Cite this: Chem. Commun., 2012, 48, 1866–1867

COMMUNICATION

Differentiation of diastereotopic bromine atoms in $S_N 2$ reactions of gem-dibromides[†]

Niels Münster, Klaus Harms and Ulrich Koert*

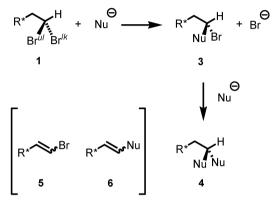
Received 5th December 2011, Accepted 19th December 2011 DOI: 10.1039/c2cc17599a

A novel directed $S_N 2$ reaction of conformationally biased *gem*dibromides and an arenesulfinate anion is described. The reaction results in the diastereoselective formation of α -bromosulfones. The selectivity originates from pre-coordination of the nucleophile to a free hydroxyl group in the γ -position.

The differentiation of diastereotopic groups is an important yet underdeveloped strategy for stereoselective synthesis.¹ Diastereotopic halogen atoms have been used so far only for diastereoselective halogen-metal exchange reactions with aliphatic *gem*-dibromides.^{2,3} The selective intermolecular substitution of one halogen substituent in a *gem*-dibromide by a nucleophile would be not only a valuable contribution to a basic organic reaction (S_N2) but also of general significance for stereoselective synthesis.

A successful stereoselective $S_N 2$ reaction at an aliphatic gem-dihalogenide has to meet three requirements:

- The nucleophilic substitution has to dominate over competing elimination side reactions.

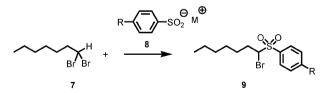

- The second nucleophilic substitution of the remaining halogen has to be much slower.

- A conformational bias of the substrate in combination with an element of stereocontrol (stereocenter) to achieve a diastereoselective attack of the incoming nucleophile.

Scheme 1 summarizes this challenge for the case of an aliphatic *gem*-dibromide 1 bearing diastereotopic bromine atoms. Its reaction with the nucleophile should lead predominantly to a monobromide 3. Elimination side reactions of the substrate to 5 or the product to 6 have to be avoided as well as the nucleophilic substitution of the remaining bromide in 3 leading to 4.

Nucleophilic substitution reactions of bromine in α -bromosulfones are hard to accomplish.⁴ In contrast to π -substituents (C=O, C=C), the sulfone group does not accelerate S_N2 reactions. Therefore, the synthesis of α -bromosulfones from aliphatic *gem*-dibromides and sulfinates should stop at the monosubstitution stage and represents a promising solution for the present task. Dibromomethane so far was the only aliphatic substrate that was converted into α -bromosulfones.⁴

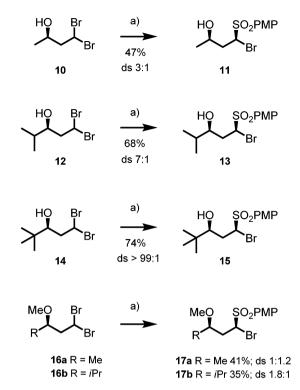
E-mail: koert@chemie.uni-marburg.de; Fax: +49 6421-2825677 † Electronic supplementary information (ESI) available: Experimental details and spectroscopic characterization information. CCDC 850197 (10) and 850198 (13). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc17599a



Scheme 1 Stereoselective S_N^2 reaction of a *gem*-dibromide.

1,1-Dibromoheptane 7^5 was chosen as a substrate for optimizing the S_N2 reaction conditions (Table 1). It was found that a noncoordinating counter ion $(Et_4N^+)^6$ in the arenesulfinate 8 gave the best yield of α -bromosulfone 9. A reaction temperature with maximum 60 °C and DMSO as solvent gave a minimum of elimination side products. 6,7 No alkyl sulfinate formation (O-alkylation) was observed under these conditions.

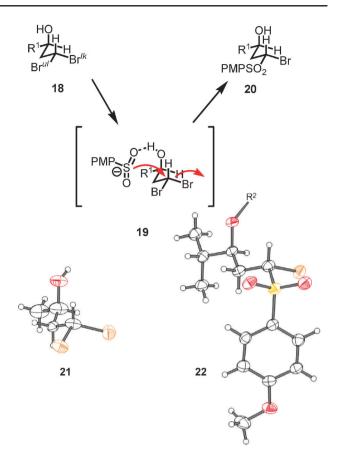
 γ -Substituted aliphatic *gem*-dibromides were selected for the diastereoselectivity studies because of their conformational bias due


Table 1 Optimization of the bromosulfone synthesis

Entry	М	R	Solvent	Additive ^a	$Temp/t^b$ [°C/h]	Yield [%]
1	Na	Me	MeCN	15-C-5 (3 equiv.)	80/72	21
2	Na	Me	MeCN	15-C-5 (1 equiv.)	80/192	46
3	Li	Me	MeCN	12-C-4 (1 equiv.)	80/192	6
4	Li	Me	DMSO	$Bu_4NBr (0.4 equiv.)$	70/22	58
5	Et ₄ N	Me	DMSO	_ ` ` ` `	60/48	62
6	Et ₄ N	Me	DMSO	_	70/48	55
7	Et ₄ N	OMe	DMSO	_	50/48	57
8	Et ₄ N	OMe	DMSO	_	60/64	76

^{*a*} 15-C-5 = 15-crown 5-ether, 12-C-4 = 12-crown 4-ether. ^{*b*} t = reaction time.

Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany.


Scheme 2 Diastereoselective synthesis of γ -hydroxy- α -bromo-sulfones. (a) PMPSO₂(Et₄N), DMSO 60 °C. PMP = *para*-methoxy phenyl.

to avoidance of *syn*-pentane interactions.⁸ A γ -hydroxy substituent offers the possibility for various derivatization (ether, ester). Details for the synthesis of γ -hydroxy aliphatic *gem*-dibromides **10**, **12** and **14** (racemic series) are given in the ESI.† Treatment of compounds **10**, **12**, and **14** with tetraethylammonium *p*-methoxy-benzenesulfinate gave the α -bromosulfones **11**, **13** and **15** in good yields (Scheme 2). The methyl terminated *gem*-dibromide **10** showed a moderate diastereoselectivity. The isopropyl terminated substrate **11** gave a very good diastereoselectivity and for the *tert*-butyl substituted *gem*-dibromide **14** only one stereoisomer was formed. The stereochemical assignment of the main diastereomer was possible by X-ray structure of the dinitrobenzoates of compounds **13** and **15** (Scheme 3).

The free hydroxyl group in the γ -position is a prerequisite for the good yields and diastereoselectivities. The corresponding methyl ethers **16** gave lower yields and nearly no diastereoselectivity of the corresponding α -bromosulfones **17**.⁹

A possible rationale for the increased reactivity and stereoselectivity of γ -hydroxy aliphatic *gem*-dibromides is given in Scheme 3. All *gem*-dibromides examined show a preferred conformation **18**, which is supported by the X-ray structure of **21** obtained for dibromide **10** and by earlier observations.^{8,10} The incoming sulfinate is precoordinated to the substrate *via* hydrogen bonding (nucleophile fishing) which results in an increased reactivity and a selective nucleophilic substitution of the like-bromine atom. The main diastereomer α -bromosulfone formed is compound **20**. The increasing diastereoselectivity in the series **10**, **12**, and **14** can be explained by their increasing conformational bias.

In summary, a differentiation of diastereotopic bromine atoms in $S_N 2$ reactions of *gem*-dibromides was achieved. A possible explanation for the observed diastereoselective formation of α -bromosulfones is a precoordination of the

Scheme 3 Conformational bias of *gem*-dibromide 18 leads *via* nucleophile fishing in the transition state 19 to a selective substitution of Br^{lk} and the formation of α -bromosulfone 20; 21: X-ray structure of compound 10; 22: part of the X-ray structure of dinitrobenzoate prepared from compound 13, R² = COC₆H₃-3,5-(NO₂)₂.

sulfinate nucleophile (nucleophile fishing). The stereochemical control in the preparation of α -bromosulfones shall allow their use for further synthetic applications.¹¹

Financial support by the DFG and Fonds der Chemischen Industrie is gratefully acknowledged. The authors thank R. W. Hoffmann for helpful discussions.

Notes and references

- 1 R. W. Hoffmann, Synthesis, 2004, 2075.
- 2 G. Köbrich, Angew. Chem., 1967, 79, 15 (Angew. Chem., Int. Ed. Engl., 1967, 6, 41).
- 3 R. W. Hoffmann, M. Bewersdorf, K. Ditrich, M. Krüger and R. Stürmer, Angew. Chem., 1988, 100, 1232 (Angew. Chem., Int. Ed. Engl., 1988, 27, 1176).
- 4 W. M. Ziegler and R. Connor, J. Am. Chem. Soc., 1940, 62, 2596.
- 5 Dibromide 7 was prepared from heptanal, P(OPh)₃ and Br₂ in 76%
- yield; R. W. Hoffmann and P. Bovicelli, *Synthesis*, 1990, 657. 6 G. E. Vennstra and B. Zwanenburg, *Synthesis*, 1975, 519.
- 7 The elimination side reactions were monitored by NMR spectroscopy.
- 8 R. Göttlich, B. Colin Kahrs, J. Krüger and R. W. Hoffmann, *Chem. Commun.*, 1997, 247.
- 9 The stereostructural assignment of the γ-methoxy α-bromosulfones 17 was possible by comparison of the NMR data of the same compounds obtained by methyl ether formation of the alcohols 11 and 13.
- 10 R. W. Hoffmann, H.-C. Stiasny and J. Krüger, *Tetrahedron*, 1996, 52, 7421.
- 11 For an alternative stereoselective route to α -bromosulfones: M. B. Anderson, M. Lamothe and P. L. Fuchs, *Tetrahedron Lett.*, 1991, **32**, 4457.