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ON N O R M A L  V E R B A L  E M B E D D I N G S  OF G R O U P S  

H. H e i n e k e n  and V. H. Mikael ian UDC 512.543.7 

For the case of an arbitrary group H and an arbitrary word set V, we establish a necessary and sufficient 
condition under which there exists a group G such that H is isomorphic to a normal subgroup/~ of G such 
that ~/lies in V(G). This is a generalization of results of Burnside and Blackburn (concerning the cases of the 
commutator word and some much more special classes of groups) as well as of the first author (establishing 
a criterion for the case of one word w and finite p-group H). Some related special cases are considered. 

1. I n t r o d u c t i o n  

It. is not difficult to show that for each nontrivial set V of words each (finite, finitely generated) group 
is embeddable in the verbal V-subgroup of a certain (finite, finitely generated) group. Still the following 
problem of normal embeddings of this type is far from being trivial even for such a "simple" word subgroup 
as a commutator subgroup: for the given group H and given set of words V C F~ there ez~sts a group G 
"with a subgroup [-i such that H ~- H, fI < G, and fI  C_ V(G). 

In 1912. Burnside proved that a nonabelian group with a cyclic center or a nonabelian group the index of 
whose derived group is p2 cannot be the derived group o[ a p-group [3, Theorems on pp. 241 and 242]. On the 
other hand, Blackburn has found all tlle 2-generated p-groups which occur as derived groups of p-groups [2]. 
Finally, the first author generalized these results and proved that a finit.e p-group H is invariant in some finite 
p-group G and lies for the word w E Fo~ in the verbal subgroup w(G) if and only if w(L) D Inn (H), where 
L is a Sylow-p-subgroup of Aut (H) [5]. 

The main aim of" this paper is to study such embeddings in a more general situation. 
First. we establish a necessary and sufficient condition for arbitrary V and arbitrary H under which H 

is invariant embeddable in some group G and lies in V(G) (Theorem 1 in Sec. 3). 
Next we consider embcddings with the property mentioned for the case of abelian groups (See. 4). It 

turns out that some additional properties can be provided. Each abelian group H can be normally embedded 
in some nilpotent group G such that its image H is normal in G and H C_ V(G). If H is finite (finitely 
generated), G can be chosen finite (finitely generated) and nilpotent (Theorem 2). Meanwhile, it is known 
tllat some finite solvable groups cannot even be subnormally embedded in any finite group and simultaneously 
be contained in the commutator subgroup of the latter [6]. 

In Sec. 5, we impose a restriction on the word set and obtain "economical" embeddings for certain word 
subgroups - -  commutator subgroup, nth degree, terms of the lower central series, etc. Some of them are 
generalizations of the above-mentioned results on their own. 

The general criterion we establish can be used not only to obtain many concrete examples of the groups 
H that  can or cannot be normally embedded into some group G such t h a t / 2 / C  V(G) but also can be used 
over whole classes of groups or constructions of groups (direct and cartesian products, matrix and symmetric 
groups, etc.). This will be the subject of another paper [7]; here we restrict ourselves only to an illustration 
of the use of Theorem 1, namely wkh a criterion of the possibility of embeddings of the above-mentioned 
type for the symmetric groups (Sec. 6). 

We would like to announce here the results of the second author [10] concerning a similar problem, 
namely the subnormal embeddability of the given group H in some group G such that the isomorphic inmge 
of H lies in V(G). It turns out. that such embeddings always exist. In addition, G can have some additional 
properties. In particular, [10] contains generalizations of some well-known theorems on embeddings of groups 
in 2-generated groups, etc. 
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2. N o t i o n s  

For the sake of brevity, we use a special notion: 

Def in i t ion  1. For a word set V, the nV-embedding u of the group H into the group G is the monomorphism 
u : H --+ G such that 

= u ( H ) < G  and H_CV(G) .  

The group H is said to be nV-embeddable if there is a group G and an nV-embedding of H into G. 

