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ON NORMAL VERBAL EMBEDDINGS OF GROUPS

H. Heineken and V. H. Mikaelian UDC 512.543.7

For the case of an arbitrary group H and an arbitrary word set V', we establish a necessary and sufficient
condition under which there exists a group G such that H is isomorphic to a normal subgroup H of G such
that H lies in V(G). This is a generalization of results of Burnside and Blackburn (concerning the cases of the
commutator word and some much more special classes of groups) as well as of the first author (establishing
a criterion for the case of one word w and finite p-group H). Some related special cases are considered.

1. Introduction

It is not difficult to show that for each nontrivial set V' of words each (finite, finitely generated) group
is embeddable in the verbal V-subgroup of a certain (finite, finitely generated) group. Still the following
problem of normal embeddings of this type is far from being trivial even for such a “simple” word subgroup
as a commutator_subgroup: for the given group H and given set of words V C Fy, there exists a group G
with a subgroup H such that H = H, H<G, and H C V(G).

In 1912, Burnside proved that a nonabelian group with a cyclic center or a nonabelian group the index of
whose derived group is p? cannot be the derived group of a p-group [3, Theorems on pp. 241 and 242]. On the
other hand, Blackburn has found all the 2-generated p-groups which occur as derived groups of p-groups {2].
Finally, the first author generalized these results and proved that a finite p-group H is invariant in some finite
p-group G and lies for the word w € F in the verbal subgroup w(G) if and only if w(L) D Inn(H), where
L is a Sylow-p-subgroup of Aut (H) {5].

The main aim of this paper is to study such embeddings in a more general situation.

First. we establish a necessary and sufficient condition for arbitrary V and arbitrary H under which H
is invariant embeddable in some group G and lies in V(G) (Theorem 1 in Sec. 3).

Next we consider embeddings with the property mentioned for the case of abelian groups (Sec. 4). It
turns out that some additional properties can be provided. Each abelian group H can be normally embedded
in some nilpotent group G such that its image H is normal in G and H C V(G). If H is finite (finitely
generated), G can be chosen finite (finitely generated) and nilpotent (Theorem 2). Meanwhile, it is known
that some finite solvable groups cannot even be subnormally embedded in any finite group and simultaneously
be contained in the commutator subgroup of the latter [6].

In Sec. 5, we impose a restriction on the word set and obtain “economical” embeddings for certain word
subgroups — commutator subgroup, nth degree, terms of the lower central series, etc. Some of them are
generalizations of the above-mentioned results on their own.

The general criterion we establish can be used not only to obtain many concrete examples of the groups
H that can or cannot be normally embedded into some group G such that H C V(G) but also can be used
over whole classes of groups or constructions of groups (direct and cartesian products, matrix and symmetric
groups, etc.). This will be the subject of another paper [7]; here we restrict ourselves only to an illustration
of the use of Theorem 1, namely with a criterion of the possibility of embeddings of the above-mentioned
type for the symmetric groups (Sec. 6).

We would like to announce here the results of the second author [10] concerning a similar problem,
namely the subnormal embeddability of the given group H in some group G such that the isomorphic image
of H lies in V(G). It turns out that such embeddings always exist. In addition, G can have some additional
properties. In particular, [10] contains generalizations of some well-known theorems on embeddings of groups
in 2-generated groups, etc.
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2. Notions
For the sake of brevity, we use a special notion:

Definition 1. For a word set V, the nV-embedding v of the group H into the group G is the monomorphism
v: H — G such that _ _

H=v(H)aG and H CV(G).
The group H is said to be nV-embeddable if there is a group G and an nV-embedding of H into G.

Further, U will be used to denote the variety U = var (Fo/V (F)) corresponding to the word set V. O
will be the variety of all groups. v.(z1,..., z.) is the word [z1,...,z.]; the word é,(z1,...,Z2n) is defined as
o =z and

(5n+1(l'1, ey iL‘Qn—l) = [(5,1(1'1, ey .’Egn), (Sn(I2n+1, - ,$2n+1)].

