Synthesis of sulfated glucuronyl glycosphingolipids; carbohydrate epitopes of neural cell-adhesion molecules [†]

Takahisa Nakano ^a, Yukishige Ito ^a and Tomoya Ogawa ^{a,b,*}

^a The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-01 (Japan) ^b Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113 (Japan)

(Received September 14th, 1992; accepted in revised form November 5th, 1992)

ABSTRACT

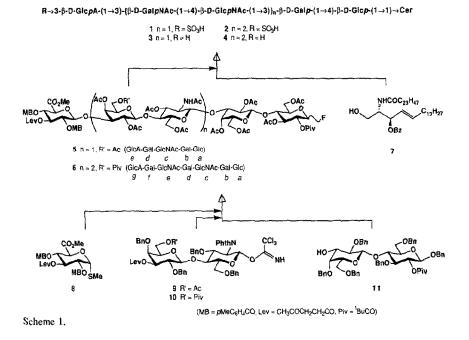
The sulfated glucuronyl glycosphingolipids isolated from the human peripheral nervous system, HO₃S-3- β -GlcpA-(1 \rightarrow 3)-{ β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 3)}_n- β -D-Galp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 1)-Cer (n = 1, 2) (1 and 2) were synthesized. The glycan part of target molecules was designed to be constructed from glucuronate, lactosamine, and lactose fragments 8, 9 (or 10), and 11, which in turn were synthesized stereo- and/or regio-selectively from readily available compounds. The coupling reaction between 9 and 11 was performed by the action of trimethylsilyl trifluoromethanesulfonate (Me₃SiOTf)), and subsequent manipulation of product 31 gave 33. On the other hand, slight modification of this sequence, including repetitive glycosylation reactions using 10, afforded hexasaccharide 46. These compounds were reacted with nonreducing end glucuronate synthon 8 under the agency of CuBr₂-AgOTf-Bu₄NBr, and the resultant penta- and hepta-saccharides 34 and 47, respectively, were transformed into glycosyl fluorides. Final coupling with the ceramide derivative 7, followed by chemoselective deprotection of the levulinoyl group, sulfation and complete deprotection, afforded the target glycolipids 1 and 2.

INTRODUCTION

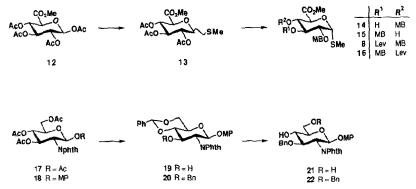
In 1984, Ilyas and co-workers first reported² the presence of acidic glycolipid antigens in human peripheral nerve tissue which was recognized by IgM of patients having peripheral neuropathies and plasma cell abnormalities. The glycolipids were also shown³ to be recognized by an antibody HNK-1 (anti-Leu-7) raised against a membrane antigen from T cell line HSB-2. Recently, these glycolipids have been isolated and chemically characterized⁴. Their structures were proposed as 1 and 2, based on sugar analysis, enzymatic digestion, mild acid hydrolysis, permethylation, fast-atom-bombardment mass spectrometry, and NMR studies. A prominent feature of these compounds is the presence of a nonreducing-end glucuronic acid residue sulfated specifically at the C-3 position, which is carried on

⁺ Part 92 in the series "Synthetic Studies on Cell-Surface Glycans" For part 91, see ref 1.

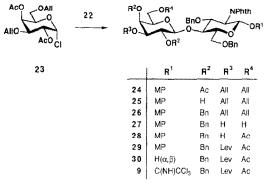
^{*} Corresponding author.


a neolacto-type backbone. This totally novel glycan sequence seems to hold an emerging importance in neurobiological sciences and quite probably in the broader field of glycobiology. For instance, neural cell-adhesion molecules L1 and N-CAM, J1 glycoprotein, and myelin-associated glycoprotein (MAG) were also shown⁵ to share a carbohydrate epitope of similar structure recognized by monoclonal antibodies L2 and HNK-1. These results suggest that the epitope seems to be involved in nerve-astrocyte and astrocyte-astrocyte adhesion, acting as a ligand in cell-cell interaction⁶. Considering their potential biomedical significance, we began synthetic approaches toward these novel glycoconjugates, and our efforts have resulted in the syntheses of sulfated glucuronyl glycosphingolipids 1 (ref 7) and 2 (ref 8). Our syntheses feature the combined use of various modern glycoside bond-forming technologies (i.e., trichloroacetimidate, thioglycoside, glycosyl fluoride). Described herein is the full account of the results of this synthetic work.

RESULTS AND DISCUSSION


In order to successfully execute the synthetic path toward the target molecules, the most critical point is the construction of properly protected oligosaccharide portions so that stereoselective coupling with the lipid portion (ceramide), regioselective sulfation of the glucuronate residue, and final deprotection without touching the sulfate functionality could be achieved. In spite of recent advances in glycosphingolipid synthesis, multifunctional (carboxylate, sulfate, amide, and carbon-carbon double bond, in addition to a large number of hydroxyl groups) molecules of this magnitude, such as 1 or 2 having five and seven sugar residues, were considered a formidable challenge.

Based on the following scenario, penta- and hepta-saccharide units were designed as 5 and 6, respectively. First of all, the sulfated function, being highly unlikely to survive under any glycosylation conditions, should be introduced after coupling with ceramide. Secondly, final deprotection must be executed under neutral or basic (preferably at low-temperature) conditions, because the sulfate group is reasonably stable only as a salt. Although the benzyl-type protecting group would be an ideal choice in this respect⁹, it is not applicable to this particular case because of the presence of a carbon-carbon double bond on the ceramide moiety. Thirdly, in order to minimize practical difficulties during the end-game manipulations, the N-phthaloyl group, which is an obvious choice as a temporary protecting group for nitrogen, has to be converted into an N-acetyl group before coupling with the ceramide derivative¹⁰. Finally, the O-2a position had to be protected with a pivaloyl (Piv) group so that facile coupling could be assumed. Thus glycosyl donors 5 and 6 so designed were to be synthesized from mono- (8) and di-saccharide (9 and 10) derivatives, and the previously reported lactose derivative 11 (ref 11).


The glucuronyl donor, designed as a thioglycoside 8, was synthesized from tetraacetate 12 (ref 12) in 34% overall yield as described below. Compound 12 was

first converted into thioglycoside 13 (Bu₃SnSMe¹³, SnCl₄ in 1,2-dichloroethane), which was subsequently deprotected and then protected, with the aid of dibutyltin oxide¹⁴, into the di-(*p*-methylbenzoyl)ated product as a mixture of 14 and 15 in a ratio of 12:1. Although, separation of these isomers was not practical at this stage, subsequent levulinoylation into 8 and 16 allowed remarkably easy separation by silica gel column chromatography.

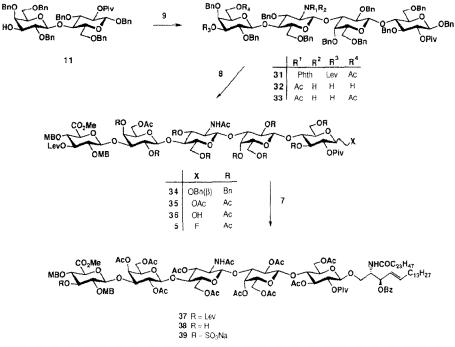
Scheme 2.

Scheme 3.

The preparation of the lactosamine segment 9 basically relied upon the general strategy developed for the synthesis of the polylactosamine-type oligosaccharide¹⁵. A minor modification made for the present purpose was *p*-methoxypheny group protection at the anomeric position, which, although seemingly trivial, confers a substantial degree of flexibility on the whole synthetic scheme. The introduction of this protecting group was conveniently achieved by treatment of the β -acetate 17 (ref 16) with 4-methoxyphenol and Mc₃SiOTf. The product was selectively protected into 22, via 19, 20, and 21 in a standard manner. Reaction with the galactosyl chloride 23 (ref 15) using silver trifluoromethanesulfonate (AgOTf) as an activator gave 24 in an almost quantitative yield. Deacetylation into 25 (LiOOH in aq THF)¹⁷ and subsequent benzylation into 26 (benzyl bromide, Ag₂O, and KI in DMF) were performed following a previously established protocol¹⁵. After deally-lation¹⁸, the diol 27 was selectively protected into 29 via 28. The *p*-methoxyphenyl group was then oxidatively removed¹⁹, and the resultant 30 was transformed into the trichloroacetimidate²⁰ 9.

Glycosylation of 9 with 11 was performed by the action of Me₃SiOTf to give tetrasaccharide 31 in 86% yield, which was subjected to the following deprotection-protection sequence in order to liberate the C-3d hydroxyl group. First of all, simultaneous cleavage of the phthaloyl, acetyl, and levulinoyl groups was achieved by treatment with hydrazine hydrate in refluxing ethanol. The amino group was acetylated, and the resultant diol was selectively acetylated into 33. Among the various conditions, the coupling with the glucuronate fragment 8 turned out to be best achieved under the agency of CuBr₂-Bu₄NBr-AgOSO₂CF₃ (ref 21) in nitromethane as solvent to give the pentasaccharide 34 in 58% yield. Conversion²² into the fluoride 5 (α : β ratio 1:3) was performed in four steps via 35 and 36. In this instance, because of the presence of the levulinoyl group which should be kept untouched at this stage, piperidine-acetic acid was the reagent of choice for the chemoselective cleavage of the anomeric acetyl group into 36.

