Indirect Nuclear Spin-Spin Coupling Constants of Nitrogen-15 to Silicon-29 in Silylamines

Eriks Kupče, Edvards Liepinš, Olga Pudova, and Edmunds Lukevics

Institute of Organic Synthesis, Latvian SSR Academy of Sciences, Riga, U.S.S.R.

The $^{15}N-^{29}Si$ spin–spin coupling constants in silylamines have been measured from ^{29}Si satellites in their natural abundance ^{15}N n.m.r. spectra in an INEPT sequence for accumulation of signals and interpreted in terms of Fermi-contact interaction; the sensitivity of $^{1}J(^{15}N-^{29}Si)$ to $d_{\pi}-p_{\pi}$ bonding was noted.

Spin–spin coupling is a valuable source of information on the nature of chemical bonds in and the structure of compounds in solutions. To investigate $^{15}N-X$ spin-spin coupling (where X is a group 4A element), ^{15}N -enriched samples are generally used. For instance, $^{15}N-^{13}C$ coupling has been studied in detail in this manner. Recently, $^{1}J(^{15}N-^{119}Sn)$ and $^{1}J(^{15}N-^{209}Pb)$ have been measured and their properties studied in several compounds. $^{3}IJ(^{15}N-^{29}Si)$ has not been examined systematically until recently. The present communication reports a study of $^{15}N-^{29}Si$ coupling in silylamines at the natural abundance level of the ^{15}N isotope. $^{1}J(^{15}N-^{29}Si)$ values were measured from ^{29}Si satellites in ^{15}N n.m.r. spectra (Figure 1) using the INEPT sequence for accumulation of signals. 4

¹⁵N–X Spin–spin coupling constants are generally interpreted by assuming a dominant Fermi-contact interaction.^{2,3} This is, in part, indicated by the fact that the reduced constants ${}^{1}K({}^{15}N-X)>0$ for $X={}^{13}C$, ${}^{29}Si$, or ${}^{119}Sn$, ${}^{2.3,5}$ The negative ${}^{1}K({}^{15}N-X)$ values for $X={}^{209}Pb$ and, in some cases, ${}^{119}Sn$ are ascribed to the small values of the N–X s-overlap integral (β_{NX}).³ For increasing electronegativity of substituents on N and X there is an increase in β_{NX} to give more positive ${}^{1}K({}^{15}N-X)$ values.³ Therefore, the systematic increase in ${}^{1}J({}^{15}N-{}^{29}Si)$ with increasing electronegativity of substituents on N and Si within the series of silylamines in Table 1 suggests that ${}^{1}K({}^{15}N-{}^{29}Si)>0$ for these compounds. This also indicates that the s-character of the N–Si bond also increases in the same way in this series.⁶

The exception to this rule, *i.e.*, that ${}^1J({}^{15}N{}^{-29}Si)$ values for NPh derivatives are less than those of their NBu^t analogues, suggests that the coupling constant is sensitive to $d_{\pi}{}^{-}p_{\pi}$ bonding between the lone electron pair (lp) on the nitrogen atom and the vacant d-orbitals on Si. The $d_{\pi}{}^{-}p_{\pi}$ bonding affects ${}^1J({}^{15}N{}^{-29}Si)$ only to the extent that it affects $\beta_{NSi}{}^{-7}$

Therefore, the differences in ¹J(¹⁵N-²⁹Si) of the NBu^t and NPh derivatives (where for the NPh compounds there is a stronger competitive conjugation of the nitrogen lone pair with the phenyl ring) are small.

The values for PhHNSi(OEt)₃ (compound 22) in different solvents (Table 1) show that the effect of these solvents on ¹J(¹⁵N-²⁹Si) is negligible. A slight decrease in the ¹⁵N-²⁹Si

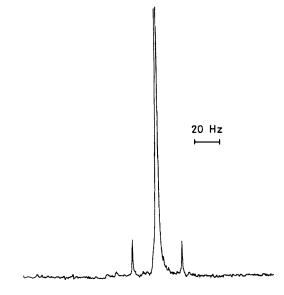


Figure 1. 29 Si Satellites in the 15 N n.m.r. spectra of a 50% solution of (PhNH) $_2$ Si(OEt) $_2$ in CDCl $_3$ (15 mm sample tube, INEPT pulse sequence, overnight run, relaxation time 2 s).

Table 1. N.m.r.a parameters for 50% solutions of silylamines in CDCl₃.