For general background information we refer the reader to {9] or [13]. The book of Hanna Neumann [12]

can be used for information on the varieties of groups.

3. General Condition for nV-Embeddability

Let M be an infinite set and Sy; be the group of permutations of Af. For the case where M is countable,
Dark has noted in [4] that the derived group S, coincides with Sy;. The following more general lemma is
of some independent interest.

Lemma 1. For an arbitrary nontrivial word set V' and an arbitrary infinite set M the following holds:
V(Sar) = Sar.
So Syr is rather trivially nV -embeddable into itself for each nontrivial word set V.

Proof. Let R, be the order of M and let 0 < 8 < i be a smaller ordinal number. Let Sz be the subset of
permutations of Sy, that move in fact not more than Nz elements of the set M. As is easy to see, these subsets
are in fact subgroups. For example, Sy is the subgroup of Sy, that consists of “ordinary” permutations of set
M, i.e., the permutations that move only finitely many elements. Let A,; be the subgroup of Sy consisting
of all even permutations on Af.

As is shown by Baer [1], all the invariant subgroups of S;; are members of the following series:

1<]AM<‘|SQ<JSL<‘J...<ISB<1...<]S‘,,<'ISM. (1)

The verbal subgroups are invariant in the group, so it would be enough to show that the subgroup V(Sas) is
transitive on the set M and is therefore larger than each proper normal subgroup from (1).

Let m; and my be two elements of M. The variety U is different from the variety £ of all groups and
therefore there exists some finite group N not belonging to ‘U (because the set of all finite groups generates
$J). Via the right regular representation, N is embedded into the group Sy. Let

N' = NU{ml,mg}.

Sy is naturally embeddable into the alternating group Ay.. Without loss of generality, the order of N’ is
larger than 4 (if this is not so we simply take N x N instead of N). So the group An- is simple and does not
belong to V. Therefore V(Ay/) = Ans. In the transitive group Ax- there exists a permutation p such that
p . my — mao. Thus the permutation we are looking for can be defined as

5 s pm) f meN
P 1 if meM\N.

The lemma is proved. U

The following lemma is an analog of Lemma 2 from [5], proved for p-groups.
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Lemma 2. The group H is not nV -embeddable if
V(Aut (H)) 2 Inn (H).

Proof Let H be nV-embeddable into G. The action of elements of G by conjugations on H defines an

isomorphism of G/Cg(H) onto some subgroup of Aut (H). It maps HC¢(H)/Ce(H) onto Inn (H). Forming

verbal subgroups is a monotonic operation [12]. Thus if V(Aut (H)) does not contain Inn (H), then
V(G/Cs(H)) = V(G)Ce(H)/Ca(H) 2 HCc(H)/Ca(H).

So H is not contained in V(G). O

Let us reformulate the result stated in the introduction in terms of “nV-embeddability.”

Theorem 1 (the main theorem). For a given nontrivial word set V, a given group H is nV-embeddable if
and only if

V(Aut(H)) 2 Inn(H), (2)
and a finite (finitely generated) group is nV -embeddable into some group if and only if it is nV-embeddable
into a finite (finitely generated) group.

Proof. Condition (2) is necessary for nV-embeddability by Lemma 2. Let us now assume that (2) holds and
construct a group G and an nV-embedding v : H — G.

The variety 2 corresponding to V is smaller than ©. As above, there is a finite group N ¢ . (As
we will see, if H is infinite, then for the construction of this proof one could take N = 1; but we build the
construction in general for the purposes of a later modification.) Let L be defined as

L = N x Hol (H)

and € be the “natural” embedding of H into L given by
0:h— (1, h) = (1N, h"gAut(H))

(where eau () s the trivial automorphism of H). The embedding

¥ = i 1= 13 27
must be defined differently for the cases of finite and infinite groups. If H is finite, ¢; is the well-known
embedding of the finite group L into the alternating group Az, ). where ¢, and ¢» are two arbitrary
elements not from L. If H is infinite, then 2 : L — Sy, is the right regular representation of L.