Compound 5 thus obtained was reacted with 7 (SnCl₂-AgOSO₂CF₃)²³ in


freshly distilled chloroform to afford a 55% yield of the desired 37. It should be noted that only the β -fluoride was consumed in this transformation, and the corresponding α -counterpart was quantitatively recovered. This observation allows us to estimate that the yield based on the β -fluoride is actually > 70%. The structure of 37 was rigorously confirmed by ¹H NMR spectroscopy, including a COSY experiment. Further strong support was obtained from the ¹H NMR spectra of fully deprotected compound 3, which revealed the presence of five anomeric protons at δ 4.681, 4.368, 4.317, 4.279, and 4.174, all assignable as that of the β -glycosidic linkage (d, $J \sim 7.5$ Hz).

Further conversion into the target glycolipid was executed as follows. Selective removal of levulinoyl group²⁴ at O-3e by hydrazine-acetic acid gave **38** in almost quantitative yield. From a COSY experiment, the H-5e and H-4e signals were found at δ 4.224 (d, J 9.5 Hz) and 5.438 (t, J 9.5 Hz), respectively. Although an unambiguous assignment could not be made for the H-3e proton whose resonance had shifted upfield after cleavage of the levulinoyl group, the absence of a corresponding signal in the region of 5.563 ppm was in accordance with the presence of a free hydroxy group at this position. Compound **38** was then treated with sulfur trioxide-trimethylamine in dry DMF for 72 h at 55°C. After extensive purification by sequential chromatography (see Experimental section), product **39** was isolated in 59% yield. The structure of **39** was confirmed by a COSY NMR experiment. Especially supportive of the structure was the downfield shift of the H-3e signal to $\delta 4.876$, confirming that a sulfate group had actually been introduced at this position.

Complete deprotection was carried out under carefully controlled conditions (1, LiOH in aq THF, -15 to 0°C; 2, NaOMe in THF-MeOH at 20°C). After purification by chromatography on Sephadex LH-20, the target glycolipid 1 was obtained in 86% yield. Although the ¹H NMR spectrum of synthetic 1 is not directly comparable with that of a natural sample, because the latter spectrum was recorded with a very small amount of compound, all chemical shifts and coupling constants of the anomeric protons and H-3e were in good agreement with the reported values.

Being encouraged by this result, we turned our attention to the hexaheptaosyl ceramide 2. This compound can be viewed as a homologue of 1 with respect to the lactosamine unit. Therefore, our expectation was that only a slight modification of the synthetic route should be adequate enough for the synthesis of 2, which turned out to be the case (*vide infra*).

The requisite protective-group manipulation of the lactosamine fragement was started by selective protection of diol 27 with pivaloyl chloride and 4-dimethylaminopyridine (DMAP) in pyridine to give 40 in 83% yield. The choice of the pivaloyl group was based on the observation in model studies that this particularly hindered acyl group is not affected under the conditions of dephthaloylation (e.g., hydrazine in refluxing EtOH), thereby allowing us to achieve the following task in a minimum number of steps. After conversion to 41, oxidative removal of the

Scheme 4.

p-methoxyphenyl group gave the hemiacetal 42 in 87% yield, which was then converted into trichloroacetimidate 10. Coupling of 10 with 11 using Me₃SiOTf as an activator gave an 83% yield of tetrasaccharide 43. Selective removal of the levulinoyl group gave 44, which was again coupled with 10 to afford hexasaccharide 45 in 81% yield. The simultaneous removal of phthaloyl and levulinoyl groups was achieved with hydrazine hydrate in refluxing EtOH, and the resultant diamino alcohol was *N*-acetylated to give compound 46 in 81% overall yield.

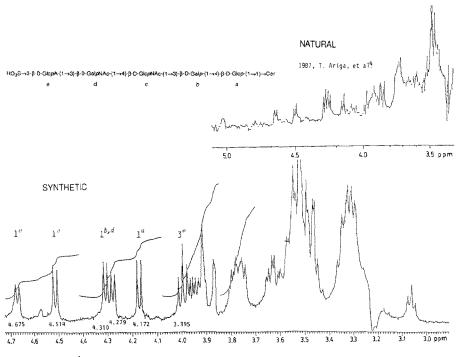
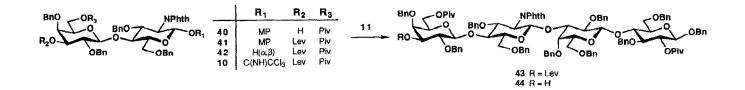
Attachment of the glucuronate residue was again carried out by use of the thioglycoside 8 as a glycosyl donor, and the product 47 was subjected to conventional protective group modulation as described for the preparation of 5 to give the designed glycosyl donor 6 via 48 and 49. Compound 6 thus obtained was revealed to be a 1:4 mixture of α and β anomers.

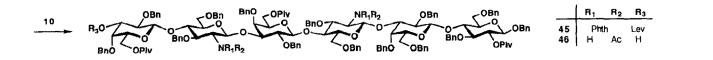
Coupling between 6 and 7 (SnCl₂-AgOTf in chloroform) afforded 50 in 49% yield. This compound was converted into the target molecule 2 via 51 and 52, as well as into neutral glycolipid 4, following the protocol established for the preparation of 1 and 3. Although the physical data of natural 2 is not yet reported, the ¹H NMR spectrum of the synthetic material is quite reasonable in comparison with the pentasaccharide counterpart 1 and shows, in addition to the signals for the anomeric protons, the presence of the deshielded signal for H-3g, indicating the presence of sulfate group at O-3g.

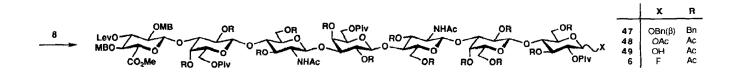
EXPERIMENTAL

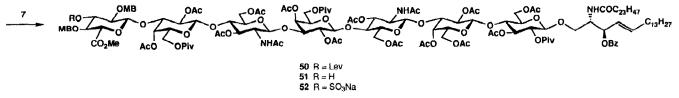
General methods. —Melting points were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were determined with a Perkin–Elmer Model 241 MC polarimeter, for solutions in CHCl₃ at 25°C, unless noted otherwise. Silica gel column chromatography was performed on columns of Wako-gel C-300 (200–300 mesh). TLC and high-performance (HPTLC) were performed on Silica Gel 60 F_{254} (Merck). Molecular sieves were purchased from Nakarai Chemicals. ¹H NMR spectra were recorded with either a GNM-GSX-500, JEOL GX400, or FX90Q spectrometers. The values of $\delta_{\rm H}$ are expressed in ppm downfield from the signal for internal Me₄Si. Assignments of peaks made for compounds **31**, **34**, **37**, **38**, **39**, **45**, **47**, **50**, **51**, and **52** were verified by COSY experiments.

Methyl (methyl 2,3,4,-tri-O-acetyl-1-thio- α - and β -D-glucopyranosid)uronate (13). —To a stirred mixture of 12 (5.01 g, 13.3 mmol) and Bu₃SnSMe (5.40 g, 16.0 mmol) in (ClCH₂)₂ (90 mL) was added dropwise SnCl₄ (2.1 mL, 17.9 mmol) at 0°C over 1 h. The mixture was stirred for 3 days at 20°C, evaporated in vacuo and diluted with EtOAc. The solution was vigorously stirred with aq NaHCO₃-KF for 3 h, filtered through Celite, washed with aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 10:3 toluene-EtOAc gave 13


Fig. 1. 500-MHz ¹H NMR spectrum in 49:1 Me₂SO- d_6 -D₂O at 60°C.


(4.37 g, 90%): R_f 0.35 (toluene–EtOAc); ¹H NMR (CDCl₃) δ 5.621 (0.63 H, d, J 5.5 Hz, H-1 α), 5.396 (0.63 H, t, J 9.8 Hz, H-3 α), 5.282 (0.38 H, t, 9.8 Hz, H-2,3 or 4 β), 5.216 (0.38 H, t, J 9.8 Hz, H-2,3 or 4 β), 5.188 (0.63 H, t, J 9.8 Hz, H-4 α), 5.092 (0.38 H, t, J 9.8 Hz, H-2,3 or 4 β), 5.051 (0.63 H, dd, J 9.8 Hz, H-2 α), 4.725 (0.63 H, d, 9.8 Hz, H-5 α), 4.432 (0.38 H, d, J 9.8 Hz, H-1 or 5 β), 4.061 (0.38 H, d, J 9.8 Hz, H-1 or 5 β), 3.762 (1.88 H, s, COOMe α), 3.753 (1.13 H, s, COOMe β), 2.195, 2.108, 2.073, 2.071, 2.042, 2.031, 2.026, and 2.023 (12 H, 8s, 3Ac and SMe). Anal. Calcd for C₁₄H₂₀O₉S: C, 46.15; H, 5.53; S, 8.80. Found: C, 46.02; H, 5.58; S, 8.57.