Further, ~U will be used to denote the variety fU = var (Foc/V(For corresponding to the word set. V. tO 
will be the variety of all groups. % ( x t , . . .  ,x~) is the word [x~,... ,x~]; the word 8~(x~,...  , x ~ )  is defined as 
50 = x and 

=  2o), 

For general background information we refer the reader to [9] or [13]. The book of Hanna Neumann [12] 
can be used for information on the varieties of groups. 

3. G e n e r a l  C o n d i t i o n  for n V - E m b e d d a b i l i t y  

Let M be an infinite set and SM be the group of permutations of 5f. For the case where M is countable, 
Dark has noted in [4] that the derived group SM ~ coincides with SM. The following more general lemma is 
of some independent interest. 

L e m m a  1. For an arbitra~'y nontrivial word set V and an arbitrary infinite set 3I the following holds: 

V(SM) = SM. 

So S,~t is rather trivially nV-embeddable into itself for each nontrivial word set V. 

Proof .  Let ~l, be the order of M and let 0 < 2 < # be a smaller ordinal number. Let S~ be the subset of 
permutations of S~  that move in fact not more than lq 2 elements of the set 31. As is easy to see, these subset.s 
are in fact subgroups. For example, So is the subgroup of SM that consists of "ordinary" permutations of set 
M, i.e., the permutations that move only finitely many elements. Let AM be the subgroup of So consisting 
of all even permutations on M. 

As is shown by Baer [1], all the invariant subgroups of SM are members of the following series: 

1 < AM < So <Sl  < . . .  < S~ < . . .  ~ S~ < SM. (1) 

The verbal subgroups are invariant in the group, so it would be enough to show that the subgroup V(SM) is 
transitive on the set. M and is therefore larger than each proper normal subgroup from (1). 

Let m~ and m.~ be two elements of M. The variety !U is different from the variety tO of all groups and 
therefore there exists some finite group N not belonging to ~ (because the set of all finite groups generates 
tO). Via the right regular representation, N is embedded into the group SN. Let 

N'  ---- N t2 {ml, m2}. 

SN is naturally embeddable into the alternating group AN,. Wit.hout loss of generality, the order of N' is 
larger than 4 (if this is not so we simply take N x N instead of N). So the group AN, is simple and does not 
belong to V. Therefore V(AN,) -- AN,. In the transitive group AN, there exists a permutation p such that 
p : m~ ~-+ m2. Thus the permutation we are looking for can be defined as 

~:m~_+ ~ p(m) if m E N '  

I 1 if m E M\N ' .  

The lemma is proved. [] 

The following lemma is an analog of Lemma 2 from [5], proved for p-groups. 
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L e m m a  2. The group H is not nV-embeddable if 

V(Aut (g ) )  ~) hm ( g ) .  

P roof .  Let H be nV-embeddable into G. The action of elements of O by conjugations on H defines an 
isomorphism of G/CG(H) onto some subgroup of Aut (H). It maps HCG(H)/CG(H) onto hm (H). Forming 
verbal subgroups is a monotonic operation [12]. Thus if V(Aut (H)) does not contain Inn (H), then 

V(G/Co(H) )  = V(G)Co(H) /Ca(H)  ~ HCG(H)/CG(H).  

So H is not contained in V(G). [] 

Let us reformulate the result stated in the introduction in terms of "nV-embeddability." 

T h e o r e m  1 (the main theorem). For a given nontrivial word set V, a given group H is nV-embeddable if 
and only if 

Y(Aut (g ) )  D Inn (H) ,  (2) 

and a finite (finitely generated) group is nV-embeddable into some group if and only if it is nV-embeddabIe 
into a finite (finitely generated) group. 

Proof .  Condition (2) is necessary for nV-embeddabili ty by Lemma 2. Let us now assume that (2) holds and 
construct a group G and an nV-embedding u : H ~ G. 

