, t, J=7.3 Hz), 7.57 (1H, t, J=7.3 Hz), 7.65 (1H, dd, J = 2.5, 8.3 Hz), 8.13 (2H, d, J = 7.3 Hz), 8.53 (1H, d, J=2.5 Hz); HR-MS calcd for C₅₄H₇₆ClN₂O₁₃Si : 1023.4805. Found, 1023.4785.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-3-(5-trifluoromethyl-2-pyridyl)-2-triisopropylsilyloxypropionate (33e). A white amorphous powder (92%); ¹H NMR (CDCl₃) δ : 0.85–0.92 (21H, m), 1.31 (3H, s), 1.43 (9H, s), 1.52 (3H, s), 1.65 (3H, s), 1.83 (3H, s), 1.60–1.66 (3H, m), 1.92–1.95 (1H, m), 2.04–2.09 (1H, m), 2.26–2.40 (2H, m), 2.51 (3H, s), 2.98 (1H, d, J=5.4 Hz), 4.19–4.23 (2H, m), 4.34 (1H, d, J=8.3 Hz), 4.96 (1H, s), 5.21 (1H, d, J=5.9 Hz), 5.29 (1H, d, J=6.8Hz), 5.38 (1H, d, J=9.3 Hz), 5.45–5.51 (3H, m), 5.58 (1H, d, J=17.1 Hz), 5.96-6.05 (2H, m), 6.13 (1H, t, t)J = 8.8 Hz), 7.45 (2H, t, J = 7.8 Hz), 7.55–7.59 (2H, m), 7.93 (1H, d, J=8.3 Hz), 8.13 (2H, d, J=7.3 Hz), 8.86 (1H, s); HR-MS calcd for $C_{55}H_{76}F_3N_2O_{13}Si$: 1057.59. Found, 1057.5068.

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-propenylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbo**nylamino)-3-(5-methoxy-2-pyridyl)-2-triisopropylsilyloxypropionate (33f).** A white amorphous powder (100%); ¹H NMR (CDCl₃) δ : 0.89–0.95 (21H, m), 1.32 (3H, s), 1.33–1.62 (2H, m), 1.41 (9H, s), 1.52 (3H, s), 1.65 (3H, s), 1.82 (3H, s), 1.92–2.32 (3H, m), 2.49 (3H, s), 2.98 (1H, d, *J*=4.9 Hz), 3.85 (3H, s), 4.20 (1H, d, *J*=7.4 Hz), 4.22 (1H, d, *J*=6.8 Hz), 4.32 (1H, d, *J*=8.3 Hz), 4.95 (1H, s), 5.21 (1H, d, *J*=5.8 Hz), 5.26–5.29 (2H, m), 5.39-5.47 (3H, m), 5.57 (1H, d, *J*=17.6 Hz), 5.96–6.02 (2H, m), 6.11 (1H, t-like, *J*=8.3 Hz), 7.15 (H, dd, *J*=2.4, 8.8 Hz), 7.31 (1H, d, *J*=8.8 Hz), 7.44 (2H, t, *J*=7.8 Hz), 7.56 (1H, t, *J*=7.8 Hz), 8.13 (2H, d, *J*=7.8 Hz), 8.26 (1H, d, *J*=3.0 Hz); HR-MS calcd for C₅₅H₇₉N₂O₁₄Si: 1019.5301. Found, 1019.5260.