Methyl [methyl 2,4-di-O-(p-methylbenzovl)-1-thio- α -p-glucopyranosid]uronate (14) and methyl [methyl 2,3-di-O-(p-methylbenzoyl)-1-thio- α -D-glucopyranosid] uronate (15).—To a solution of 13 (3.90 g, 10.7 mmol) in 1:1 MeOH-THF (80 mL) was added a solution of 0.3 M NaOMe-MeOH (2.5 mL). The mixture was stirred for 2 h at 20°C, made neutral with Amberlyst-15 (H^+) and evaporated in vacuo to give the triol (2.35 g, 92%). A mixture of the triol (630 mg, 2.64 mmol) and Bu₂SnO (1.35 g, 2.64 mmol) in toluene (52 mL) was stirred for 4 h under reflux with continuous azeotropic removal of water, cooled, evaporated in vacuo, and diluted with THF (40 mL). To the solution were added, successively, p-methylbenzoyl chloride (0.98 mL, 7.41 mmol) and Et₃N (1.0 mL, 7.3 mmol), and the mixture was stirred for 20 h at 20°C. After the addition of MeOH, the solution was evaporated in vacuo, diluted with EtOAc, and then vigorously stirred with aq NaHCO₃-KF for 3 h. The precipitate was filtered off through Celite, and the filtrate was washed with aq NaCl, dried (Na_2SO_4) , and evaporated in vacuo. Chromatography of the residue on SiO_2 in 7:2 toluene-EtOAc gave a mixture of 14 and 15 (660 mg, 53%): R_f 0.44 (4:1 toluene-EtOAc). ¹H NMR data (CDCl₃): δ 5.759 (0.08 H, d, J 5.2 Hz, H-1 of 15), 5.747 (0.92 H, d, J 5.2 Hz, H-1 of 14), 5.699 (0.08 H, t, J 9.5 Hz, H-3 of 15), 5.397 (0.08 H, dd, J 9.5 and 5.2 Hz, H-2 of 15), 5.379 (0.92 H, t, J 8.9 Hz, H-4 of 14), 5.286 (0.92 H, dd, J 8.9 and 5.2 Hz, H-2 of 14), 4.870 (0.92 H, d, J 8.9 Hz, H-5 of 14), 4.779 (0.08 H, d, J 9.5 Hz, H-5 of 15), 4.365 (0.92 H, dt, J 8.9 and 3.4 Hz, H-3 of 14), 4.152 (0.08 H, dt, J 9.5 and 3.8 Hz, H-4 of 15), 3.836 (0.23 H, s, COOMe of 15), 3.689 (2.77 H, s, COOMe of 14), 2.402 (2.77 H, s, C₆H₄Me of 14), 2.395 (2.77 H, s, C₆H₄Me of 14), 2.345 (0.23 H, s, C₆H₄Me of 15), 2.342 (0.23 H, s, C₆H₄Me of 15), 2.142 (2.77 H, s, SMe of 14), and 2.100 (0.23 H, s, SMe of 15). Anal. Calcd for $C_{24}H_{26}O_8S \cdot 0.25H_2O$: C, 60.18; H, 5.58; S, 6.69. Found: C, 60.15; H, 5.54; S, 6.76.

Methyl [methyl 3-O-levulinoyl-2, 4-di-O-(p-methylbenzoyl)-1-thio- α -D-glucopyranosid]uronate (8) and methyl [methyl 4-O-levulinoyl-2, 3-di-O-(p-methylbenzoyl)-1-thio- α -D-glucopyranosid]uronate (16). —To a solution of a mixture of 14 and 15 (660 mg, 1.39 mmol) in pyridine (8 mL) were added a solution of 1.08 M levulinic anhydride in (CICH₂)₂ (3.9 mL, 4.2 mmol) and DMAP. The mixture was stirred for 20 h at 20°C, and coevaporated with a mixture of EtOH and toluene. Sequential chromatography of the residue on SiO₂ first in 5:2 hexanc–EtOAc and then in 3:1 toluene–EtOAc gave 8 (587 mg, 74%) and 16 (44 mg, 6%).

Scheme 5.

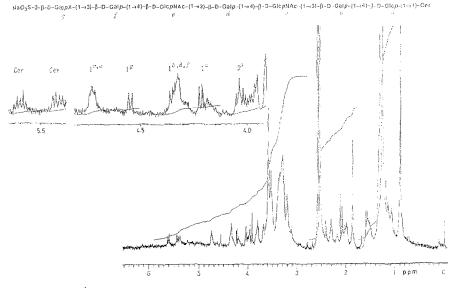


Fig. 2. 500-MHz ¹H NMR spectrum in 49:1 Me₂SO- d_6 -D₂O at 60°C.

Compound 8 had: $[\alpha]_D + 103^{\circ}$ (c 0.9); R_f 0.35 (2:1 hexane-EtOAc). ¹H NMR data (CDCl₃): δ 5.811 (1 H, d, J 5.5 Hz, H-1), 5.771 (1 H, t, J 9.5 Hz, H-3), 5.463 (1 H, t, J 9.5 Hz, H-4), 5.338 (1 H, dd, J 9.5 and 5.5 Hz, H-2), 4.905 (1 H, d, J 9.5 Hz, H-5), 3.686 (3 H, s, COOMe), 2.411 (6 H, s, C_6H_4Me), 2.122 (3 H, s, SMe or CH₂COCH₃), and 1.963 (3 H, s, SMe or CH₂COCH₃). Anal. Calcd for $C_{29}H_{32}O_{10}S$: C, 60.83; H, 5.63; S, 5.60. Found: C, 60.96; H, 5.67; S, 5.54.

Compound 16 had: $[\alpha]_D + 158^{\circ}$ (c 2.1); R_f 0.29 (2 : 1 hexane-EtOAc). ¹H NMR data (CDCl₃): δ 5.821 (1 H, t, J 9.0 Hz, H-3 or 4), 5.814 (1 H, d, J 5.3 Hz, H-1), 5.421 (1 H, t, J 9.0 Hz, H-3 or 4), 5.380 (1 H, dd, J 9.0 and 5.3 Hz, H-2), 4.852 (1 H, d, J 9.0 Hz, H-5), 3.765 (3 H, s, COOMe), 2.363 (6 H, s, $C_6H_4M_c$), 2.143 (3 H, s, SMe or CH₂COMe), and 2.062 (3 H, s, SMe or CH₂COMe). Anal. Calcd for $C_{29}H_{32}O_{10}S$: C, 60.83; H, 5.63. Found: C, 60.83; H, 5.66.

p-Methoxyphenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (18).—To a stirred mixture of 17 (2.16 g, 4.52 mmol) and p-methoxyphenol (0.87 g, 7.01 mmol) in (ClCH₂)₂ (30 mL) was added dropwise Me₃SiOTf (90 μ L, 0.47 mmol). The mixture was stirred for 3 h at 0°C, diluted with EtOAc, washed successively with aq NaHCO₃ and aq NaCl, dried (MgSO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 2:1 toluene–EtOAc gave 18 (2.05 g, 84%); mp 148–149°C; [α]D + 51.3° (*c* 1.0). ¹H NMR data (CDCl₃): δ 5.864 (1 H, d, J 8.5 Hz, H-1), 5.862 (1 H, dd, J 10.7 and 9.0 Hz, H-3), 5.251 (1 H, dd, J 10.7 and 9.0 Hz, H-4), 4.579 (1 H, dd, J 10.7 and 8.5 Hz, H-2), 3.720 (3 H, OMe), 2.108, 2.049, and 1.892 (9 H, 3 s, 3 Ac). Anal. Calcd for C₂₇H₂₇NO₁₁: C, 59.88; H, 5.03; N, 2.59. Found: C, 59.37; H, 4.98; N, 2.57.

p-Methoxyphenyl 4,6-O-benzylidene-2-deoxy-2-phthalimido- β -D-glucopyranoside (19).—To a solution of 18 (47.2 g, 87.1 mmol) in 1 : 1 MeOH–THF (1000 mL) were

added a solution of 0. 2M NaOMe-MeOH (43.5 mL). The mixture was stirred for 2 h at 20°C, made neutral with Amberlyst-15 (H⁺), and evaporated in vacuo. The residue was dissolved in DMF (33 mL) containing α,α -dimethoxytoluene (20 mL, 130 mmol) and TsOH \cdot H₂O (1.67 g, 8.76 mmol), and the solution was stirred for 20 h at 20°C. The mixture was diluted with EtOAc and washed with water. The organic layer was washed successively with aq NaHCO₃ and aq NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was crystallized from MeOH to give **19** (39.2 g, 89%); mp 128-129°C; $[\alpha]_D$ +9.7° (*c* 0.8); R_f 0.49 (3:1 toluene-EtOAc). ¹H NMR data (CDCl₃): δ 5.799 (1 H, d, J 8.6 Hz, H-1), 5.590 (1 H, s, benzylidene), 4.702 (1 H, ddd, J 10.0, 8.5, and 3.7 Hz, H-3), 4.499 (1 H, dd, J 10.5 and 8.6 Hz, H-2), 3.717 (3 H, s, OMe), and 2.642 (1 H, d, J 3.7 Hz, OH). Anal. Calcd for C₂₈H₂₅NO₈ · 0.5H₂O: C, 65.52; H, 5.11; N, 2.73. Found: C, 65.57; H, 4.99; N, 2.74.