The variety ~ corresponding to V is smaller than O. As above, there is a finite group N ~ ~ .  (As 
we will see, if H is infinite, then for tile construction of this proof one could take N = 1; but  we build the 
construction in general for the purposes of a later modification.) Let L be defined as 

L = N • Hol (H) 

and 0 be the "natural" embedding of H into L given by 

0 : h. --~ (1, h) = (1N, h'eAut(H)) 
(where CAut(H) is the trivial autonlorphisin of H). The embedding 

~ z = ~ ,  i = 1 , 2 .  

must be defined differently for the cases of finite and infinite groups. If H is finite, ~i is the well-known 
embedding of the finite group L into the alternating group Agu{t~,t~_}, where t~ and t2 are two arbitrary 
elements not from L. If H is infinite, then ~2~ : L ~ SL is the right regular representation of L. 

Each automorphism of H is a restriction of some inner automorphism of Hot (H). Consequently each 
a.utomorphism of the image (Opi)(H), i = 1, 2, is a restriction of an appropriate inner automorphism of the 
group Ki = pi(L), i = 1, 2. Therefore, it is correct to define the split extension G of the group K~ or h~ by 
the automorphism group Aut (H): 

Vf E Aut (H) ,  k E h~ k ~" = (~(1,  f ) ) - t - k - ( ~ ( 1 , / ) )  

(i = 1 or 2). H is embeddable into G, 

Vh E H, u: h ~+ (fh)-l.((O~)i)(h)) E G, 

where ffl or ff~ stand for the cases of finite or infinite H, and where fh E Aut (H) is the inner automorphism 
corresponding to the element h E H. It is easy to check that u is a monomorphism. 

The subgroup/2/- = u(H) is normal in G. Indeed, if g E Aut (H) and ~ E /Q, i = 1, 2, then 

(v(h))g = g-t(fh)-~g.((O~,)(h))g 
= = e fi, 

since 

and 

((0~i)(h)) g -- ~ (1 ,  h) g = @/(1, g)-~p~(1, h)~i(1, g) -= ~ (1 ,  h"), 

= ; 

= (fh)-1<Zi(1, h) -'cpi(1, h- )pi(1, 
= . ( h , )  f t .  
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Next, we note that /7/C V(G). Indeed, 

V h E H  (fh) -1 E I n n ( H )  C V ( A u t ( H ) )  

and 

V h E H  (0~{)(h)EV(K~),  i = 1 , 2 ,  

since V(Ki) : Ki. The latter holds for infinite groups because of Lemma 1 and for finite groups because of 
the fact that the alternating group A.,  n > 4, is simple. 

Now observe that if H is finite G is finite, too. 
We finish the proof showing that if H is finitely generated, G can be chosen finitely generated, too. The 

image /~  C V(G) is finitely generated by the elements, say, hi, he , . . .  , ~t~. So for each element hi E V(G), 
i = 1 , . . . ,  s, there is a representation 

6 c~) \ 6(u ~) 

where r are some words from V, elements ,r receive v lues 1 or - 1 ,  and where G. r,et 

_(i) Of course / : /C  V(GO and/ i t  < C2. [] be the subgroup of G generated by this finite set of elements gjk. 

The construction of the proof could be made much smaller for the case of infinite groups. According to 
the mentioned result of Baer [1], SL has no proper normal subgroup larger than S~ (the ordinality of L is 
R~). Thus the factor group SL/S~ is simple. If we take, while constructing L, a finite group N not from 97, 
we obtain 

V(SL/S~) = S ~ / S ~ .  

Therefore, this factor group can be used in the proof instead of SM. 

