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White plates of 2,3-diphenylquinoxaline crystallize in the monoclinic space group
P21/n with Z = 4 and a = 6.0325(3) Å, b = 10.9516(6) Å, c = 22.5985(13) Å, and
β = 95.107(2)◦. The phenyl rings in 2,3-diphenylquinoxaline form torsion angles of
36.88(5)◦ and 53.32(4)◦ with the plane defined by the quinoxaline moiety. Yellow plates
of 2,3-diphenylbenzo[g]quinoxaline crystallize in the monoclinic space group C2/c with
Z = 8 and a = 25.0621(16) Å, b = 7.7190(5) Å, c = 21.2225(14) Å, and β = 123.674(2)◦.
The phenyl rings in 2,3-diphenylbenzo[g]quinoxaline form torsion angles of 46.89(3)◦

and 43.42(3)◦ with the plane defined by the benzo[g]quinoxaline moiety. Packing in
2,3-diphenylquinoxaline can best be described as following the herringbone motif;
whereas the packing in 2,3-diphenylbenzo[g]quinoxaline crystals can also be described
as herringbone—albeit a herringbone pattern made up of head-to-tail oriented neighbors.
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Introduction

Quinoxalines and benzoquinoxalines have
found wide use as electronic and polymeric
materials,1 biomaterials,2 and ligands for tran-
sition metals. We have been interested in the
crystal structures and metal complexes of 2,3-
dithienylquinoxalines and benzo[g]quinoxalines
in attempts to design bidentate [N,S] ligand sys-
tems utilizing quinoxaline nitrogen and thienyl

(1) Department of Chemistry, Central Connecticut State University,
1615 Stanley Street, New Britain, Connecticut.

(2) Department of Chemistry, University of Connecticut, Storrs
Connecticut.

∗ To whom correspondence should be addressed; e-mail:
crundwellg@ccsu.edu.

N

N

N

N

I II 

sulfurs;3 however, the majority of the pub-
lished literature deals with metal complexes
with 2-mono- and 2,3-di-2-pyridylquinoxalines,
2,3-di-2-pyridylbenzo[g]quinoxalines, and 2,3-
diphenylquinoxaline. Crystal structure determi-
nations of di-2-pyridyl compounds have shown
bidentate (N,N) binding from quinoxaline and
nearby pyridyl ring to Ag+,4 Co2+,4b,5 Cu+,6
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Cu2+,7 Fe2+,8 Os,9 Re+,10 Rh3+,11 and Ru2+;12

whereas 2,3-diphenylquinoxaline, I, has formed
monodentate arrays with Na+,13 K+,13 and
Cu+.14,15 As a ligand, I has shown the abil-
ity to bind Cu+ using its quinoxaline nitro-
gens with the general formula of [Cu(I)2]ClO4

(where the perchlorate oxygen acts as the
third ligand)14 or form polymeric networks
with formulas, [Cu(I)OH2]ClO4·EtOH15 and
[Cu(I)OH2]BF4·H2O14 where a water molecule
serves as the neutral third ligand. The ligand
has also shown to form polymeric networks with
1,2-dimethoxyethane and Na+ and K+ with the
general formula, [M(I)(dme)]n (where M = Na+

and K+).13 To date, there have been no crystal
structure determinations reported of metal com-
plexes with 2,3-diphenylbenzo[g]quinoxaline, II.
The dipyridyl- and diphenylquinoxaline reactions

Fig. 1. ORTEPs of I [top] and II [bottom] at the 50% prob-
ability ellipsoid level.22 [Hydrogens have been omitted for
clarity.].

Table 1. Crystal Data and Structure Refinement Information for 2,3-diphenylquinoxaline (I) and 2,3-
diphenylbenzo[g]quinoxaline (II)

I II
IUPAC name 2,3-Diphenylquinoxaline 2,3-diphenyl benzo[g]quinoxaline
CCDC no. 265060 265061
Color/shape Colorless plate Yellow plate
Chemical formula C20H14N2 C24H16N2

Formula weight (g/mol) 282.33 332.39
Melting point (◦C) 125 190
Temperature (K) 298(2) 100(2)
Wavelength Cu Kα (λ = 1.54178 Å) Mo Kα (λ = 0.71073 Å)
Crystal system Monoclinic Monoclinic
Space group P21/n C2/c
Unit cell dimensions

a (Å) 6.0325(3) 25.0621(16)
b (Å) 10.9516(6) 7.7190(5)
c (Å) 22.5985(13) 21.2225(14)
β (◦) 95.107(2) 123.674(2)