p-Methoxyphenyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido- β -D-glucopyranoside (20).—To a solution of 19 (21.2 g, 42.2 mmol) in DMF (50 mL) was added NaH (2.76 g, 55% oil dispersion 63 mmol) at 0°C. To the mixture was added dropwise benzyl bromide (7.5 mL, 63 mmol) over 2 h at 0°C, and the mixture was then stirred for 20 h at 20°C. The excess NaH was carefully decomposed with MeOH. After evaporation in vacuo, a solution of the residue in CHCl₃ was successively washed with aq NaHCO₃ and aq NaCl, dried (MgSO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 5:1 toluene–EtOAc gave 20 (15.2 g, 61%) and recovered 19 (6.4 g, 30%).

Compound **20** had: $[\alpha]_D + 72.3^{\circ}$ (c 0.8); R_f 0.17 (5:1 hexane-EtOAc). ¹H NMR data (CDCl₃): δ 5.742 (1 H, d, J 8.3 Hz, H-1), 5.643 (1 H, s, benzylidene), 4.822 (1 H, d, J 12.4 Hz, benzyl), 4.534 (1 H, d, J 12.4 Hz, benzyl), 4.409 (1 H, dd, J 10.5 and 5.1 Hz, H-6), and 3.683 (3 H, s, OMe). Anal. Calcd for $C_{35}H_{31}NO_8$: C, 70.81; H, 5.26; N, 2.36. Found: C, 70.80; H, 5.30; N, 2.30.

p-Methoxyphenyl 3-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (21).— To a solution of 20 (19.2 g, 32.3 mmol) in McOH-1,4-dioxane (300 mL) were added TsOH \cdot H₂O (0.615 g, 3.33 mmol). The mixture was stirred for 1 h at 60°C, and for 45 min at 85°C, neutralized with Et₃N, and evaporated in vacuo. Chromatography of the residue on SiO₂ in 1:1 toluene-EtOAc gave 21 (12.6 g, 77%) and recovered 20 (0.57 g, 3%).

Compound **21** had: $[\alpha]_{D}$ +73.0° (*c* 1.1); R_f 0.32 (1:1 toluene–EtOAc). ¹H NMR data: δ 5.711 (1 H, d, J 8.1 Hz, H-1), 4.744 (1 H, d, J 12.2 Hz, benzyl), 4.569 (1 H, d, J 12.2 Hz, benzyl), and 3.696 (3 H, s, OMe). Anal. Calcd for C₂₈H₂₇NO₈: C, 66.53; H, 5.38; N, 2.77. Found: C, 66.16; H, 5.45; N, 2.76.

p-Methoxyphenyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (22).—A mixture 21 (9.24 g, 18.3 mmol) and (Bu₃Sn)₂O (10.9 g, 18.3 mmol) in toluene (260 mL) was stirred for 4 h under reflux, with azeotropic removal of water, and then cooled to room temperature. Benzyl bromide (11 mL, 92.5 mmol) and Bu₄NBr (0.59 g, 1.83 mmol) were added, and the mixture was stirred for 20 h at 100°C and evaporated in vacuo. A solution of the residue in EtOAc (250 mL)

was vigorously stirred with aq NaHCO₃-KF for 5 h and filtered through Celite. The filtrate was successively washed with aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 5:1 toluene–EtOAc gave **22** (9.90 g, 91%); $[\alpha]_D$ +56.1° (*c* 0.8); R_f 0.40 (4:1 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 5.655 (1 H, d, J 8.5 Hz, H-1), 4.766 (1 H, d, J 12.2 Hz, benzyl), 4.628 (1 H, d, J 11.9 Hz, benzyl), 4.573 (1 H, d, J 11.9 Hz, benzyl), 4.560 (1 H, d, J 12.2 Hz, benzyl), 4.406 (1 H, dd, J 10.7 and 8.5 Hz, H-2), 4.305 (1 H, dd, J 10.7 and 8.5 Hz, H-3), 3.888 (1 H, ddd, J 9.5, 8.5, and 2.8 Hz, H-4), 3.690 (3 H, s, OMe), and 2.947 (1 H, d, J 2.8 Hz, OH). Anal. Calcd for C₃₅H₃₃NO₈: C, 70.57; H, 5.59; N, 2.35. Found: C, 70.24; H, 5.59; N, 2.32.

p-Methoxyphenyl O-(2,4-di-O-acetyl-3,6-di-O-allyl-β-D-galactopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (24).—To a stirred mixture of 22 (7.11 g, 11.9 mmol), AgOTf (6.14 g, 23.9 mmol) and 4A molecular sieves (42 g) in (ClCH₂)₂ (150 mL) were added, at -20° C, a solution of 23 (6.49 g, 17.9 mmol) in (ClCH₂)₂ (100 mL) over 5 min. The mixture was diluted with CHCl₃ and aq NaHCO₃, and filtered through Celite. The filtrate was successively washed with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 4:1 toluene–EtOAc gave 24 (10.4 g, 91%); [α]D +47.2° (c 0.6); R_f 0.44 (4:1 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 5.615 (1 H, d, J 8.3 Hz, H-1a), 5.408 (1 H, d, J 2.7 Hz, H-4b), 5.068 (1 H, dd, J 10.0 and 8.1 Hz, H-2b), 4.874 and 4.766 (2 H, 2 d, J 12.0 Hz, benzyl), 4.565 (1 H, d, J 8.1 Hz, H-1b), 4.515, 4.476 (2 H, 2d, J 12.0 Hz, benzyl), 4.408 (1 H, dd, J 9.5 and 8.8 Hz, H-2a), 4.326 (1 H, dd, J 10.7 and 9.5 Hz, H-3a), 4.104 (1 H, dd, J 9.5 and 8.8 Hz, H-4a), 3.697 (3 H, s, OMe), 2.063 (3 H, s, Ac), and 2.055 (3 H, s, Ac). Anal. Calcd for C₅₁H₅₅NO₁₅: C, 66.44; H, 6.01; N, 1.52. Found: C, 66.47; H, 5.99; N, 1.54.

p-Methoxyphenyl O-(3,6-di-O-allyl-β-D-galactopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (25).—To a solution of 24 (0.540 g, 0.59 mmol) in THF (15 mL) were added H₂O₂ (31%, 4.1 mL) and 1.25 N LiOH (1.45 mL). The mixture was stirred for 8 h at 0°C. The mixture was diluted with water and extracted with EtOAc. The organic layer was washed with aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 3:2 toluene–EtOAc gave 25 (0.329 g, 67%); [α]D + 68.2° (c 1.1): R_f 0.29 (2:1 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 5.593 (1 H, d, J 8.2 Hz, H-1a), 4.562 (1 H, d, J 7.6 Hz, H-1b), and 3.693 (3 H, s, OMe). Anal. Calcd for C₄₇H₅₁NO₁₃ · H₂O: C, 65,95; H, 6.24; N, 1.64. Found: C, 66.34; H, 6.07; N, 1.66.

p-Methoxyphenyl O-(3,6-di-O-allyl-2,4-di-O-benzyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (26).—To a mixture of 25 (0.293 g, 0.35 mmol), Ag₂O (0.992 g, 4.3 mmol), and KI (0.290 g, 1.8 mmol) in DMF (7 mL) was added dropwise benzyl bromide (0.5 mL, 4.2 mmol). The mixture was stirred for 1 h at 0°C and then for 1 h at 20°C. The mixture was diluted with water and Et₂O and filtered through Celite. The filtrate was washed with water and aq NaCl and evaporated in vacuo. Chromatography of the residue on SiO₂ in 5:2 hexane–EtOAc gave 26 (0.348 g, 98%); [α]D + 28.0° (c 0.9); R_f 0.42 (5:2 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 5.618 (1 H, d, J 8.5 Hz, H-1a), 4.454 (1 H, d, J 7.6 Hz, H-1b), 4.427 (1 H, dd, J 10.7 and 8.5 Hz, H-2a), 4.096 (1 H, dd, J 9.8 and 8.2 Hz, H-4a), 3.854 (1 H, d, J 2.8 Hz, H-4b), 3.733 (1 H, dd, J 9.8 and 7.6 Hz, H-2b), 3.692 (3 H, s, OMe), and 3.348 (1 H, dd, J 9.8 and 2.8 Hz, H-3b). Anal. Calcd for C₆₁H₆₃NO₁₃: C, 71.96; H, 6.24; N, 1.38. Found: C, 71.75; H, 6.17; N, 1.36.