Compounds **34a–f** were obtained by following a procedure analogous to that described for the preparation of **18a** from **17a**.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenvlidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(5-methyl-2-pyridyl)propionate (34a). A pale yellow amorphous powder (94%); ¹H NMR (CDCl₃) δ 1.27 (3H, s), 1.43 (9H, s), 1.49 (3H, s), 1.64 (3H, s), 1.75 (3H, s), 1.59–1.78 (2H, m), 1.88 (1H, s), 1.91 (1H, m), 2.04–2.13 (2H, m), 2.33 (3H, s), 2.35 (3H, s), 2.33–2.38 (1H, m), 2.94 (1H, d, J=4.9 Hz), 4.19 (1H, d, J=7.3 Hz), 4.22 (1H, d, J=8.3 Hz), 4.33 (1H, d, J=8.3 Hz), 4.89 (1H, br s), 4.91 (1H, br s), 4.89-4.91 (1H, m), 5.23 (1H, d, J=5.9 Hz), 5.30 (2H, m), 5.46 (1H, d, J=9.8 Hz), 5.58 (1H, d, J=17.1 Hz), 5.92 (1H, d, J=9.8 Hz), 5.96–6.05 (2H, m), 6.09 (1H, t, J=8.3Hz), 7.30 (1H, d, J=8.3 Hz), 7.47 (1H, t, J=7.8 Hz), 7.45-7.49 (1H, m), 7.52 (1H, dd, J=1.5, 7.8 Hz), 7.60(1H, t, J = 7.8 Hz), 8.13 (2H, d, J = 7.3 Hz), 8.35 (1H, s);HR-MS calcd for C₄₆H₅₉N₂O₁₃: 847.4017. Found, 847.4095.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino) - 3 - (5 - ethyl - 2 - pyridyl) - 2 - hydroxypropionate (34b). A white amorphous powder (85%); ¹H NMR (CDCl₃) δ 1.23–1.27 (6H, m), 1.43 (9H, s), 1.50 (3H, s), 1.63 (3H, s), 1.74 (3H, s), 1.84–1.89 (2H, m), 2.03–2.13 (1H, m), 2.32–2.38 (1H, m), 2.35 (3H, s), 2.65 (2H, q, J=7.5 Hz), 2.93 (1H, d, J=5 Hz), 4.17–4.22 (2H, m), 4.32 (1H, d, J=8.0 Hz), 4.87–4.92 (3H, m), 5.23 (1H, d, J = 6.5 Hz), 5.28–5.33 (2H, m), 5.46 (1H, d, J = 10.5 Hz), 5.58 (1H, d, J=7.0 Hz), 5.93–6.05 (3H, m), 6.09 (1H, t, J=8.0 Hz), 7.32 (1H, d, J=7.5 Hz), 7.46 (1H, t, J=8.0 Hz), 7.48–7.61 (2H, m), 8.11 (2H, d, J=8.0 Hz), 8.37 (1H, s); HR-MS calcd for $C_{47}H_{61}N_2O_{13}$: 861.4174. Found, 861.4095.