Volume (Å3) 1487.05(14) 3416.7(4)
Z 4 8
Density (calculated, g/cm3) 1.261 1.292
F000 592 1392
Absorption coefficient (mm−1) 0.579 0.076
Diffractometer/scan Siemens SMART/CCD Siemens SMART/CCD
θ range for data collection 3.93 to 64.96 1.95 to 33.83
Reflections measured 2361 23836
Independent/observed reflections 2361 (Rint = 0.0172/2276 [I>2σ (I)]) 6126 (Rint = 0.0297/4779 [I>2σ (I)])
Min./max. trans. factor 0.80/0.95 0.85/0.95
Data/restraints/parameters 2361/0/255 6126/0/283
Goodness of fit on F2 1.111 1.016
Final R indices [I>2σ (I)] R1 = 0.0372, wR2 = 0.0950 R1 = 0.0460, wR2 = 0.1205
R indices (all data) R1 = 0.0382, wR2 = 0.0943 R1 = 0.0619, wR2 = 0.1335
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served as templates for our reactions with 2,3-di-
2-thienylquinoxalines; however, the main prod-
uct after reaction of our dithienylquinoxaline
ligand with the copper(II) perchlorate was a
protonated 2,3-di-2-thienylquinoxaline—leading
to the crystallization and structure determina-
tion of a 2,3-dithienylquinoxalin-1-ium perchlo-
rate salt.16 During our reinvestigations into the
method to which our dithienylquinoxaline was
protonated, we synthesized and characterized I
and II as model ligands that did not react to
form quinoxaline-1-ium perchlorates. In this pa-
per we describe the crystal structures of these
two compounds that were used as a reference in
our studies: 2,3-diphenylquinoxaline, I, and 2,3-
diphenylbenzo[g]quinoxaline, II.

Experimental

The synthesis of 2,3-diphenylquinoxaline (I)
is straightforward and has been published else-
where.17 In general, it consists of either the direct
combination of benzil with 1,2-diaminobenzene
in warmed ethanol or a direct solvent-free reac-
tion where equal molar amounts of each reactant
are placed in a test tube which is then placed in
boiling water. The latter reaction is interesting
because benzil and impure 1,2-diaminobenzene
melt under 100◦C; whereas diphenylquinoxaline
has a melting point of 125◦C17 and therefore pre-
cipitates upon formation. Once purified by recrys-
tallization, crystals were formed by slowly evap-
orating solutions of I in warmed ethanol.

The synthesis of 2,3-diphenylbenzo[g]qu-
inoxaline (II) was performed as follows. To
a 250 mL round bottom flask equipped with
a reflux condenser, 0.158 g (1 mmol) 2,3-
diaminonapthalene was combined with 0.210 g
(1 mmol) benzil in toluene. The reaction mix-
ture was gently refluxed for 43 h. The resulting
bright yellow solution was cooled to room tem-
perature then chilled to 0◦C until product pre-
cipitated. The suspension was vacuum filtered
and purified by flash chromatography. The re-
action yielded 0.254 g of II as a bright yellow

solid (77%). Rf 0.72 (SiO2, 90% Pet. Ether: 10%
EtOAc); mp 190◦C; IR (Nujol) 990, 890, 730,
710 cm−1;1H NMR (400 MHz, CDCl3) 8.761 (s,
2H), 8.128 (dd, 2H, J = 6.4 Hz, 3.2 Hz), 7.587 (d,
2H, J = 6.4 Hz), 7.583 (d, 4H, J = 6.4 Hz), 7.378
(m, 6H);13C NMR (400 MHz, CDCl3) 154.100,
139.230, 137.956, 134.039, 129.684, 128.531,
128.277, 127.576, 127.552, 126.179; MS calcd
for C24H16N2: M+:332, measured: 332.

Single crystal data was collected at room
temperature for I and 100 K for II using a Bruker
Kappa Diffractometer equipped with a 4 k CCD
detector utilizing the SMART software package.18

The data was integrated using SAINT.19 Absorp-
tion corrections were applied to data by running
SADABS on merged data collection runs.20 Struc-
ture refinement and solution was performed using
SHELXTL.21 For both structures, hydrogen atom
positions were refined as were their isotropic ther-
mal parameters. After inspection of output files
during the initial phases of data refinement for
both I and II, the extinction coefficients were not
refined. ORTEPs (50% probability ellipsoids) of
I and II are shown (without hydrogen atoms) in
Fig. 1; whereas primary crystal data and structure
refinement information for I and II are shown
in Table 1. Supplementary materials for I and
II include complete cif files containing fractional
coordinates, anisotropic thermal parameters, bond
lengths, angles, torsions, and additional geometric
and refinement statistics.

Results

Packing in I can best be described as her-
ringbone as is packing in II—albeit a herring-
bone pattern made up of head-to-tail oriented
neighbors. (Packing diagrams for I (100) and II
(010) are illustrated in Fig. 2.) In I and II, all
N–C, C–C, and C–H bond lengths and angles
are within the expected values for quinoxalines.
However, not all N–C bonds in each heterocy-
cle are equivalent. N–C bonds between N1–C8
and N2–C3 in I and N1–C12 & N2–C3 in II are
longer than the corresponding N1–C1 and N2–C2
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Fig. 2. Packing diagrams showing the (100) face of I [left] and the (010) face of II
[right].23 [Hydrogen atoms have been omitted for clarity.].

bonds in I and N1–C1 and N2–C2 bonds in II
(Table 2). This non-equivalence is common for
quinoxalines. From a statistical analysis of or-
ganic compounds containing the quinoxaline moi-

Table 2. Crystal Data and Structure Refinement Information for
2,3-diphenylquinoxaline (I) and 2,3-Diphenylbenzo[g]quinoxaline
(II) and all Purely Organic Molecules in the CSD Containing the

Quinoxaline Moiety.