p-Methoxyphenyl O-(2,4-di-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-Obenzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (27).—A solution of 26 (3.89 g, 3.82 mmol), in 10:5:1 MeCN-EtOH-H₂O (120 mL) was degassed by passage of N₂ for 1 h at 100°C. To this solution was then added (Ph₃P)RhCl (636 mg, 0.67 mmol) and DABCO (346 mg, 3.09 mmol), and the mixture was stirred for 72 h under reflux. The mixture was concentrated in vacuo, and the residue was dissolved in 10:1 acetone-H₂O (120 mL) containing HgCl₂ (9.98 g, 36.8 mmol) and HgO (0.5 g, 2 mmol). The suspension was stirred for 2 h at 20°C and filtered through Celite, and the filtrate was evaporated in vacuo. The residue was dissolved in CHCl₃, and the solution was successively washed with 10% aq KI and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 1:1 toluene-EtOAc gave 27 (2.94 g, 82%); $[\alpha]_D$ +44.2° (c 1.3); R_f 0.33 (3:2 toluene-EtOAc). ¹H NMR data (CDCl₃): 8 5.638 (1 H, d, J 8.2 H, H-1a), 4.936 (1 H, d, J 12.2 Hz, benzyl), 4.459 (1 H, d, J 7.3 Hz, H-1b), 4.426 (1 H, dd, J 10.2 and 8.2 Hz, H-2a or 3a), 4.383 (1 H, dd, J 10.2 and 8.2 Hz, H-2a or 3a), 4.111 (1 H, dd, J 10.1 and 8.2 Hz, H-4a), 3.693 (3 H, s, OMe), and 3.645 (1 H, dd, J 10.7 and 7.3 Hz, H-2b). Anal. Calcd for C₅₅H₅₅NO₁₃: C, 70.42; H, 5.91; N, 1.49. Found: C, 70.12; H, 5.91; N, 1.52.

p-Methoxyphenyl O-(6-O-acetyl-2,4-di-O-benzyl-β-D-galactopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (28).—To an ice-cold solution of 27 (4.29 g, 4.57 mmol) in pyridine (30 mL) was added AcCl (0.68 mL, 9.6 mmol). After being stirred for 30 min at 0°C, MeOH and toluene were added, and the solution was evaporated in vacuo. Chromatography of the residue on SiO₂ in 5:2 toluene–EtOAc gave 28 (3.42 g, 76%); [α]D +41.5° (c 1.0); R_f 0.26 (3:2 hexane–EtOAc). ¹H NMR data (CDCl₃): δ 6.623 (1 H, d, J 8.6 Hz, H-1a), 4.468 (1 H, d, J 7.0 Hz, H-1b), 4.170 (1 H, dd, J 11.0 and 6.4 Hz, H-6b), 3.994 (1 H, dd, J 11.0 and 6.4 Hz, H-6b), 3.518 (1 H, t, J 6.4 Hz, H-5b), and 2.004 (3 H, s, Ac). Anal. Calcd for C₅₇H₇₇NO₁₄· 0.5H₂O; C, 69.22; H, 5.91; N, 1.42. Found: C, 69.05; H, 5.81; N, 1.34.

p-Methoxyphenyl O-(6-O-acetyl-2,4-di-O-benzyl-3-O-levulinoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (29).— To a solution 28 (627 mg, 0.64 mmol) in pyridine (6 mL) were added a solution of 0.73 M levulinic anhydride in (ClCH₂)₂ (2.8 mL, 2.1 mmol) and a catalytic amount of DMAP. The mixture was stirred for 20 h at 20°C and then coevaporated with toluene. Chromatography of the residue on SiO₂ in 5:2 toluene–EtOAc gave 29 (689 mg, 100%); [α]_D + 41.8° (c 1.6); R_f 0.32 (3:1 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 5.609 (1 H, d, J 8.4 Hz, H-1a), 4.856 (1 H, dd, J 10.3 and 2.9 Hz, H-3b), 4,511 (1 H, d, J 7.7 Hz, H-1b), 4.429 (1 H, t, J 9.5 Hz, H-3a), 4.353 (1 H, dd, J 9.5 and 8.4 Hz, H-2a), 3.916 (1 H, dd, J 11.0 and 7.0 Hz, H-6b), 3.843 (1 H, dd, J 11.0 and 4.4 Hz, H-6a), 3.817 (1 H, d, J 2.9 Hz, H-4b), 3.791 (1 H, dd, J 10.3 and 7.7 Hz, H-2b), 3.693 (3 H, s, OMe), 3.503 (1 H, t, J 7.0 Hz, H-5b), 2.151 (3 H, s, Ac or CH₂COMe), and 1.983 (3 H, s, Ac or CH₂COMe). Anal. Calcd for $C_{62}H_{63}NO_{16}$: C, 69.07; H, 5.89; N, 1.30. Found: C, 68.77; H, 5.91; N, 1.19.

O-(6-O-Acetyl-2,4-di-O-benzyl-3-O-levulinoyl-β-D-galactopyranosyl)-(1 → 4)-3,6di-O-benzyl-2-deoxy-2-phthalimido-D-glucopyranose (**30**).—A mixture of **29** (661 mg, 0.61 mmol) and ammonium cerium(IV) nitrate (3.37 g, 6.15 mmol) in 1:1:15:1 toluene–MeCN–H₂O (165 mL) was vigorously stirred for 7 h at 20°C, then diluted with EtoAc. The organic layer was washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄) and evaporated in vacuo. Chromatography of the residue on SiO₂ in 3:2 toluene–EtOAc gave **30** (481 mg, 81%); R_f 0.45 and 0.35 (3:2 toluene–EtOAc). ¹H NMR data (CDCl₃–D₂O): δ 5.292 (1 H, d, J 8.5 Hz, H-1a), 4.807 (1 H, dd, J 10.1 and 3.1 Hz, H-3b), 4.430 (1 H, d, J 7.6 Hz, H-1b), 3.800 (1 H, d, J 3.1 Hz, H-4b), 3.763 (1 H, dd, J 10.1 and 7.6 Hz, H-2b), 3.452 (1 H, t, J 6.7 Hz, H-5b), 2.155 (3 H, s, Ac or CH₂COMe), and 1.971 (3 H, s, Ac or CH₂COMe). Anal. Calcd for C₅₅H₅₇NO₁₅: C, 67.96; H, 5.91; N, 1.44. Found: C, 67.63; H, 5.90; N, 1.37.

O-(6-O-Acetyl-2,4-di-O-benzyl-3-O-levulinoyl-β-D-galactopyranosyl)-(1 → 4)-3,6di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (9).—To a stirred solution of **30** (165 mg, 0.17 mmol) in (ClCH₂)₂ (3 mL) were added CCl₃CN (0.17 mL, 1.7 mmol) and DBU (2.5 µL, 0.017 mmol) at -20° C. The mixture was stirred for 30 min at -20° C, then directly chromatographed on SiO₂ in 2:1 toluene–EtOAc to give **9** (183 mg, 97%); [α]D +57.7° (c 1.0); R_f 0.45 (5:2 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 8.522 (1 H, s, NH), 6.329 (1 H, d, J 8.8 Hz, H-1a), 4.850 (1 H, d, J 12.5 Hz, benzyl), 4.817 (1 H, dd, J 10.3 and 3.3 Hz, H-3b), 4.474 (1 H, d, J 10.6 and 8.8 Hz, H-2a), 4.399 (1 H, dd, J 10.6 and 8.4 Hz, H-3a), 4.213 (1 H, dd, J 9.9 and 8.4 Hz, H-4a), 3.802 (1 H, d, J 3.3 Hz, H-4b), 3.771 (1 H, dd, J 10.3 and 7.3 Hz, H-2b), 2.154 (3 H, s, Ac or CH₂COMe), and 1.988 (3 H, s, Ac or CH₂COMe). Anal. Calcd for C₅₇H₅₇Cl₃N₂O₁₅ · 0.5toluene: C, 62.51; H, 5.29; N, 2.41. Found: C, 63.01; H, 5.30; N, 2.34.