4. n V - E m b e d d a b i l i t y  o f  A b e l i a n  G r o u p s  

From Theorem 1 the nV-embeddabili ty of abelian groups for nontrivial V follows automatically. But in 
fact we are able to prove inore: 

T h e o r e m  2. Let V be a nontrivial word set and H be an arbitrary nontrivial abelian group. Then 

(1) H is nV-embeddable into a nilpotent group G; 
(2) H is nV-embeddable into an abeIian group A if and only .if V has some consequence of the form x '~ = 1 

(n ~ 1~); 
(3) if H is finite (finitely generated), the mentioned nilpotent group G or abelian group A can also be chosen 

finite (finitely generated). 

The proof follows from the following lemmas, in which V is assumed to be nontrivial. 

L e m m a  3. The finite abelian p-group H is nV-embeddable into some finite p-group. 

P r o o f .  Slightly modifying the Lemma 1 from [5], for the case of an arbitrary V we obtain for each power 
m :- pk a finite p-group P such that its verbal subgroup V(P)  is of exponent m and is contained in the center 
of P.  We represent H as 

H : Zp~1 x .-. x Zpk, 

and find a group Pi with the mentioned property for each exponent pm ... ,Pk~- Since the abelian group 

V(Pi) is of exponent pk~, it contains a cyclic subgroup isomorphic to Zpk~ and normal in Pi (it is contained 
in the center of P~). Thus the direct product P1 • "'" • P~ contains a normal subgroup isomorphic to 
Zpkl x . .- x Zpk~. [] 

L e m m a  4. The group Z is nV-embeddable into a finitely generated nilpotent group N. 
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P r o o f .  The variety ~ # D cannot contain all nilpotent groups. Therefore, there is a free nilpotent  group 
F = F, d91c ) of some rank n and some class c such that  F ~ ~J. The invariant subgroup V ( F )  of F is not 
trivial and must have a nontrivial intersection I with the center C(F) .  The subgroup I of a finitely generated 
and torsion-fi'ee nilpotent  group inherits both these properties. So 

z e  r, 
7 ~-~ 

where I'  is the sum of the "last" l - 1 copies of Z. I '  is normal in F since I'  is from the center. Let N = F/I ' .  
Clearly: 

Z C V ( N )  and Z < N .  

The lemma is proved. [] 

We are already able to see that  each finite (finitely generated) abelian group is nV-embeddable  into some 
finite (finitely generated) nilpotent group. But  since the classes of groups used in the proof of Lemma 3 are 
not necessarily bomlded, we cannot simply use Lemma 3 for arbitrary" infinitely generated abelian groups. 

L e m m a  5. Each abelian group H is nV-embeddable into a nilpotent group. 

P r o o f .  In the proof of Lelnma 4 we have seen that  Z is nV-embeddable  into some N. For each n E N the 
subgroup nZ is invariant ill N and S = N / n Z  contains the normal subgroup Z / n Z  = Zn. Clearly Z,~ C_ V(5).  

As follows from Zorn's lemlna, for each element h E H there exists a maximal  subgroup Nh of H such 
that  h E H\Nh .  H is contained in the senfidirect product 

I-[(U/N,,) 
hE It  

of (finite or infinite) cyclic groups H/Nh. Each group H/Nh is embeddable in some factor group of the group 
N that  we constructed earlier. These factor groups have some restricted bomld for classes of nilpotency. 
So HheH(H/Nh)  is embeddable into some nilpotent group G (of class <c). Finally, we note that  in our 
construction each group H/Nt~ is contained in the center' of the appropriate nilpotent group. Therefore 
HhetI(H/Nh) is from the center of G. Thus H is norlnal in G. [] 

We are forced to use two parallel constructions for the nV-elnbeddability of finite abelian groups because 
the first one provides no common bound for the nilpotency class and the second one does not give nV-  
embedding of a finite abelian group into a finite nilpotent group. 

L e m m a  6. A nontrivial abelian group H is nV-embeddable into an abelian group A if and only if V has 
some consequence of the form x n = 1, n E N. I f  H is finite (finitely generated), A can be chosen finite 
(finitely generated) as well. 