Quinoxaline C–N
Bondsa Compounds Label Distance (e.s.d.)

N–Cm

I N1–C8 1.3715(19) Å
I N2–C3 1.3672(19) Å
II N1–C12 1.3764(11) Å
II N2–C3 1.3774(11) Å
CSD24 1.3738 Å (±0.0195)b

N–Ca

I N1–C1 1.3209(19) Å
I N2–C2 1.3250(19) Å
II N1–C1 1.3106(11) Å
II N2–C2 1.3115(11) Å
CSD24 1.3162 Å (±0.0251)b

aN–Cm represents the N–C bond pointing toward the middle of the
quinoxaline moiety; whereas N–Ca represents the nitrogen–carbon
bond toward the carbons at the 2- and 3-position on the heterocycle.
bStandard deviation.

ety in the CSD, the N–C bond lengths are shorter
for those bonds close to the 2- and 3-positions on
the quinoxaline heterocycle as shown in Table 2.24

I and II display a slight bowing of the
quinoxaline moiety. The root-mean-square de-
viation from ideal planarity for the quinoxaline
atoms in I was 0.0350(12) Å; whereas for II,
the value was 0.0406(8) Å for all fitted non-
hydrogen atoms in the benzo[g]quinoxaline unit.
Using an illustrative technique commonly em-
ployed for porphyrins,25 deviations for each in-
dividual atom from the mean plane are shown
in Fig. 3 and indicate a bowing of the ideally
planar heterocycle. This distortion of the quinox-
aline moiety could originate internally from the
unfavorable steric interactions between the rings
substituted at the 2- and 3-positions or could stem
from packing effects. A simple case for the for-
mer can be made from examination of existing
2,3-diarylquinoxalines and benzo[g]quinoxalines
in the literature. There are crystal structures
of six other simple, non-ionic, heteroatomic,
2,3-disubstituted quinoxalines to which to com-
pare to I as well as one crystal structure of
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Fig. 3. Deviation of atoms from the mean plane in units of 0.001 Å in the quinoxaline
and benzo[g]quinoxaline moieties in compounds I and II, respectively.

a 2,3-bis(2-pyridyl)benzo[g]quinoxaline11 which
is analogous to II. Immediately evident are the
similarities in ring torsions for the phenyl and
pyridyl quinoxalines and benzo[g]quinoxalines
despite difference in packing—suggesting that
steric interactions predominate.11,26 From inspec-
tion of Table 3, it is evident that as one ring be-
comes coplanar with the quinoxaline, the buck-

ling of the quinoxaline diminishes suggesting
that steric strain is diminished (Fig. 4). This
is seen with all 2,3-diarylquinoxalines with un-
substituted 5-membered heterocyclic rings (b27,
e3a, & f28). However, the lower steric interac-
tions of five-membered heterocyclic rings as op-
posed to six-membered rings at the 2- and 3-
positions on quinoxalines are not the only factor

Fig. 4. Graph showing the ring torsion angle 1 (x-axis), ring torsion angle 2 (y-axis), and
deviation of atoms from the mean plane of the quinoxaline and/or benzo[g]quinoxaline
moiety in units of 0.001 Å (z-axis) for the quinoxaline and benzo[g]quinoxalines in
Table 3. All unsubstituted five-membered heterocycles (b, e, & f) have one ring nearly
coplanar with the quinoxaline and hence result in less quinoxaline buckling..
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in ring torsions and quinoxaline deformation.
Structural studies on a larger ring system,
that of 2,3-bis(benzimidazol-2-yl)quinoxaline29

which has ring torsion angles of 22.17◦ and
41.04◦, only has a quinoxaline plane deformation
of 0.0319 Å which is comparable to the defor-
mation in 2,3-di-2-furylquinoxaline (f).28 There-
fore, it is interesting to bring into play the nature
of packing. The majority of the compounds in
the table adopt variants of herringbone packing
motifs—utilizing a mixture of π–π interactions
and intermolecular C–H interactions; but crys-
tals of 2,3-bis(benzimidazol-2-yl)quinoxaline are
more heavily directed by π–π layer stacking.29

Molecules in the bulkier quinoxaline pack as
tilted head-to-tail dimers that utilize stacking
interactions between the quinoxaline moiety and
a neighboring molecule’s larger ring substituent.
Therefore, the deformation of the quinoxaline
moiety is not due to intramolecular steric effects
alone.

Supplementary material CCDC 265060 and 265061 con-
tain supplementary crystallographic data for this paper. These
data can be obtained free of charge by contacting The Cam-
bridge Crystallographic Data Centre via mail sent to 12
Union Road, Cambridge CB2 1EZ, UK, [Fax: +44(0)1223-
336033.],via email [data request@ccdc.cam.ac.uk], or via the in-
ternet [www.ccdc.cam.ac.uk/data request/cif].
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Hrdlovič, P.; Krajèovič, J.; Laurinc, V. Synth. Metals 2001, 124,
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