Benzyl O-(6-O-acetyl-2,4-di-O-benzyl-3-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6tri-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-O-pivaloyl- β -Dglucopyranoside (31).—To a stirred mixture of compounds 11 (913 mg, 0.94 mmol) and 9 (474 mg, 0.43 mmol) and 4A molecular sieves (2 g) in (ClCH₂)₂ (14 mL) was added Me₃SiOTf (17 μ L, 0.088 mmol) at -20° C. The mixture was stirred for 30 min at -20° C, quenched with Et₃N, diluted with EtOAc, and filtered through Celite. The filtrate was washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 3:2 hexane–EtOAc to give 31 (703 mg, 86%); [α]D -3.8° (c 1.7); R_f 0.46 (3:1 toluene–EtOAc). ¹H NMR data: δ 5.369 (1 H, d, J 8.5 Hz, H-1c), 5.021 (1 H, dd, J 9.2 and 8.0 Hz, H-2a), 4.856 (1 H, dd, J 10.3 and 3.3 Hz, H-3d) 4.526 (1 H, d, J 7.7 Hz, H-1d), 4.493 (1 H, dd, J 10.8 and 8.5 Hz, H-3c), 4.286 (1 H, d, J 8.0 Hz, H-1a), 4.262 (1 H, dd, J 10.8 and 8.5 Hz, H-2c), 4.225 (1 H, d, J 7.7 Hz, H-1b), 3.956 (1 H, d, J 3.1 Hz, H-4b), 3.808 (1 H, d, J 3.3 Hz, H-4d), 3.788 (1 H dd, J 10.3 and 7.7 Hz, H-2d), 3.530 (1 H, dd, J 9.8 and 3.1 Hz, H-3b), 3.440 (1 H, dd, J 9.7 and 7.7 Hz, H-2b), 3.395 (1 H, t, J 9.2 Hz, H-3a), 2.153 (3 H, s, Ac or CH_2COMe), 1.935 (3 H, s, Ac or CH_2COMe), and 1.082 (9 H, s, ^tBu). Anal. Calcd for $C_{114}H_{121}NO_{26}$ C, 71.27; H, 6.35; N, 0.73. Found: C, 71.01; H, 6.36; N, 0.55.

Benzyl O-(6-O-acetyl-2,4-di-O-benzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-O-benzyl-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(2,4,6-tri-O-benzyl- β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-O-pivaloyl- β -D-glucopyranoside (33).— To a solution of 31 (703 mg, 0.37 mmol) in EtOH (45 mL) were added NH₂NH₂. H₂O (1.36 mL, 27 mmol). The mixture was stirred for 48 h under reflux, and then evaporated in vacuo. To the solution of the residue in MeOH (18 mL) was added Ac₂O (1 mL, 10 mmol), and the mixture was stirred for 30 min at 20°C and then coevaporated with toluene. Chromatography of the residue on SiO₂ in toluene--EtOAc gave 32 (206 mg, 34%) and 33 (411 mg, 65%).

Compound **32** had: $[\alpha]_D - 5.7^{\circ}$ (*c* 0.9); R_f 0.14 (5:2 toluene–EtOAc). ¹H NMR data (CDCl₃) δ 5.092 (1 H, dd, J 9.5 and 8.1 Hz, H-2a), 5.031 (1 H, d, J 8.4 Hz, NHAc), 4.948 (1 H, d, J 8.1 Hz, H-1c), 1.418 (3 H, s, NAc), and 1.118 (9 H, s, ¹Bu). Anal. Calcd for C₁₀₁H₁₁₃NO₂₂: C, 71.65; H, 6.73; N, 0.86. Found: C, 71.30; H, 6.72; N, 0.66.

Compound 33 had: $[\alpha]_D - 12.7^{\circ}$ (c 0.7); R_f 0.37 (5:2 toluene-EtOAc). ¹H NMR data (CDCl₃): δ 5.100 (1 H, d, J 8.1 Hz, NHAc), 5.090 (1 H, dd, J 9.5 and 8.1 Hz, H-2a), 4.972 (1 H, d, J 7.7 Hz, H-1c), 3.444 (1 H, t, J 6.6 Hz, H-5b or 5d), 1.921 (3 H, s, Ac), 1.491 (3 H, s, NAc), and 1.116 (9 H, s, ¹Bu). Anal. Calcd for $C_{103}H_{115}NO_{23}$: C, 71.30; H, 6.68; N, 0.81. Found: C, 71.01; H, 6.70; N, 0.66.

To an ice-cold solution of **32** (162 mg, 0.096 mmol) in pyridine (3 mL) was added AcCl (20 μ L, 0.28 mmol). The mixture was stirred for 1.5 h at 0°C, and coevaporated with toluene-MeOH in vacuo. Chromatography of the residue on SiO₂ in 5:2 toluene-EtOAc gave **33** (142 mg, 86%).

Benzyl O-[methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)- β -D-glucopyranosyl uronate]-(1 \rightarrow 3)-O-(6-O-acetyl-2,4-di-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2acetamido-3,6-di-O-benzyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-O-pivaloyl- β -D-glucopyranoside (34).—To a mixture of CuBr₂ (415 mg, 1.86 mmol), AgOTf (491 mg, 1.19 mmol), Bu₄NBr (41 mg, 0.127 mmol) and 4A molecular sieves (0.13 g) was added a solution of compounds 8 (435 mg, 0.765 mmol) and 33 (215 mg, 0.124 mmol) in McNO₂ (9 mL). The mixture was stirred for 48 h at 20°C, diluted with EtOAc and aq NaHCO₃, and then filtered through Celite. The filtrate was washed with aq NaCl, dried (Na₂SO₄) and evaporated in vacuo. The residue was purified by successive chromatography first on Bio-Beads S-X3 (22 × 900 mm) in toluene and then on SiO₂ in 3:1 toluene-EtOAc to give 34 (163 mg, 58%); [α]D -17.9° (c 0.9); R_f 0.42 (5:2 toluene–EtOAc). ¹H NMR data: δ 5.622 (1 H, t, J 9.9 Hz, H-3e), 5.494 (1 H, t, J 9.9 Hz, H-4e), 5.359 (1 H, dd, J 9.9 and 7.7 Hz, H-2e), 5.219 (1 H, d, J 7.7 Hz, H-1e), 4.884 (1 H, d, J 7.7 Hz, H-1a or d), 4.174 (1 H, d, J 9.9 Hz, H-5e), 3.873 (2 H, d, J 2.6 Hz, H-4b and 4d), 3.672 (3 H, s, COOMe), 2.421, 2.340 (6 H, 2s, C₆H₄Me), 1.953 (3 H, s, Ac or CH₂COMe), 1.888 (3 H, s, Ac or CH₂COMe), and 1.112 (9 H, s, ¹Bu). Anal. Calcd for C₁₃₁H₁₄₃NO₃₃: C, 69.63; H, 6.38; N, 0.62. Found: C, 69.52; H, 6.48; N, 0.61.

O-[Methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)-B-D-glucopyranosyl $uronate] - (1 \rightarrow 3) - O - (2,4,6-tri-O-acetyl-\beta-D-galactopyranosyl) - (1 \rightarrow 4) - O - (2-acetami$ do-3, 6-di-O-acetyl-2- $deoxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2, 4, 6-tri-O- $acetyl-\beta$ -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-O-pivaloyl-D-glucopyranosyl acetate (35).—A mixture of 34 (356 mg, 0.16 mmol) and 10% Pd-C (380 mg) in MeOH (38 mL) was stirred under H₂ for 20 h at 50°C, diluted with CHCl₃ and filtered through Celite. The filtrate was concentrated in vacuo. To a solution of the residue in pyridine (12 mL) were added Ac₂O (4 mL) and DMAP. The mixture was stirred for 1 h at 20°C and then coevaporated with EtOH and toluene in vacuo. Chromatography of the residue on SiO₂ in 4:3 toluene-acetone gave 35 (228 mg, 81%) as a 1:1 mixture of α and β anomers; R_f 0.30 (1:1 toluene-acetone). ¹H NMR data (CDCl₃): δ 6.285 (0.5 H, d, J 3.7 Hz, H-1a α), 5.691 (0.5 H, d, J 8.1 Hz, H-1a β), 5.563 (1 H, t, J 9.5 Hz, H-3e or 4e), 5.457 (1 H, d, J 7.3 Hz, H-1e), 5.457 (1 H, d, J 3.3 Hz, H-4b or 4d), 5.288 (1 H, d, J 3.3 Hz, H-4b or 4d), 5.201 (1 H, dd, J 9.5 and 7.3 Hz, H-2e), 4.837 (1 H, d, J 7.3 Hz, H-1c), 4.566 (1 H, d, J 8.1 Hz, H-1b or 1d), 4.189 (1 H, d, J 9.5 Hz, H-5e), 3.690 (3 H, s, COOMe), 2.411, 2.403 (6 H, 2 s, C₆H₄Me), 2.156-1.892 (36 H, multi s, 11 Ac and CH₂COMe), 1.689 (3 H, s, NAc), 1.130, and 1.117 (9 H, 2s, 'Bu). Anal. Calcd for $C_{81}H_{103}NO_{43} \cdot 0.5H_2O$: C, 53.61; H, 5.79; N, 0.77. Found: C, 53.34; H, 5.77; N, 0.85.