P r o o f .  If the condition of the lemma holds, then for every group X X ~ C_ V ( X )  holds and it is enough to 
say that:  

(a) Each abelian group H is embeddable into a divisible abelian group A. So H < A '~ G V(A)  = A. 
(b) The groups Z and Z~ are nV-embeddable for V = {x '~} since 

Z ~ n Z  and Z m ~ n - Z m n .  

Thus, the finite (finitely generated) abelian group H is nV-embeddable  into a finite (finitely generated) 
abelian group A. 

On the other hand.  if V has no consequence of the form x n = 1 (for some n E N), then all its consequences 
should be commuta tor  words because each word is equivalent to a (possibly trivial) commuta tor  word and 
to a word of type x '~ (possibly n = 0). Since now all n 's  are 0 and A is abelian we have that  V(A)  = 1. 

The proof of Theorem 2 is completed. [] 
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5. Some Smaller Embeddings 

Theorem 1 does not. use the explicit form of V. In the following we obtain some smaller embeddings 
depending on the words we use. We will consider the "most common" words 

[x l ,x . , ] ,  x % ( x l , . . . , x c ) .  

As we have said, for each power m = pk there is a finite p-group P such that its verbal subgroup V(P) 
is of exponent m and lies in the center of P .  Then, as is shown in the proof of Theorem 3 in [5], the diagonal 

D = D i a g ( H W r P ) = {  Ht-lht'teP h. E H }  

of the wreath product W = H Wr P is contained in the verbal subgroup V(W) of W. The latter is a p-group. 
And there is an obvious embedding of H into W: 

u : h ~ H t - l h t "  
t E P  

This construction will be our initial step for further modification (not only for p-groups). If for tile given 
group H we find an appropriate group K such that 

D = Diag ( H W r K )  C V ( H W r K ) ,  (3) 

then the natural endomorphism 

# : h ~-+ H k-l hk' h E H, 
kE l'[ 

gives an embedding of H into V(W) = V(H Wr K). The elements of D admit all the conjugations by elements 
of K. (If H is abelian, this already provides an nV-embedding of H into W.) More generally, the following 
lemma holds. 

Lemma 7. If K is chosen so that (3) holds and if there exists a subgroup B of the group of automorphisms 
of H such that V(B) D Inn (H), then the embedding 

u : h ~-+ g-~l . H k-lhk.11,-, h E H, 
kE Ix" 

'where gh is the inner automorphism of H corresponding to h, is an nV-embedding of H into the extension 
of H by B defined by the T-ule 

h g=g(h.), k g = k ,  where g E G ,  h E H ,  k E K .  

Of course, B could coincide, in particular, with Aut (H). 
P r o o f .  Clearly, /~ = ~,(H) C_ V(W, B}. Thus we should just compute that for each h, t E H, 

= �9 (g ;1  �9 ( H k- hk)).t 
k E K  

= g~-l. (t-~)gZ ~ " ( H  k - l h k ) ' t  = g;1. h t - l h - t .  ( H  k - l h k ) ' t  
k E K  k E K  

= �9 ( 1 - I  k- hk) = ' ( h )  �9 
k E K  

[] 

This lemma enables us to reduce the process of construction of a small embedding to the construction 
of embeddings of the type 

#: H --+ Diag(gWr K) C_ V(HWr K). 

Proposition 1. The group H is normally embeddable into some group G and H C G ~ if and only if 
(Aut (g ) ) '  D Inn ( g ) .  
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Proof .  Take K = Z. Then D C (H Wr Z)' because for each h 

r I  z - t h z  = ( . . . h . , h , h . . . )  = [lz,~h], 
z E Z  

where ~:h = (. . .  h -~', h - t ,  1H, h, h? . . .  ) E Fun(Z, H) is the function defined as ~h = h-'. [] 

P r o p o s i t i o n  2. The group H is normally embeddable into some group G and H C_ G t i f  and only i f  
(Aut (H)) t _D Inn (Y). 