Each automorphism of H is a restriction of some inner automorphism of Hol (H). Consequently each
automorphism of the image (0¢;){H), i = 1,2, is a restriction of an appropriate inner automorphism of the
group K; = ¢;(L), i = 1,2. Therefore, it is correct to define the split extension G of the group K, or K by
the automorphism group Aut (H):

VfeAut(H) k€K, k= (a1 ) E(w(l )
(i =1or 2). H is embeddable into G,
Vhe H, v:hws (fu) ' ((8p:)(R)) € G,

where ¢ or ¢, stand for the cases of finite or infinite H, and where f, € Aut (H) is the inner automorphism
corresponding to the element h € H. It is easy to check that v is a monomorphism.
The subgroup H = v(H) is normal in G. Indeed, if g € Aut (H) and s € K;, i = 1,2, then
(v(h)? = g7 (fa) " g-((Bi) (R))? X
= (fho)H(Bp:)(h9) = v(h%) € H,

since
((0e:)(R))* = @i(1, h)¥ = (L, 9) (1, h)es(1, 9) = a(1, h9),

(W(R)® = (fa) (k™) py(1, h)k
= (fa) "L AT (1, R ei(1, h) s
=v(h) € H.

and
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Next, we note that H C V(G). Indeed,
Yhe H (f) ' €lnn(H) C V(Aut(H))

and
Vhe H (b¢i)(h) e V(K:), i=1.2,
since V(K;) = K;. The latter holds for infinite groups because of Lemma 1 and for finite groups because of
the fact that the alternating group A,, n > 4, is simple.
Now observe that if H is finite G is finite, too.
We finish the proof showing that if H is finitely generated, G can be chosen finitely generated, too. The

image H C V(G) is finitely generated by the elements, say, k), ha, ... , hs. So for each element k; € V(G),
i=1,...,s, there is a representation

(i) )" 0 &
hi = ( (gu PR ’glq1)> (U(Z)(J guqu)) *
(é) ( )

where v;7, ... are some words from V/, elements 64" recelve values 1 or —1, and where g ) € G. Let Gy
be the subgroup of G generated by this finite set of elements gjk. Of course H C V(G1) and H 4 G. d

The construction of the proof could be made much smaller for the case of infinite groups. According to
the mentioned result of Baer (1], S, has no proper normal subgroup larger than Sy (the ordinality of L is

R,). Thus the factor group S./S, is simple. If we take, while constructing L, a finite group N not from U,
we obtain

V(SL/Sx) = S/Sx.

Therefore, this factor group can be used in the proof instead of S;.

4. nV-Embeddability of Abelian Groups

From Theorem 1 the nV-embeddability of abelian groups for nontrivial V' follows automatically. But in
fact we are able to prove more:

Theorem 2. Let V be a nontrivial word set and H be an arbitrary nontrivial abelian group. Then

(1) H is nV-embeddable into a nilpotent group G;

(2) H is nV-embeddable into an abelian group A if and only if V has some consequence of the form x™ =1
(n € N);

(3) if H is finite (finitely generated), the mentioned nilpotent group G or abelian group A can also be chosen
finite (finitely generated).

The proof follows from the following lemmas, in which V is assumed to be nontrivial.
Lemma 3. The finite abelian p-group H is nV -embeddable into some finite p-group.

Proof. Slightly modifying the Lemma 1 from [5], for the case of an arbitrary V' we obtain for each power
m = p® a finite p-group P such that its verbal subgroup V(P) is of exponent m and is contained in the center
of P. We represent H as

H=Zpk1 X"'XZpks

and find a group P, with the mentioned property for each exponent p*',... p*s. Since the abelian group
V(P) is of exponent p*, it contains a cyclic subgroup isomorphic to Z,x; and normal in F; (it is contained
in the center of P,). Thus the direct product P, x --- x P, contains a normal subgroup isomorphic to
Zpk, X"'szks. O

Lemma 4. The group Z is nV -embeddable into a finitely generated nilpotent group N.
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Proof. The variety U # O cannot contain all nilpotent groups. Therefore, there is a free nilpotent group
F = F,(M.) of some rank n and some class ¢ such that F ¢ 0. The invariant subgroup V() of F is not
trivial and must have a nontrivial intersection I with the center C(F'). The subgroup [ of a finitely generated
and torsion-free nilpotent group inherits both these properties. So

I=72&---9Z=2®L---SL=ZFT,
N e [ —

{ -1

where [’ is the sum of the “last” [ -1 copies of Z. I' is normal in F since I’ is from the center. Let N = F/I'.
Clearly:
ZCV(N) and Z<N.