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-propenylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbonylamino)-3-(5-fluoro-2-pyridyl)-2-hydroxypropionate (34c). A white amorphous powder (99%); ¹H NMR (CDCl₃) δ : 1.27 (3H, s), 1.20–1.68 (2H, m), 1.44 (9H, s), 1.49 (3H, s), 1.64 (3H, s), 1.74 (3H, s), 1.75–2.05 (2H, m), 2.30–2.39 (2H, m), 2.34 (3H, s), 2.93 (1H, d, J=4.9 Hz), 4.18 (1H, d, J=6.8 Hz), 4.23 (1H, d, J=8.3 Hz) 4.33 (1H, d, J=8.3 Hz), 4.62 (1H, d, J=2.5 Hz), 4.90–4.92 (2H, m), 5.24 (1H, d, J=5.8 Hz), 5.30 (1H, d, J=6.8 Hz), 5.37 (1H, d, J=9.3 Hz), 5.46 (1H, d, J=10.2 Hz), 5.58 (1H, d, J=17 Hz), 5.90 (1H, d, J=10.2 Hz), 5.96–6.05 (2H, m), 6.10 (1H, t, J=7.8 Hz), 7.40–7.49 (4H, m), 7.60 (1H, t, J=7.3 Hz), 8.12 (2H, d, J=7.3 Hz), 8.41 (1H, s); HR-MS calcd for C₄₅H₅₆FN₂O₁₃: 851.3766. Found, 851.3793.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-3-(5-chloro-2-pyridyl)-2-hydroxypropionate (34d). A white amorphous powder (100%); ¹H NMR (CDCl₃) δ: 1.26 (3H, s), 1.22–1.65 (2H, m), 1.43 (9H, s), 1.49 (3H, s), 1.64 (3H, s), 1.74 (3H, s), 1.75–2.09 (2H, m), 2.30–2.39 (2H, m), 2.33 (3H, s), 2.94 (1H, d, J=4.9Hz), 4.18 (1H, d, J = 5.3 Hz), 4.22 (1H, d, J = 8.3 Hz) 4.32 (1H, d, J = 8.3 Hz), 4.61 (1H, br s), 4.92 (2H, m), 5.24 (1H, d, J=6.3 Hz), 5.30 (1H, d, J=6.8 Hz), 5.36 (1H, d, J=9.3 Hz), 5.46 (1H, d, J=10.5 Hz), 5.58 (1H, d, J = 17.5 Hz), 5.87 (1H, d, J = 9.3 Hz), 5.96–6.05 (2H, m), 6.11 (1H, t, J=7.8 Hz), 7.39 (1H, d, J=8.3 Hz), 7.47 (2H, t, J=7.3 Hz), 7.60 (1H, t, J=7.3 Hz), 7.69 (1H, dd, J=2.4, 8.3 Hz), 8.12 (2H, d, J=7.3 Hz), 8.51(1H, d, J=2.4 Hz); HR-MS calcd for $C_{45}H_{56}ClN_2O_{13}$: 867.3471. Found, 867.3503.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-propenylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(5-trifluoromethyl-2-pyridyl)pro**pionate (34e).** A white amorphous powder (76%); ¹H NMR (CDCl₃) δ: 1.27 (3H, s), 1.44 (9H, s), 1.49 (3H, s), 1.64 (3H, s), 1.75 (3H, s), 1.60-1.91 (3H, m), 2.04-2.09 (2H, m), 2.33-2.40 (2H, m), 2.34 (3H, s), 2.93 (1H, d, J=4.9 Hz), 4.18 (1H, d, J=7.3 Hz), 4.23 (1H, d, J=8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.65 (1H, br s), 4.92 (1H, s), 4.98 (1H, s), 5.25 (1H, d, J=6.3 Hz), 5.31 (1H, d, J = 7.8 Hz), 5.46 (1H, d, J = 10.8 Hz), 5.58 (1H, d, J = 17.1 Hz), 5.90 (1H, d, J = 9.3 Hz), 5.97–6.05 (2H, m), 6.13 (1H, t, J=7.8 Hz), 7.47 (2H, t, J=7.8 Hz), 7.57-7.62 (2H, m), 7.96 (1H, d, J=7.8 Hz), 8.13 (2H, d, J=7.8 Hz), 8.84 (1H, s); HR-MS calcd for C₄₆H₅₅F₃N₂O₁₃Na: 923.3554. Found, 923.3472.

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-propenylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbonylamino)-2-hydroxy-3-(5-methoxy-2-pyridyl)propionate (34f). A white amorphous powder (91%); ¹H NMR (CDCl₃) δ : 1.26 (3H, s), 1.43 (9H, s), 1.50 (3H, s), 1.60– 1.91 (3H, m), 1.64 (3H, s), 1.74 (3H, s), 1.91 (1H, s), 2.04–2.16 (2H, m), 2.32–2.37 (1H, m), 2.34 (3H, s), 2.93 (1H, d, J=5.3 Hz), 3.85 (3H, s), 4.18 (1H, d, J=7.3 Hz), 4.22 (1H, d, J=8.3 Hz), 4.33 (1H, d, J=8.3 Hz), 4.79 (1H, br s), 4.85 (1H, br s), 4.92 (1H, br s), 5.23 (1H, d, J=5.8 Hz), 5.29–5.30 (2H, m), 5.46 (1H, d, J=10.3 Hz), 5.58 (1H, d, J=17.1 Hz), 5.90 (1H, d, J=9.7 Hz), 5.96–6.03 (2H, m), 6.09 (1H, t-like, J=8.4 Hz), 7.22 (1H, dd, J=2.4, 8.8 Hz), 7.34 (1H, d, J=8.8 Hz), 7.47 (2H, t, J=7.8 Hz), 7.60 (1H, t, J=7.8 Hz), 8.13 (2H, d, J=7.8 Hz), 8.22 (1H, d, J=2.4 Hz); HR-MS calcd for C₄₆H₅₉N₂O₁₄: 863.3966. Found, 863.4012.