P roof .  Let K = Zl and k be the generator of K. Then we have 

l - 1  

1-[ z - ' h z  = ( h , . . ~ )  = ((It, 1 , . . . ,  1 ) .  k)' E (HWrZ, ) ' .  
z=O l l--1 

[] 

Modifying the construction from Proposition 1, we obtain: 

P r o p o s i t i o n  3. The .qroup I t  is normally embeddable into some group G and H C_ &~(G) i f  and only i f  
~,~(Aut (H)) D hm (H). 

P roo f .  We take 
Q = ( ( ( H W r  Z ) W r Z ) . . .  ) W rZ  = ~Ii,,.s), 

Y 

s t i m e s  

where s = [log~_n] + 1. Let D1 = Diag ( H W r Z ) ,  If Di is already defined, we define Di+t as the subgroup 
of the group Diag (W(H,i+t)) containing elements dmt have "coordinates" only from D~ (and not from the 
entire passive group of the wreath product W(H,~+t)). So Ds is the set of all s-dimensional matrices over H 
with the property that all elements of each such matrix are equal. 

Let # " H --+ D~ be the endomorphisul mapping each h E H onto the matrix all element, s of which are h. 
Clearly each matrix #(h) will remain uuchanged under conjugations with elements of all copies of the group Z 
from Q (for such conjugations will just. exchange multidimensional "columns" of the matrix). As in the proof 
of Lemma 7, we can take as G the exteusion of Q by Aut (H) defining that each automorphism f acts trivially 
over the copies of Z and acts as h S = f ( h )  over H. Then the family of e l e m e n t s / : / =  {(gh)- tp(h)I  h E H }  
will form a normal  subgroup of G. It remains to understand that Ds C d,~(Q) and thus H ~ f I  C_ d,~(Q). [] 

We could use this very same construction for the word % ( x ~ , . . . ,  x~) as well, because for an arbitrary 
gToup G d~(G) ___ ?2,(G) holds, and we could simply use Proposition 3 for the value n = [log2 c] + 1. But for 
% we will build something much smaller, namely the embedding into H Wr Z. 

P r o p o s i t i o n  4. The group II  is normally embeddable into some group G and H C_ ~/~(G) i f  and only i f  
%(Aut (H)) D Inn (H). 

P roo f .  Let G -- H W r Z .  For an arbitrarY set of integers {bi[i E Z}, the system of equations 

- x i - t  + x i  = b i ,  i E Z ,  

has a solution in integers. Namely, we could take an arbitrary integer value Xo = ao and continue: 

xt = at -~ bt + ao, x2 = a2 = b2 + at, x3 = a3 = b3 + a:~,... , 

x-1 = a - t  = a o  - b o ,  x _ ~  =- a-2 = a-1 - b - l ,  x - 3  = a - 3  = a,2 - b 2 ,  �9 �9 �9 

Then the following holds: 

( . . . .  h b-2,h b ~,h b~ b~, hb2, . . . )  = [lz, ( . . . .  h a-2,h ~-~, AY ~ h. ~', h~2,...)], 

where each coordinate h ~ or h ~' is placed in the position with index i. 
We have already seen that 

_ ' 9  - - 1  ( . . . h , h , h . . . ) = [ l z ,  q~h]=[lz ( . . . , h  ",h ,lh, h, h2, . . . ) ] .  
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Taking bi : i, i E Z, we can find integers ai E Z such that 

~h : [lz, ( . . . .  h ~-~ , h a~ h ~ , . . .  )] -- [lz, ~1 .  

Continuing this process c times, we obtain 

1-I z- hz : ( h, h, h . . .  ) : . . .  ]] e , c ( a )  
zEZ 

for some ~" h- [] 

Now we cml prove the following theorem. 

T h e o r e m  3. Let V consist of one of the words [xt, x~_], x l, 5~(x t , . . . ,  x2~), % ( x l , . . . ,  x~). Then the solvable 
group H is nV-embeddable into some solvable group G if and only i f  the group Aut (H) contains a solvable 
subgroup B such that V (B)  D_ Inn (H).  