The lemma is proved. O

We are already able to see that each finite (finitely generated) abelian group is nl’-embeddable into some
finite (finitely generated) nilpotent group. But since the classes of groups used in the proof of Lemma 3 are
not necessarily bounded, we cannot simply use Lemma 3 for arbitrary infinitely generated abelian groups.

Lemma 5. Fach abelian group H is nV-embeddable into a nilpotent group.

Proof. In the proof of Lemma 4 we have seen that Z is nV-embeddable into some N. For each n € N the
subgroup nZ is invariant in N and S = N/nZ contains the normal subgroup Z/nZ = Z,,. Clearly Z, C V(S).

As follows from Zorn’s lemma, for each element h € H there exists 2 maximal subgroup N, of H such
that i € H\N,,. H is contained in the semidirect product

TTca/N

heH

of (finite or infinite) cyclic groups H/N,,. Each group H/N,, is embeddable in some factor group of the group
N that we constructed earlier. These factor groups have some restricted bound for classes of nilpotency.
So [1,ex(H/Ny) is embeddable into some nilpotent group G (of class <c). Finally. we note that in our
construction each group H/N, is contained in the center of the appropriate nilpotent group. Therefore
[Lncu(H/Ny) is from the center of G. Thus H is normal in G. O

We are forced to use two parallel coustructions for the nV-embeddability of finite abelian groups because
the first one provides no common bound for the nilpotency class and the second one does not give nV-
embedding of a finite abelian group into a finite nilpotent group.

Lemma 6. A nontrivial abelian group H is nV -embeddable into an abelian group A if and only if V has
some consequence of the form z™ = 1, n € N. If H is finite (finitely generated), A can be chosen finite
(finitely generated) as well.

Proof. If the condition of the lemma holds, then for every group X X" C V(X) holds and it is enough to
say that:

(a) Each abelian group H is embeddable into a divisible abelian group A. So H<1 A" C V(A) = A.
(b) The groups Z and Z,, are nV-embeddable for V' = {z"} since

=nZ and Z, =n-Zon.

Thus, the finite (finitely generated) abelian group H is nV-embeddable into a finite (finitely generated)
abelian group A.

On the other hand. if V has no consequence of the form z" = 1 (for some n € N), then all its consequences
should be commutator words because each word is equivalent to a (possibly trivial) commutator word and
to a word of type x™ (possibly n = 0). Since now all n’s are 0 and A is abelian we have that V(A4) = 1.

The proof of Theorem 2 is compieted. O

1919



5. Some Smaller Embeddings

Theorem 1 does not use the explicit form of V. In the following we obtain some smaller embeddings
depending on the words we use. We will consider the “most common” words
[Z1. T2, rl, n(zy, ..., Zon), Ye(Tiy o ZTe).

As we have said, for each power m = p* there is a finite p-group P such that its verbal subgroup V(P)
is of exponent m and lies in the center of P. Then, as is shown in the proof of Theorem 3 in [5], the diagonal

D = Diag (HWr P) = {Ht‘lhﬂ he H}

tep

of the wreath product W = H Wr P is contained in the verbal subgroup V(W) of W. The latter is a p-group.
And there is an obvious embedding of H into W:

v:hw— Ht_lht.
teP
This construction will be our initial step for further modification (not only for p-groups). If for the given
group H we find an appropriate group K such that
D = Diag(HWr K) C V(HWr K), (3)
then the natural endomorphism
pihe [[k'hk, heH,
ke K
gives an embedding of H into V(W) = V(H Wr K'). The elements of D admit all the conjugations by elements

of K. (If H is abelian, this already provides an nV-embedding of H into W.) More generally, the following
lemina holds.