Compounds **35a–f** were obtained by following a procedure analogous to that described for the preparation of **19a** from **18a**.

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy|tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-(5-methyl-2-pyridyl)propionate (35a). Colorless small needles (58%), mp 166-168 °C. ¹H NMR (CDCl₃) δ: 1.26 (3H, s), 1.43 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.74 (3H, s), 1.74-2.13 (6H, m), 2.33 (3H, s), 2.34 (3H, s), 2.31-2.36 (1H, m), 2.58-2.68 (4H, m), 2.72 (1H, dd, J = 4.9, 13.2 Hz), 2.79 (1H, dd, J=4.9, 13.2 Hz), 2.93 (1H, d, J=4.9 Hz), 3.74 (4H, dd, J = 4.4, 4.9 Hz), 4.13 (1H, d, J = 6.8 Hz), 4.21 (1H, d, J=8.3 Hz), 4.32 (1H, d, J=8.3 Hz), 4.86 (1H, d, J = 2.0 Hz), 4.86–4.92 (1H, br s), 4.92 (1H, br s), 5.04 (1H, t, J=4.9 Hz), 5.23 (1H, d, J=6.8 Hz), 5.31 (1H, d, J=9.3 Hz), 5.91 (1H, d, J=9.3 Hz), 5.98 (1H, d, J=4.9 Hz), 6.09 (1H, t, J = 8.3 Hz), 7.30 (1H, d, J = 8.3 Hz), 7.45–7.53 (1H, t, J=7.3 Hz), 7.60 (1H, t, J=7.3 Hz), 8.12 (2H, d, J = 7.3 Hz), 8.35 (1H, s); FAB-MS (m/z): 920 $(M + H)^+$. Anal. calcd for C₄₉H₆₅N₃O₁₄·0.5H₂O: C, 63.75; H, 7.16; N, 4.52. Found: C, 63.30; H, 7.16; N, 4.42; IR: 3559, 2952, 1724, 1698, 1602, 1575, 1486, 1452 cm⁻¹; $[\alpha]_D^{23}$ -6.8° (*c* 0.3, CHCl₃).

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-3-(5-ethyl-2-pyridyl)-2-hydroxypro**pionate (35b).** A white powder (61%), mp 148–151 °C. ¹H NMR (CDCl₃) δ: 1.23–1.26 (6H, m), 1.43 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.72 (3H, s), 1.87–1.90 (2H, m), 1.98-2.18 (2H, m), 2.31-2.37 (1H, m), 2.35 (3H, s), 2.57–2.68 (6H, m), 2.72 (1H, dd, J=4.9, 13.2 Hz), 2.79 (1H, dd, J=4.9, 13.2 Hz), 3.74 (4H, t, J=4.5 Hz), 4.12(1H, d, J=7.0 Hz), 4.21 (1H, d, J=8.0 Hz), 4.32 (1H, d, J=8.0 Hz), 4.86 (1H, d, J=3.5 Hz), 4.92 (1H, s), 5.04 (1H, t, J=4.5 Hz), 5.22 (1H, d, J=7.5 Hz), 5.31 (1H, d, J=9.0 Hz), 5.92 (1H, d, J=9.0 Hz), 5.98 (1H, d, J=5.0 Hz), 6.09 (1H, t, J = 8.0 Hz), 7.32 (1H, d, J = 8.0 Hz), 7.47(2H, t, J=8.0 Hz), 7.54 (1H, dd, J=2.0, 8.0 Hz), 7.60(1H, t, J=8.0 Hz), 8.12 (1H, d, J=8.0 Hz), 8.36 (1H, s);FAB-MS (m/z): 934 $(M+H)^+$. Anal. calcd for $C_{50}H_{67}N_3O_{14}$ ·0.75 H_2O : C, 63.38; H, 7.29; N, 4.43. Found: C, 63.32; H, 7.28; N, 4.24; IR: 3423, 2964, 1712, 1600, 1571, 1484, 1452 cm⁻¹; $[\alpha]_{D}^{24}$ – 5.9° (*c* 0.15, CHCl₃).