P r o o f .  Assume that the mentioned subgroup B exists. First we note that  all the groups H Wr Z, H Wr Zl, 
and W(H,~) constructed for the embedding # in the proofs of Propositions 1-4 are solvable provided that H 
is solvable. Thus their extensions by B should be solvable as well. We define these extensions as follows. An 
automorphism g E B conjugates the elements h E H as h y = g(h) and leaves unchanged all the elements 
of active groups Z or Zz of wreath products H W r Z ,  HWrXz,  or l~I~n,~). The nV-embedding of H into the 
appropriate extension G is given by the following rule: u : h ~-+ g~l#(h), where gh is the inner automorphism 
of H corresponding to h,. Clearly H ~ u(H) is normal in G and u ( g )  C_ V(G). 

On the other hand, if there is a solvable group G and an nV-embedding of H into G, we have, as in the 
proof of Lemma 2, an embedding of G / C ( H )  into Aut (H) such that V ( G / C ( H ) )  D_ Inn (H).  So we take 
B : G/C(H). [] 

If V1 and V2 are two word sets, V., is the consequence of V1, and if some group H is nV2-embeddable, it 
is nVl-embeddable as well because for each group G V2(G) C_ VI(G) holds. Therefore the following holds: 

C o r o l l a r y  1. If  V is a word set that has at least one consequence of one of the forms [x l ,xJ ,  x l, 
6,~(xl . . . .  , x2,,), or % ( x l , . . . ,  xc), then the solvable group H is nV-embeddable into some solvable group G if 
the group Aut (H) contains a solvable subgroup B such that the verbal subgroup of B corresponding to the 
appropriate word contains Inn (H). 

We could also obtain bounds for the solvable length l(G) of the group G for the situations considered, since 
l(G) <_ I(X) + l(B), where X is one of the groups H W r Z ,  H W r  Z~, or W(H,~); and because l (X)  < l(H) + 1 
(for wreath products H W r Z  or H Wr Zt), or l (X)  <_ l(H) + flog,, n] + 1 for the wreath product W(H,~). 

We have much less information on nV-embeddabili ty of nilpotent groups into nilpotent groups. This 
case is more difficult since the construction of nilpotent groups from cyclic components is more dependent 
(than that of solvable groups) on the way we build the appropriate extensions. The following result gives an 
illustration. 

T h e o r e m  4. Let V consist of the word [xl,x2]. Then the nilpotent group H is nV-embeddable into some 
nilpotent group G if and only if there exists a nilpotent subgroup B of Aut (H) such that 

(1) V(B)  D Inn (H),  
(2) the extension of H by B (as by an operator group) is nilpotent. 

P r o o f .  Assume that the conditions of the theorem hold. Consider the extension of the wreath product 
H W r Z  by B, where the elements of B act trivially over Z and where the action of these elements over the 
base group H z is deduced from the function of B over H. Let Ph be the element mentioned in the proof of 
Proposition 1 and let Oh = 1-I z - lh z .  We saw that O h = flu, ~h] E ( H W r Z ) ' .  Therefore the embedding 

zEZ 

u :  H --+ <lz,~:h, BI h E H) = G, 
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given by the rule u : h ~ Oh is a monomorphism of H onto u(H) = Diag (H Wr Z). u(H) is normal in G and 
lies in the derived group of the latter. So it would be enough to show that G is nilpotent. Let. 

U = (0h, ~h, B' h ~ H). 