Lemma 7. If K is chosen so that (3) holds and if there exists a subgroup B of the group of automorphisms
of H such that V(B) 2 Inn (H), then the embedding

viher gt [k -1k, heH,
kER

where gy, is the inner automorphism of H corresponding to h, is an nV-embedding of H into the extension
of H by B defined by the rule

R =g(h), k9=%k, where g€ G, heH, kekK.

Of course, B could coincide, in particular, with Aut (H).

Proof. Clearly, H = v(H) C V(W, B). Thus we should just compute that for each h,t € H,
v(R) =t (gt (] k7thR)) -t

keK
= 9’71 . (t—l)y,,'l . (H k™ hk) -t = 9;1 Cht-lp-t. (H k=hk) -t
keR keK
=gt (] k7 Rk) = v(h).

keK
a
This lemma enables us to reduce the process of construction of a small embedding to the construction

of embeddings of the type
p: H— Diag(HWr K) CV(HWrK).

Proposition 1. The group H is normally embeddable into some group G and H C G’ if and only if
(Aut (H))' 2 Inn(H).
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Proof. Take K = Z. Then D C (H WrZ)' because for each h
Hz"lh,: =(..hhh.. )= [lz,¢n).

2€Z
where ¢ = (... R72, b7} 1, h, h%...) € Fun(Z, H) is the function defined as ¢, = h*. O
Proposition 2. The group H is normally embeddable into some group G and H C G' if and only if
(Aut (H))! 2 Inn (H).
Proof. Let K = Z,; and k be the generator of K. Then we have

-1
[[z7"hz = (A, k)= ((h1,..., 1) - k) € (HWrZy)",
z=0 l -1

d
Modifying the construction from Proposition 1, we obtain:

Proposition 3. The group H is normally embeddable into some group G and H C 6,(G) if and only if
dn(Aut (H)) 2 Inn (H).

Proof. We take
Q= (((HWr ZYWrZ)... ) WrZ = Win.s),

~
s times

where s = [log,n] + 1. Let D, = Diag (HWrZ). If D; is already defined, we define D, as the subgroup
of the group Diag (W, H,i+l)) containing elements that have “coordinates” only from D; (and not from the
entire passive group of the wreath product Wiy ;11)). So D; is the set of all s-dimensional matrices over H
with the property that all elements of each such matrix are equal.

Let i : H — D, be the endomorphism mapping each A € H outo the matrix all elements of which are A.
Clearly each matrix p{2) will remain unchanged under conjugations with elements of all copies of the group Z
from @ (for such conjugations will just exchange multidimensional “columns” of the matrix). As in the proof
of Lemma 7, we can take as G the extension of Q by Aut (H) defining that each automorphism f acts trivially
over the copies of Z and acts as h/ = f(h) over H. Then the family of elements H = {(gn)"*u(h)| h € H}
will form a normal subgroup of G. It remains to understand that Dy C 8,(Q) and thus H = H C 6,(Q). O

We could use this very same construction for the word ~.(x),...,z.) as well, becausec for an arbitrary
group G §;(G) < 72:(G) holds, and we could simply use Proposition 3 for the value n = [log, ] + 1. But for
v, we will build something much smaller, namely the embedding into H Wr Z.

Proposition 4. The group H is normally embeddable into some group G and H C ~.(G) if and only if
vY.(Aut (H)) 2 Inn (H).