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-(morpholino)ethylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbonylamino)-3-(5-fluoro-2-pyridyl)-2-hydroxypropionate (35c). A white powder (64%), mp 148–152 °C. ¹H NMR (CDCl₃) δ : 1.26 (3H, s), 1.20–1.69 (2H, m), 1.43 (9H, s), 1.48 (3H, s), 1.62 (3H, s), 1.72 (3H, s), 1.75–2.02 (2H, m), 2.33 (3H, s), 2.30–2.39 (2H, m), 2.59–2.69 (4H, m), 2.71 (1H, dd, J=5.4, 13.2 Hz), 2.79 (1H, dd, J=3.9, 13.2 Hz), 2.92 (1H, d, J=4.9 Hz), 3.74 (4H, t, J = 4.9 Hz), 4.12 (1H, d, J = 7.3 Hz), 4.22 (1H, d, J = 8.3 Hz), 4.32 (1H, d, J = 8.3 Hz), 4.60 (1H, br s), 4.90–4.92 (2H, m), 5.04 (1H, t, J = 4.9 Hz), 5.24 (1H, d, J = 6.8 Hz), 5.36 (1H, d, J = 9.3 Hz), 5.89 (1H, d, J = 9.8 Hz), 5.99 (1H, d, J = 4.9 Hz), 6.09 (1H, t, J = 8.0 Hz), 7.42–7.49 (3H, m), 7.60 (1H, t, J = 7.3 Hz), 7.60 (1H, t, J = 7.3 Hz), 8.12 (2H, d, J = 7.3 Hz), 8.40 (1H, s); FAB-MS (m/z): 924 (M+H)⁺. Anal. calcd for C₄₈H₆₂FN₃O₁₄·H₂O: C, 61.19; H, 6.85; N, 4.46; F, 2.02. Found: C, 61.16; H, 6.85; N, 4.36; F, 2.05; IR: 3438, 2958, 1716, 1600 cm⁻¹; [α]_D²⁵ – 6.7° (c 0.25, CHCl₃).

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino)-3-(5-chloro-2-pyridyl)-2-hydroxypropionate (35d). A white powder (77%), mp 146–150 °C. ¹H NMR (CDCl₃) δ : 1.26 (3H, s), 1.20–1.72 (2H, m), 1.43 (9H, s), 1.48 (3H, s), 1.63 (3H, s), 1.73 (3H, s), 1.75-2.03 (2H, m), 2.33 (3H, s), 2.30-2.38 (2H, m), 2.59-2.69 (4H, m), 2.72 (1H, dd, J = 5.4, 13.2 Hz), 2.79(1H, dd, J=3.9, 13.2 Hz), 2.92 (1H, d, J=4.9 Hz), 3.74(4H, t, J=4.9 Hz), 4.12 (1H, d, J=7.9 Hz), 4.22 (1H, d, J = 8.8 Hz), 4.32 (1H, d, J = 8.8 Hz), 4.59 (1H, br s), 4.91 (2H, m), 5.05 (1H, t, J=4.4 Hz), 5.24 (1H, d, J=6.8Hz), 5.35 (1H, d, J=9.3 Hz), 5.87 (1H, d, J=9.8 Hz), 5.99 (1H, d, J=4.9 Hz), 6.10 (1H, t, J=8.0 Hz), 7.39 (1H, d, J=8.3 Hz), 7.47 (2H, t, J=7.3 Hz), 7.60 (1H, t, J=7.3 Hz), 7.69 (1H, dd, J=2.5, 8.3 Hz), 8.12 (2H, d, J = 7.3 Hz), 8.50 (1H, d, J = 2.5 Hz); FAB-MS (m/z): 940 $(M+H)^+$. Anal. calcd for $C_{48}H_{62}ClN_3O_{14}\cdot H_2O$: C, 60.15; H, 6.73; N, 4.38; Cl, 3.70. Found: C, 60.15; H, 6.74; N, 4.20; Cl, 3.63; IR: 3430, 2956, 1714, 1602 cm⁻¹; $[\alpha]_{D}^{24} - 3.0^{\circ}$ (c 0.16, CHCl₃).