It is easy to compute that U < G. The derived group U' is characteristic in U and normal in G. 
U' is nilpotcnt and, according to the criterion of Hall, it would be enough to show that the factor group 

G/U' is nilpotent (namely, of class 2). In fact, G = (lz, U). Elements of U are commutative modulo U' and 
Z is a commutative group; thus (because of commutator identities) it is enough to show that 

[lz, [lz, bw]] e U' 

for each b E B and each w E {Oh, Phi h E H}. Indeed, 

The latter is already equal to 1 if w = 0h. If w = Ph, we have [lz, w] = 0h. So in any case [lz, [lz, bw]] = 1. 
Now assume that. for the group H there is a nilpotent G and an appropriate embedding. The existence 

of the mentioned nilpotent subgroup B can be shown as was done for the case of solvable groups in the proof 
of the previous theorem. 

Let, therefi)re, B = G/C(H)  and show that the split extension K of H by the operator group B is 
nilpotent, i.e., show that all the values of the commutator word Ix1 . . . .  ,x,] over K will be equal to 1 for 
some sufficiently large s. Since K = (H, B}, it is enough to consider the situation where each x~, i = 1 , . . .  , s, 
belongs to one of the subgroups B or H. Let 7-g be the automorphism of H corresponding to the element 
g.  C(H) E G/C(H) .  Clearly hY = g-~hg. Thus 

[ h ,  = = 

= = = [ h , g ]  e G ' .  

'G Continuing this process, we will obtain elements from %[ ), %(G), etc. And G is a nilpotent group. The 
only way to avoid tiffs situation is to take all the xi's from B. But the group B is nilpotent as well. [] 

In analogy with Corollary 1, we get the following corollary. 

C o r o l l a r y  2. I f  V is a word set that has a consequence of the form, [xl, x2], then the solvable group H is 
nV-embeddable into some solvable group G if the group Aut (H) contains a solvable subgroup B such that 
B' D_ Inn (H). 

It is not our aim, but some other properties can also be deduced from the constructions built. For 
example, if the group H is noetherian, the groups G obtained for words [x~, x2] and %(xt . . . .  , x~) can be 
noetherian, too. 

6. nV-Embeddability of Symmetric Groups 

Considering the normal embeddings of groups we also have to give some explicit examples of nV- 
embeddability or not nV-embeddability of groups. As we mentioned in the introduction, the found criterion 
(Timorem 1) can be successfully used in order to concern nV-embeddabili ty of wide classes of groups. In this 
paper, however, we consider only the nV-embeddabili ty of symmetric groups. 

T h e o r e m  5. Let V be an arbitrary nontrivial word set. Then 

(1) the symmetric grvups $2 and 81 are nV-embeddable; 
(2) the groups S~ for i E N, i > 3, and i ~ 6 are nV-embeddable if and only if Si = V(Si); 
(3) the group $6 is nV-embeddabIe if and only. if 

hm ($6) C V( Inn ($6), @, 

where w is an arbitrary outer automorphism of $6; 
(4) for each infinite set M the group SM is nV-embeddable. 
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Proof .  (1) The groups $2 and $1 are cyclic and they are nV-embeddable by Theorem 2. 
(2) The groups St for integers i > 3 and i ~ 6 are all complete. So C(Si) = 1, Inn (St) ~ Si ~ Aut (S~). 
(3) The group $6 is not complete. Its group of automorphisms contains $6 as a normal subgroup of 

index 2. An arbitrary outer automorphism w of $6 is a representer of the nontrivial element of the [actor 
group 

O t ( S ) ~ A  t ( S ) / S  ~ Z  U 6 ---~ U 6 6 = 2 ,  

and since $6 has a trivial center, the condition Inn ($6) C_ V< Inn ($6),w> is equivalent to our criterion of 
nV-embeddability. For details and the explicit form of w, see [8, 11]. 

(4) For an infinite M the group SM is always nV-embeddable because of Lemma 1. [] 

In particular, we can use the fact that S~ = Ai and Ai < St for i _> 3 to obtain the following corollary. 

Coro l l a ry  3. No finite symmetric groups Si can be normally embedded for i > 3 into a group G such that 
the image of Si is contained in the commutator subgroup [G, G]. 
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