Proof. Let G = HWrZ. For an arbitrary set of integers {;]7 € Z}, the system of equations
-z, +x;=b;, 1€,
has a solution in integers. Namely, we could take an arbitrary integer value zy = ao and continue:
rp=a; —bi+ay, Ta=ays=br+a;, zz=az=bz+as...,
T_y=a_1=a9—by, To=ao=a_1—b_y, T_3=a_3=as—bs,...
Then the following holds:
(... h%-2 kb i R R R%2 ) =1z, (... k%2, hO-t RO RM R, L),

where each coordinate k% or h% is placed in the position with index i.
We have already seen that

(...h,h,h. ) ={lz,¢n] = 1z, (... , A2 R 1, b2, L))



Taking b; =i, 1 € Z, we can find integers a; € Z such that
e =1z, (... A%, h% A% L)) = (12, )

Continuing this process ¢ times, we obtain

[Tz e =(..hhh..) =12, [1z,... . 1z, ¢} ... ]} € %(G)

€L
for some . O
Now we can prove the following theorem.

Theorem 3. Let V consist of one of the words [z1,x2], ¢, 6n(21, ..., Tan), Ye(Z1, ..., 2zc). Then the solvable
group H is nV -embeddable into some solvable group G if and only if the group Aut (H) contains a solvable
subgroup B such that V(B) 2 Inn (H).

Proof. Assume that the mentioned subgroup B exists. First we note that all the groups H Wr Z, H Wr Z;,
and Wy, constructed for the embedding u in the proofs of Propositions 1-4 are solvable provided that H
is solvable. Thus their extensions by B should be solvable as well. We define these extensions as follows. An
automorphism g € B conjugates the elements h € H as hY = g(h) and leaves unchanged all the elements
of active groups Z or Z; of wreath products H WrZ, H WrZ,, or Wijs). The nV-embedding of H into the
appropriate extension G is given by the following rule: v : h ~ g;'u(h), where g is the inner automorphism
of H corresponding to h. Clearly H = v(H) is normal in G and v(H) C V(G).

On the other hand, if there is a solvable group G and an nV-embedding of H into G, we have, as in the
proof of Lemma 2, an embedding of G/C(H) into Aut (H) such that V(G/C(H)) 2 Inn(H). So we take
B =G/C(H). a

If V1 and V, are two word sets, V5 is the consequence of V;, and if some group H is nVs-embeddable, it
is nVi-embeddable as well because for each group G V2(G) C Vi(G) holds. Therefore the following holds:

Corollary 1. If V is a word set that has at least one consequence of one of the forms [z, xs], ',
On(Ty. ... T2n), or (1, ..., Zc), then the solvable group H is nV -embeddable into some solvable group G if
the group Aut (H) contains a solvable subgroup B such that the verbal subgroup of B corresponding to the
appropriate word contains Inn (H).

We could also obtain bounds for the solvable length {(G) of the group G for the situations considered, since
I(G) < U(X) +(B), where X is one of the groups H WrZ, H Wr Z;, or Wy ); and because {(X) < [(H) +1
(for wreath products H WrZ or H WrZ;), or [(X) < I(H) + [log,n] + 1 for the wreath product Wg ).

We have much less information on nV-embeddability of nilpotent groups into nilpotent groups. This
case is more difficult since the construction of nilpotent groups from cyclic components is more dependent
(than that of solvable groups) on the way we build the appropriate extensions. The following result gives an
illustration.

Theorem 4. Let V consist of the word [xy,z2]. Then the nilpotent group H is nV-embeddable into some
nilpotent group G if and only if there exists a nilpotent subgroup B of Aut (H) such that

(1) V(B) 2 Inn (H),
(2) the eatension of H by B (as by an operator group) is nilpotent.

Proof. Assume that the conditions of the theorem hold. Consider the extension of the wreath product
HWrZ by B, where the elements of B act trivially over Z and where the action of these elements over the
base group HZ is deduced from the function of B over H. Let 5 be the element mentioned in the proof of
Proposition 1 and let 8, = [] z7'hz. We saw that 6, = [1z, ¢ € (H WrZ)'. Therefore the embedding

z€Z

v:H— (1z,¢n, B| he H) =G,



given by the rule v : A — 6, is a monomorphism of H onto v(H) = Diag (H WrZ). v(H) is normal in G and
lies in the derived group of the latter. So it would be enough to show that (G is nilpotent. Let

U = (6n, 00, B! h € H).