O-[Methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)-β-D-glucopyranosyluronate] $-(1 \rightarrow 3)$ -O-(2, 4, 6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3, 6-di-O-acetyl-2-deoxy-β-D-glucopyranosyl)-(1 → 3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-O-pivaloyl-D-glucopyranose (36).—A mixture of 35 (122 mg, 0.069 mmol) and piperidine acetate (98 mg, 0.68 mmol) in THF (10 mL) was stirred for 22 h at 20°C. The mixture was diluted with water and extracted with EtOAc. The organic layer was washed with aq NaCl, dried (Na2SO4), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 4:5 tolueneacetone gave 36 (94.4 mg, 79%), along with recovered 35 (18.4 mg, 15%). Compound 36 had: R_f 0.19 (1:1 toluene-acetone). ¹H NMR data (CDCl₃-D₂O): δ 5.565 (1 H, t, J 9.5 Hz, H-3e or 4e), 5.480 (1 H, t, J 9.5 Hz, H-3e or 4e), 5.359 (d, J 3.7 Hz, H-1a α), 5.200 (1 H, dd, J 9.5 and 7.3 Hz, H-2e), 4.836 (1 H, d, J 7.3 Hz, H-lc or 1e), 4.379 (1 H, d, J 8.1 Hz, H-1b or 1d), 4.192 (1 H, d, J 9.5 Hz, H-5e), 3.687 (3 H, s, COOMe), 2.411, 2.403 (6 H, 2s, C₆H₄Me), 2.148-1.880 (33 H, multi s, 11 Ac and CH₂COMe), 1.699 (3 H, s, NAc), and 1.174 (9 H, s, ¹Bu). Anal. Calcd for C₇₉H₁₀₁NO₄₂ · H₂O: C, 54.08; H, 5.92; N, 0.80. Found: C, 54.00; H, 6.00; N, 0.76.

O-[Methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)-B-D-glucopyranosyluronate]- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3, 6-di-O- $acetyl-2-deoxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2, 4, 6-tri-O- $acetyl-\beta$ -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-O-pivaloyl-D-glucopyranosyl fluoride (5). -To a solution of 36 (80 mg, 0.046 mmol) in $(\text{ClCH}_2)_2$ (2.5 mL) was added diethylaminosulfur trifluoride (20 μ L, 0.16 mmol). The mixture was stirred for 10 min at 20°C, diluted with CHCl₃, and washed successively with aq NaHCO₃ and aq NaCl, dried (Na_2SO_4) , and evaporated in vacuo. Chromatography of the residue on SiO₂ in 1:1 toluene-acetone gave 5 (75.4 mg, 93%) as a 1:3 mixture of α and β anomers; $R_f = 0.37$ (1:1 toluene-acetone). ¹H NMR data (CDCl₃): $\delta = 5.698$ (0.25 H, dd, J 53.1 and 2.1 Hz, H-1aa), 5.561 (1 H, t, J 9.5 Hz, H-3e), 5.487 (1 H, t, J 9.5 Hz, H-4e), 5.313 (0.75 H, dd, J 52.5 and 5.8 Hz, H-1aβ), 4.838 (1 H, d, J 7.0 Hz, H-1c), 4.378 (1 H, d, J 7.6 Hz, H-1b or 1d), 4.190 (1 H, d, J 9.5 Hz, H-5e), 3.691 (3 H, s, COOMe), 2.411, 2.402 (6 H, 2s, C₆H₄Me), 1.187, and 1.183 (9 H, 2s, ^tBu α and β). Anal. Calcd for C₇₉H₁₀₀FNO₄₁ · 3H₂O: C, 52.93; H, 5.96; N, 0.78. Found: C, 53.02; H, 5.70; N, 0.64.

O-[Methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-acetyl- β -Dgalactopyranosyl)-(1 \rightarrow 4)-O-(3,6-di-O-acetyl-2-O-pivaloyl- β -D-glucopyranosyl)-(1 \rightarrow 1)-3-O-benzoyl-2R,3S,4E-2-N-tetracosanoylsphingenine (37).—To a stirred mixture of SnCl₂ (34.4 mg, 0.17 mmol), AgOTf (45.1 mg, 0.18 mmol) and 4A molecular sieves (0.36 g) was added a solution of 5 (73 mg, 0.042 mmol) and 7 (41.2 mg, 0.055 mmol) in freshly distilled CHCl₃ (3.5 mL) at -20° C. The mixture was gradually warmed over a period of 20 h to 20°C, diluted with CHCl₃, and filtered through Celite. The filtrate was washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 3:2 toluene-acetone gave 37 (57 mg, 55%) and recovered α -fluoride (19.9 mg, 27%).

Compound **37** had: $[\alpha]_D + 12.4^{\circ}$ (*c* 0.6); R_f 0.30 (3:2 toluene-acetone). ¹H NMR data (CDCl₃): δ 5.871 (1 H, dt, *J* 14.7 and 7.0 Hz, H-5Cer), 5.744 (1 H, d, *J* 9.5 Hz, NHCer), 5.563 (1 H, t, *J* 9.5 Hz, H-3e), 5.483 (1 H, t, *J* 9.5 Hz, H-4e), 5.268 (1 H, d, *J* 3.4 Hz, H-4b or d), 5.202 (1 H, dd, *J* 9.5 and 7.3 Hz, H-2e), 5.175 (1 H, t, *J* 9.5 Hz, H-3a), 4.947 (1 H, dd, *J* 9.8 and 7.6 Hz, H.2b or d), 4.884 (1 H, dd, *J* 9.5 and 7.9 Hz, H-2a), 4.834 (1 H, d, *J* 7.3 Hz, H-1e), 4.539 (1 H, d, *J* 7.6 Hz, H-1c), 4.409 (1 H, d, *J* 7.9 Hz, H-1a), 4.369 (1 H, d, *J* 7.9 Hz, H-1b or 1d), 4.274 (1 H, d, *J* 7.6 Hz, H-1b or 5d), 3.690 (3 H, s, COOMe), 2.413 and 2.403 (6 H, 2s, $2C_6H_4Me$), 1.139 (9 H, s, ¹Bu), and 0.879 (6 H, t, *J* 7.0 Hz, $2CH_2Me$). Anal. Calcd for $C_{128}H_{186}N_2O_{45} \cdot H_2O$: C, 61.72; H, 7.53; N, 1.12. Found: C, 61.76; H, 7.58; N, 1.05.

O-β-D-Glucopyranosyluronic acid- $(1 \rightarrow 3)$ -O-β-D-galactopyranosyl- $(1 \rightarrow 4)$ -O- $(2 - acetamido-2 - deoxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-β-D-galactopyranosyl- $(1 \rightarrow 4)$ -O-β-D-glucopyranosyl- $(1 \rightarrow 1)$ -2R,3S,4E-2-N-tetracosanoylsphingenine, sodium salt

(3).—To a solution of 37 (3.4 mg, 1.4 μ mol) in 24:1 THF-H₂O (1 mL) was added a solution of 1.25 N LiOH (30 μ L). The mixture was stirred for 1 h at -15°C, and then gradually warmed to 0°C over 3 h. The resultant mixture was diluted with toluene and evaporated in vacuo. A solution of the residue in 0.15 M NaOMe 1:1 MeOH-THF (1 mL) was stirred for 3 h at 20°C. The mixture was purified by chromatography on a column of Sephadex LH-20 in 6:4:1 CHCl₃-MeOH-H₂O to give 3 (1.8 mg, 86%); R_f 0.29 (6:4:0.8 CHCl₃-MeOH-H₂O). ¹H NMR data (49:1 Me₂SO-d₆--D₂O, 60°C): δ 5.555 (1 H, dt, J 15.0 and 7.3 Hz, H-5Cer), 5.372 (1 H, dd, J 15.0 and 7.3 Hz, H-4Cer), 4.681 (1 H, d, J 7.6 Hz, H-1c), 4.368 (1 H, d, J 7.6 Hz, H-1e), 4.317 (1 H, d, J 7.6 Hz, H-1b or 1d), 4.279 (1 H, d, J 7.3 Hz, H-1b or 1d), 4.174 (1 H, d, J 7.6 Hz, H-1a), 1.832 (3 H, s, NAc), and 0.854 (6 H, t, 2CH₂).