(1S, 2S, 3R, 4S, 5R, 8R, 9S, 10R, 13S)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1S)-2-(morpholino)ethylidenedioxy]tax-11-en-13-yl (2R, 3S)-3-(tert-butoxycarbonylamino) - 2 - hydroxy - 3 - (5 - trifluoromethyl - 2 pyridyl)propionate (35e). A white powder (81%), mp 148–151 °C. ¹H NMR (CDCl₃) δ: 1.26 (3H, s), 1.44 (9H, s), 1.48, 1.61, 1.73 (each 3H, all s), 1.63–1.94 (3H, m), 2.03-2.08 (2H, m), 2.34-2.39 (2H, m), 2.34 (3H, s), 2.59-2.68 (4H, m), 2.70-2.82 (2H, m), 2.92 (1H, d, J=5.3 Hz), 3.75 (4H, t, J=4.4 Hz), 4.12 (1H, d, J=7.3 Hz), 4.23 (1H, d, J=8.3 Hz), 4.33 (1H, d, J=8.3 Hz), 4.62 (1H, br s), 4.91 (1H, s), 4.98 (1H, d, J=1.9 Hz), 5.06 (1H, s), 5.24 (1H, d, J = 7.4 Hz), 5.46 (1H, d, J = 8.8Hz), 5.89 (1H, d, J=8.8 Hz), 6.00 (1H, d, J=4.9 Hz), 6.12 (1H, t, J=7.8 Hz), 7.47 (2H, t, J=8.3 Hz), 7.57-7.62 (2H, m), 7.96 (1H, d, J=8.3 Hz), 8.12 (2H, d, J = 8.3 Hz), 8.83 (1H, s), FAB-MS (m/z): 974 (M+H)⁺. Anal. calcd for C₄₉H₆₂F₃N₃O₁₄·0.75H₂O: C, 59.60; H, 6.48; N, 4.25; F, 5.77. Found: C, 59.71; H, 6.65; N, 3.96; F, 5.47; IR: 3423, 2954, 1712, 1606, 1577, 1488, 1452, 1367 cm⁻¹; $[\alpha]_D^{23}$ -3.2° (c 0.4, CHCl₃).

(1*S*, 2*S*, 3*R*, 4*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*S*)-4-Acetoxy-2benzoyloxy-5,20-epoxy-1-hydroxy-9,10-[(1*S*)-2-(morpholino)ethylidenedioxy]tax-11-en-13-yl (2*R*, 3*S*)-3-(*tert*-butoxycarbonylamino)-2-hydroxy-3-(5-methoxy-2-pyridyl)propionate (35f). Colorless small needles (51%), mp 160-161 °C. ¹H NMR (CDCl₃) δ : 1.27 (3H, s), 1.43 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.72 (3H, s), 1.78-2.12 (6H, m), 2.31–2.38 (1H, m), 2.34 (3H, s), 2.58–2.68 (4H, m), 2.71 (1H, dd, J=5.4, 13.2 Hz), 2.79 (1H, dd, J=3.9, 13.2 Hz), 2.93 (1H, d, J = 5.3 Hz), 3.75 (4H, t, J = 4.9Hz), 3.86 (3H, s), 4.12 (1H, d, J=7.3 Hz), 4.21 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.76 (1H, br s), 4.85 (1H, br s), 4.92 (1H, s), 5.04 (1H, t, J=4.6 Hz), 5.23 (1H, d, J=6.9 Hz), 5.29 (1H, d, J=8.8 Hz), 5.90 (1H, d, J=9.3 Hz), 5.98 (1H, d, J=4.9 Hz), 6.08 (1H, t-like, J=8.3 Hz), 7.22 (1H, dd, J=2.9, 8.8 Hz), 7.34 (1H, d, J = 8.8 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8Hz), 8.13 (2H, d, J = 7.8 Hz), 8.22 (1H, d, J = 2.9 Hz), FAB-MS (m/z): 936 $(M+H)^+$. Anal. calcd for C₄₉H₆₅N₃O₁₅: C, 62.87; H, 7.00; N, 4.49. Found : C, 62.66; H, 7.08; N, 4.28; IR: 3542, 2950, 1729, 1720, 1600, 1581, 1481, 1450 cm⁻¹; $[\alpha]_{\rm D}^{24}$ -2.1° (c 0.77, CHCl₃).