It is easy to compute that U < G. The derived group U is characteristic in U/ and normal in G.

U’ is nilpotent and, according to the criterion of Hall, it would be enough to show that the factor group
G/U’ is nilpotent (namely, of class 2). In fact, G = (1z,U). Elements of U are commutative modulo U’ and
Z is a commutative group; thus (because of commutator identities) it is enough to show that

(12, [1z,bw]] € U’
for each b € B and each w € {6, | h € H}. Indeed,
[1z,bw] = 171w b7 gbw = 15w~ 15w = [1z,w].

The latter is already equal to 1 if w = 6. If w = 4, we have [1z,w] = 6. So in any case [1z, [1z,bw]] = 1.

Now assume that for the group H there is a nilpotent G and an appropriate embedding. The existence
of the mentioned nilpotent subgroup B can be shown as was done for the case of solvable groups in the proof
of the previous theorem.

Let, therefore, B = G/C(H) and show that the split extension K of H by the operator group B is
nilpotent, i.e., show that all the values of the commutator word [zy, ... ,z,] over K will be equal to 1 for
some sufficiently large s. Since K = (H, B), it is enough to consider the situation where each z;, i = 1,... ,s,
belongs to one of the subgroups B or H. Let 7, be the automorphism of H corresponding to the element
g-C(H) € G/C(H). Clearly h™ = g~'hg. Thus

(ool = 75 (0™ by = 7B b
= (gh~lg~th) = g7'gh™' g thg = [h, 9] € G
Coutinuing this process, we will obtain elements from v;3(G), v4(G), etc. And G is a nilpotent group. The
only way to avoid this situation is to take all the z;'s from B. But the group B is nilpotent as well. O

In analogy with Corollary 1, we get the following corollary.

Corollary 2. If V is a word set that has a consequence of the form [x),x2|, then the solvable group H is
nV -embeddable into some solvable group G if the group Aut (H) contains a solvable subgroup B such that
B’ D Inn (H).

It is not our aim, but some other properties can also be deduced from the constructions built. For
example, if the group H is noetherian, the groups G obtained for words [z, z2] and ~.(z1,...,2:) can be
noetherian, too.

6. nV-Embeddability of Symmetric Groups

Considering the normal embeddings of groups we also have to give some explicit examples of nV-
embeddability or not nV-embeddability of groups. As we mentioned in the introduction, the found criterion
(Theorem 1) can be successfully used in order to concern nV -embeddability of wide classes of groups. In this
paper, however, we consider only the nV-embeddability of symmetric groups.

Theorem 5. Let V' be an arbitrary nontrivial word set. Then

(1) the symmelric groups Sz and S, are nV-embeddable;
(2) the groups S; fori € N, i > 3, and i # 6 are nV-embeddable if and only if S; = V(S;);
(3) the group Se is nV -embeddable if and only if

Inn (Ss) € V{(Inn (Ss),w),

where w is an arbitrary outer automorphism of Se;
(4) for each infinite set M the group Sar is nV -embeddable.
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Proof. (1) The groups S; and S, are cyclic and they are nV-embeddable by Theorem 2.

(2) The groups S; for integers i > 3 and % # 6 are all complete. So C(S;) = 1, Inn (S5;) = S; = Aut (S;).

(3) The group Sg is not complete. Its group of automorphisms contains Sg as a normal subgroup of
index 2. An arbitrary outer automorphism w of Sg is a representer of the nontrivial element of the factor
group

Out(SG) = Aut (Ss) /56 = ZQ,

and since Sg has a trivial center, the condition Inn (Sg) € V{Inn(Ss),w) is equivalent to our criterion of
nV -embeddability. For details and the explicit form of w, see [8,11].

(4) For an infinite M the group Sj; is always nV-embeddable because of Lemma 1. |

In particular, we can use the fact that S; = A; and A; < S; for i > 3 to obtain the following corollary.

Corollary 3. No finite symmetric groups S; can be normally embedded for i > 3 into a group G such that
the image of S; is contained in the commutator subgroup (G, G|.
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