No.	Compound	$^{1}J(^{15}N-^{29}Si)/(\pm 0.1) Hz$	$\delta(^{15}N) \ (\pm 0.1) \text{p.p.m.}$	No.	Compound	$^{1}J(^{15}N-^{29}Si)/$ (±0.1) Hz	$\delta(^{15}N)$ (±0.1) p.p.m.
1°	$N(SiH_3)_3$	+6	_	13	PhHNSiHMe ₂	16.4	-320.4
2 ^d	$HN(SiMe_3)_2$	13.4	-354.2	14 ^d	PhHNSiMe ₂ Ph	17.3	-317.7
3 ^d	(HNSiMe ₂) ₄	16.9	-341.7	15	PhHNSiMePh ₂	18.3	-319.5
4	ButHNSiMe ₃	17.2	-323.9	16	$(PhHN)_2SiMe_2$	19.9	-312.7
5d	ButHNSiMe2Ph	18.8	-325.7	17	PhHNSi(OEt)Me ₂	19.9	-310.8
6 ^d	ButHNSiMePh2	19.8	-327.3	18	(PhHN) ₃ SiMe	25.4	-313.1
7	(ButHN) ₂ SiMe ₂	20.8	-317.4	19	(PhHN) ₂ Si(OEt)Me	27.3	-313.5
8	Bu ^t HNSi(OEt)Me ₂	21.5	-317.6	20	PhHNSi(OEt) ₂ Me	29.0	-314.6
9	ButHNSi(OEt)2Me	30.9	-321.5	21	$(PhHN)_2Si(OEt)_2$	40.1	-319.2
10	$(Bu^tHN)_2Si(OEt)_2$	39.8	-324.9	22	PhHNSi(OEt) ₃	43.9	-322.3
11	ButHNSi(OEt) ₃	44.6	-330.4	e	,,	43.7	-321.5
12	PhHNSiMe ₃	15.7	-314.9	f	,,	43.2	-320.7

 $^{^{}a 15}N$ N.m.r. spectra were recorded on a Bruker WM-360 spectrometer, at 36.5 MHz, INEPT pulse sequence, sweep width = 3600 Hz, 4 K data points, relaxation time 2 s, number of scans = 2000—4000, digitalization 0.11 Hz per point, temperature 303 K. b Silylamines 4—22 were synthesized from the reactions of excess of the amines with the corresponding chlorosilanes, compounds 2 and 3 were commercial products. c Taken from ref. 5. d In [2 H₆]acetone. c In [2 H₁₂]cyclohexane. f In [2 H₆]dimethyl sulphoxide.

spin-spin coupling with increasing solvent polarity may be accounted for in terms of co-ordination of the solvent to Si.

 $^{1}J(^{15}N^{-1}H)$ shows little dependence on the substituent on Si, however, it is significantly increased by an increase in the electronegativity of substituents on N so that SiR₃ (67) < Bu^t (73—75) < Ph (76—79 Hz). The similarity of the values of these constants for the NPh an NBu^t derivatives suggests a similar (planar) configuration of the nitrogen atom in these compounds in solution.²

Changes in the shielding of ¹⁵N nuclei correspond to those found earlier in silylamines.⁸

Received, 21st October 1983; Com. 1383

References

- 1 W. McFarlane, Q. Rev., Chem. Soc., 1969, 2b, 187.
- W. Freyer, Z. Chem., 1981, 21, 47; G. C. Levy and R. L. Lichter, 'Nitrogen-15 NMR Spectroscopy,' Wiley, New York, 1979, Ch. 4; G. J. Martin, M. L. Martin, and J. P. Gouesnard, '15N-NMR Spectroscopy,' Springer-Verlag, Berlin, 1981, pp. 195—197.
- 3 J. D. Kennedy, W. McFarlane, and G. S. Pyne, J. Organomet. Chem., 1980, 195, 285.
- 4 G. A. Morris and R. Freeman, J. Am. Chem. Soc., 1979, 101, 160.
- 5 D. W. N. Anderson, J. E. Bentham, and D. W. H. Rankin, J. Chem. Soc., Dalton Trans., 1973, 1215.
- 6 H. A. Bent, Chem. Rev., 1961, 61, 275
- 7 L. M. Venanzi, Chem. Br., 1968, 4, 162.
- M. L. Filleux-Blanchard and N. D. An, Org. Magn. Reson., 1979, 12, 12.