In vitro cytotoxicity. To examine the direct growthinhibitory effects of the test compounds against P388 mouse leukemia, PC-6 and PC-12 human non-small cell lung cancer cell lines, and resistant cell lines PC-6/ VCR29-9 and PC-6/VP1-1, the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay was performed. The concentration giving a growth inhibition of 50% (GI₅₀) was calculated according to a published procedure.¹³

In vitro metabolic stability. The reaction mixture consisted of 4 mM MgCl₂, 10 mM disodium glucose-6-phospate, 1 unit/mL glucose-6-phosphate dehydrogenase, 1 mM β -NADPH, 10 μ M test compound, and 1 mg protein/mL liver microsomes of each animal in 0.1 M potassium phosphate buffer (pH 7.4) at a final volume of 0.5 mL. This mixture was preincubated for 2 min at 37 °C and the reaction was started by the addition of 10 μ L (to the 0.49 mL of mixture) β -NADPH. After incubation at 37 °C, the reaction was stopped by adding 1 mL of acetonitrile. After centrifugation, the supernatant fraction was applied for analysis.

References and Notes

1. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; MacPhail, A. T. J. Am. Chem. Soc. **1971**, 93, 2325.

- Schiff, P. B.; Fant, J.; Horwitz, S. B. *Nature* 1979, 277, 665.
 Guéritte-Voegelein, F.; Guénard, D.; Lavelle, F.; Le Goff, M.-T.; Mangatal, L.; Potier, P. *J. Med. Chem.* 1991, *34*, 992.
- 4. For general reviews on taxoid chemistry, see: (a) Suffness, M., Ed., *Taxol*[®] *Science and Applications*; CRC: New York, 1995. (b) Georg, I. G., Chen, T. T., Ojima, I., Vyas, D. M., Eds., *Taxane Anticancer Agents: Basic Science and Current Status*; ACS Symposium Series No. 583; American Chemical Society: Washington, DC, 1995. (c) Farina, V., Ed., *The Chemistry and Pharmacology of Taxol*[®] *and its Derivatives*; Elsevier: New York, 1995.

5. (a) For review, see: Suffness, M. Annu. Rep. Med. Chem. **1993**, 28, 305. (b) Guénard, D.; Guéritte-Voegelein, F.; Potier, P. Acc. Chem. Res. **1993**, 26, 160.

6. Ishiyama, T.; Iimura, S.; Ohsuki, S.; Uoto, K.; Terasawa, H.; Soga, T. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1083.

7. Takeda, Y.; Yoshino, T.; Uoto, K.; Chiba, J.; Ishiyama, T.; Iwahana, M.; Jimbo, T.; Tanaka, N.; Terasawa, H.; Soga, T. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 185.

- 8. Blantz, E. J., Jr.; French, F. A.; Doamaral, J. R.; French, D. A. J. Med. Chem. 1970, 13, 1124.
- 9. Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. *Tetrahedron* **1992**, *48*, 6985.

10. The enantiomeric excess of 13a, 13b and 22f could not be determined by HPLC analysis with a Chiralcel OD column; however, from the consideration of good yields at the coupling reaction with 16, the enantiomeric excess of each com-

pound was assumed to be high and/or a kinetic resolution might occur.

- 11. Tennenson, S. M.; Belleau, B. *Can. J. Chem.* **1980**, *58*, 1605. 12. PC-6/VCR29-9: PC-6 cell line, which is resistant to Vincristine[®]. PC-6/VP1-1: PC-6 cell line, which is resistant to VP-16 (Etoposide[®]).
- 13. Ishii, M.; Iwahana, M.; Mitsui, I.; Minami, M.; Imagawa, S.; Tohgo, A.; Ejima, A. *Anticancer Drugs* **2000**, *11*, 353.