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A 2-oxonia-Cope Prins cascade was developed that led to a facile and stereoselective synthesis of the C18 —C25 segment of lasonolide A. The

strategy nicely handles the introduction of the quaternary center in the tetrahydropyran ring, and all of the stereogenic centers in the product
arise from a single stereocenter introduced in a catalytic enantioselective reaction.

Tetrahydropyran rings are common structural motifs in  Lasonolide A was isolated from a shallow water Caribbean
marine natural products. Enantioselective synthesis of suchsponge, specieSorcepia® It shows potent activity against
rings has been a topic of interest in recent years, and genera”A-549 human lung carcinoma. Lee’s seminal synthetic work
solutions to this problem include enantioselective hetero- included a correction of the structure and a reassignment of
Diels—Alder reactions, Prins cyclizations, and intra- the absolute configurationlLee prepared the CC25
molecular etherification of a suitable acyclic precursor. segment of lasonolide through a radical cyclization with a
Quaternary centers make the synthesis of tetrahydropyransilyl tether. More recently, Kang has reported an efficient
rings more challenging. The first two strategies are not well total synthesis of lasonolide AKang prepared the C15
suited to tetrahydropyrans with quaternary centers, and theC25 segment through a clever desymmetrization strategy to
final approach is hampered by the synthesis of acyclic introduce the quaternary center prior to tetrahydropyran
quaternary centers. We describe a tandem oxeoGiape cyclization8® Several other groups have synthesized the
Prins cyclizatioA® that nicely meets this challenge and C19-C23 tetrahydropyran of lasonolide®A.asonolide A’s
illustrate the concept with a synthesis of the C18 to C25 interesting structure, potent anticancer activity, and natural
segment of lasonolide A (Figure 1).
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scarcity have made it an attractive target for synthetic

chemists. Scheme 2. Proposed 2-Oxonia-Cope Prins Cyclization
The segment-coupling Prins cyclization strategy is versatile Cascade To Produce C&25 Tetrahydropyran of Lasonolide

and allows diverse cyclizations to be investigaiel.simple A

approach to the requisite CXZ€23 tetrahydropyran of ﬂ
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tetrahydrofurar8.! We had hoped that inclusion of electron- 9 10

withdrawing groups on the alkene, such as the aceta2e in
would favor the other regioisomer in the cyclization. The _
effect is real, but the best outcome only led to 14% yield of achieved. The rearrangement#cets up a very favorable
the tetrahydropyra#. Prins cyclizations with trisubstituted ~ CYclization of chair conformes that leads to oxocarbenium
alkenes are not useful for the synthesis of tetrahydropyransion 9. Hydrolysis of 9 would producel0, the ketone
with quaternary centers at C3. corresponding to the C18C25 segment of lasonolide A.
We developed a new approach to the lasonolide A This proposal, though speculative, was attractive in that all

tetrahydropyran based on a tandem carbenium ion reattion, ©f the stereogenic centers 80 would arise from a single
Scheme 2 llustrates the proposed 2-oxonia-Cope PrinsSt€r€ogenic center.

cyclization cascade. If one solvolyzedacetoxy etheb, the Substrate5 was prepared as illustrated in Scheme 3.
resulting oxocarbenium ion would undergo a facile 2-oxonia Optically activell was prepared by Keck allylation of the

Cope rearrangement to produce oxocarbeniunvigrBoth corre_zspon_ding aIdehydéEsterificati(_)n With phenylsu_lfanyl-
6 and7 could react in a standard Prins cyclization. However, 2Cetic acid led t013. Aldol reaction with racemicl4,
the much more nucleophilic enol ether should react more followed by MOM cyclization on Lewis acid treatment, gave

rapidly, particularly if a favorable geometry could be LI3-dioxanels. Oxidation of thiophenyl ethels to the
sulfoxide and elimination generated the alkelte Decon-
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jugation produced estdr7 and reductive acetylation deliv-
ered thea-acetoxy ether substrate The preparation of

lasonolide A was completed by L-Selectride reduction of
the ketone to the axial alcoh@B (Scheme 4). The config-

compoundb is straightforward, and the substrate was easily uration of alcoholl8 was confirmed by NOE analysis.

prepared for further study.

The proposed rearrangement and cyclization-aicetoxy

A final variation of the cyclization was investigated. In
situ reduction of oxocarbenium idhwould generate directly

ether5 is presented in Table 1. All of the Lewis acids a protected form of the C8C25 diol. There are many other

Table 1. Cascade Cyclization af-Acetoxy Ether5 with

Different Lewis Acids

| Lewis acid
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Wo OTBDPS  CH,Cl,
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oxocarbenium ions that might be reduced in the sequence,
but surprisingly enough, they did not interfere. Treatment
of a-acetoxy etheb with TMSOTTf and tributyltin hydride

in the presence of DTBMP led to the dioxad® in a
remarkable 80% yield (Scheme 5). Even the 5:1 diastereo-

Scheme 5. In Situ Hydride Reduction of an Oxocarbenium lon
Intermediate with BySnH

5 10
~ | TMSOTY, Bu;SnH
0”0 OAc
entr; Lewis acid (equiv) T (°C) time (h) ield (%) DTBMP
v q yi (4 Wo R CH,Cl,, ~78 °C
1 BF3-OEt; (1.0) —78 3 36
2 TiCls (2.4) —78 to —30 6 59 5 R < CH.CH.OTBDPS
3 TiBr (2.0) -78 1 45 e
4 TMSOTS (3.0) —78 2 74 N
= 0

aAll reactions were conducted in the presence of-1LG% equiv of — Z

DTBMP.
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investigated led to significant quantities of the rearranged 19: NOESY Correlations

and cyclized productlO. The 2,6-ditert-butyl-4-methyl-

pyridine (DTBMP) was added to suppress proton-induced selectivity in the reduction favors the lasonolide A config-
side reaction. Side products include the Prins cyclization yrations Tributyltin hydride is a powerful reducing ageft,
products arising from cyclization of oxocarbenium idon and the high yield suggests that this tandem rearrangement
the terminal alkene (nOt ShOWh). The best results were fOUHdand Cyc“zation reaction occurs very rap|d|y

with TMSOTT (entry 4), which promotes oxocarbeniumion e have developed a rapid and efficient route to the-€18
formation but does not encourage Prins cyclization, presum- c25 segment of lasonolide A based on a 2-oxonia-Cope Prins
ably due to the poorly nucleophilic counterion. TMSOTf  cyclization cascade. This strategy introduces the quaternary
treatment led to the formation @D as a single diastereomer  center with excellent diastereoselectivity and should be useful

in 74% yield. HPLC analysis demonstrated that the cycliza- in the synthesis of other highly functionalized tetrahydro-
tion took place with no loss of optical activity, even though pyran rings.

the original stereogenic center is lost in the course of the
reaction'* The synthesis of the C18C25 segment of
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Scheme 4. Stereoselective Reduction and Stereochemical
Assignment
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