O-[Methyl 2,4-di-O-(p-methylbenzoyl)- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-O- $(2,4,6-tri-O-acetyl-\beta-D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3,6-di-O-acetyl-2$ $deoxv-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6)-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -D-(2,4,6)-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -D-(2,4,6)-D 4)-O-(3,6-di-O-acetyl-2-O-pivaloyl- β -D-glucopyranosyl)-(1 \rightarrow 1)-3-O-benzoyl-2R,3S, 4E-2-N-tetracosanoylsphingenine (38).—A mixture of 37 (11.2 mg, 4.5 µmol) and hydrazine-acetic acid (1.4 mg, 15 μ mol) in EtOH (1 mL) was stirred for 1 h at 20°C. The mixture was diluted with CHCl₃, and then washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 3:2 toluene-acetone gave **38** (1 mg, 100%); R_f 0.28 (3:2 toluene-acetone); $[\alpha]_D + 11.6^{\circ} (c \ 0.9)$. ¹H NMR data (CDCl₃-D₂O): δ 5.872 (1 H, dt, J 15.9 and 7.3 Hz, H-5Cer), 5.534 (1 H, t, J 7.3 Hz, H-3Cer), 5.449 (1 H, dd, J 15.9 and 7.3 Hz, H-4Cer), 5.438 (1 H, t, J 9.5 Hz, H-4e), 5.278 (1 H, d, J 3.4 Hz, H-4b or d), 4.948 (1 H, dd, J 9.8 and 7.9 Hz, H-2b or d), 4.558 (1 H, d, J 7.6 Hz, H-1c), 4.409 (1 H, d, J 7.9 Hz, H-1a, b or d), 4.403 (1 H, d, J 8.2 Hz, H-1a, b or d), 4.274 (1 H, d, J 7.9 Hz, H-1a, b or d), 4.224 (1 H, d, J 9.5 Hz, H-5e), 3.818 (1 H, t, J 6.7 Hz, H-5b or d), 3.708 (3 H, s, COOMe), 2.419 and 2.413 (6 H, 2 s, 2C₆H₄Me), 1.140 (9 H, s, 'Bu), and 0.879 (6 H, t, 2CH₂Me). Anal. Calcd for C₁₂₃H₁₈₀N₂O₄₃ · H₂O: C, 61.74; H, 7.67; N, 1.17. Found: C, 61.64; H, 7.61; N, 1.19. $O-[Methyl = 2,4-di-O-(p-methylbenzoyl)-3-O-sulfo-\beta-p-glucopyranosyluronate]-(1)$ \rightarrow 3)-O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3,6-di-O-

acetyl-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(3,6-di-O-acetyl-2-O-pivaloyl- β -D-glucopyranosyl)- $(1 \rightarrow 1)$ -3-O-ben-

zoyl-2R,3S,4E-2-N-tetracosanoylsphingenine, sodium salt (39).—A solution of 38 (16 mg, 6.4 μ mol) and sulfur trioxide-trimethylamine complex (27.4 mg, 200 μ mol) in DMF (0.6 mL) was stirred at 55°C for three days and then cooled to room temperature. MeOH (0.5 mL) and CHCl₃ (0.5 mL) were added, and the solution was applied to a column of Sephadex LH-20 and was eluted with 1:1 MeOH-CHCl₃. Glycolipid-containing fractions were subsequently passed through a column of Dowex-50 × 2 (Na⁺) resin in 9:1 MeOH-H₂O. Final purification on SiO₂ in 8:1 CHCl₃-MeOH gave 39 (9.8 mg, 59%) and recovered 38 (4.2 mg, 26%).

Compound **39** had: $[\alpha]_D + 7.7^\circ$ (c 0.4, MeOH); R_f 0.49 (8:1 CHCl₃-MeOH).

¹H NMR data (CD₃OD): δ 5.775 (1 H, dt, J 15.3 and 7.3 Hz, H-5Cer), 5.461 (1 H, t, J 7.3 Hz, H-3Cer), 5.398 (1 H, dd, J 15.3 and 7.3 Hz, H-4Cer), 5.369 (1 H, d, J 3.4 Hz, H-4b or d), 5.261 (1 H, d, J 3.7 Hz, H-4b or d), 5.199 (1 H, t, J 9.5 Hz, H-4e), 5.006 (1 H, dd, J 9.5 and 7.9 Hz, H-2e), 4.970 (1 H, dd, J 10.4 and 8.9 Hz, H-3c), 4.896 (1 H, d, J 7.9 Hz, H-1e), 4.876 (1 H, t, J 9.5 Hz, H-3e), 4.536 (1 H, d, J 7.9 Hz, H-1e), 4.876 (1 H, t, J 9.5 Hz, H-3e), 4.536 (1 H, d, J 7.9 Hz, H-1e), 4.371 (1 H, d, J 7.9 Hz, H-1a, b or d), 4.355 (1 H, d, J 8.2 Hz, H-1c), 4.371 (1 H, d, J 7.9 Hz, H-1a, b or d), 4.355 (1 H, d, J 8.2 Hz, H-1a, b or d), 4.214 (1 H, d, J 9.5 Hz, H-5e), 3.743 (3 H, s, COOMe), 3.532 (3 H, s, COOMe), 2.403 and 2.389 (6 H, 2s, $2C_6H_4Me$), 1.282 (9 H, s, ¹Bu), and 0.895 (6 H, t, $2CH_2Me$). Anal. Calcd for $C_{123}H_{179}N_2NaO_{46}S \cdot 2H_2O$: C, 58.79; H, 7.34; N, 1.11. Found: C, 58.78; H, 7.38; N, 1.10.

O-(3-O-Sulfo-β-D-glucopyranosyluronic acid)-(1 → 3)-O-β-D-galactopyranosyl)-(1 → 4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1 → 3)-O-β-D-galactopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 1)-2R,3S,4E-2-N-tetracosanoylsphingenine, disodium salt (1).—To a solution of **39** (3.8 mg, 1.5 µmol) in 24:1 THF-H₂O (1 mL) was added a solution of 1.25 N LiOH (45 µL). The mixture was stirred for 1.5 h at - 15°C and then gradually warmed over 5 h to 0°C. The resultant mixture was diluted with toluene and evaporated in vacuo. A solution of the residue in 0.15 M NaOMe 1:1 MeOH-THF (1 mL) was stirred for 3 h at 20°C and then purified on a column of Sephadex LH-20 in 50:45:10 CHCl₃-MeOH-H₂O to give 1 (2.5 mg, 99%); R_f 0.26 (6:4:0.8 CHCl₃-MeOH-H₂O). ¹H NMR data (49:1 Me₂SO-d₆-D₂O, 60°C); δ 5.541 (1 H, dt, J 15.0 and 7.0 Hz, H-5Cer), 5.372 (1 H, dd, J 15.0 and 7.0 Hz, H-4Cer), 4.675 (1 H, d, J 8.2 Hz, H-1c), 4.514 (1 H, d, J 7.6 Hz, H-1e), 4.310 (1 H, d, J 7.6 Hz, H-1b or 1d), 4.280 (1 H, d, J 7.3 Hz, H-1b or -1d), 4.172 (1 H, d, J 7.9 Hz, H-1a), 3.995 (1 H, t, J 9.1 Hz, H-3e), 1.827 (3 H, s, NAc), and 0.856 (6 H, t, J 6.8 Hz, 2CH₂Me).

p-Methoxyphenyl O-(2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (40).—To a solution of 27 (968 mg, 1.0 mmol) in pyridine (15 mL) were added pivaloyl chloride (0.29 mL, 2.4 mmol) and a catalytic amount of DMAP. The mixture was stirred for 2 h at 20°C and then coevaporated with EtOH and toluene. The residue was diluted with EtOAc, and washed with aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 7:1 toluene–EtOAc gave 40 (1.00 g, 95%); [α]D + 52.4° (c 1.0); R_f 0.25 (7:1 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 5.617 (1 H, d, J 7.9 Hz, H-1a), 4.451 (1 H, d, J 8.2 Hz, H-1b), 4.399 and 4.361 (2 H, 2dd, J 10.7 and 7.9 Hz, H-2a, 3a), 4.191 (1 H, dd, J 11.0 and 6.1 Hz, H-6b), 4.106 (1 H, dd, J 10.7 and 7.9 Hz, H-4a), 4.017 (1 H, dd, J 11.0 and 6.1 Hz, H-6b), 3.881 and 3.828 (2 H, 2dd, J 11.0 and 4.3 Hz, H-6a), 3.713 (1 H, d, J 1.8 Hz, H-4b), 3.695 (3 H, s, OMe), 3.522 (1 H, t, J 6.1 Hz, H-5b), and 1.212 (9 H, s, 'Bu). Anal. Calcd for C₆₀H₆₃NO₁₄: C, 70.50; H, 6.21; N, 1.37. Found: C, 70.34; H, 6.23; N, 1.39.

p-Methoxyphenyl O-(2,4-di-O-benzyl-3-O-levulinoyl-6-O-pivaloyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (41).—To a solution of 40 (979 mg, 0.96 mmol) in pyridine (15 mL) were added a solution of 1.08 M levulinic anhydride in $(ClCH_2)_2$ (2.7 mL, 2.9 mmol) and a catalytic amount of DMAP. The mixture was stirred for 20 h at 20°C, and then coevaporated with toluene. Chromatography of the residue on SiO₂ in 6:1 toluene–EtOAc gave 41 (1.00 g, 93%); $[\alpha]_D$ + 55.3° (*c* 0.9); R_f 0.32 (3:2 hexane–EtOAc). ¹H NMR data (CDCl₃): δ 5.602 (1 H, d, *J* 8.2 Hz, H-1a), 4.843 (1 H, dd, *J* 10.1 and 3.1 Hz, H-3b), 4.487 (1 H, dd, *J* 7.6 Hz, H-1b), 4.391 (1 H, dd, *J* 10.7 and 8.2 Hz, H-2a or 3a), 4.346 (1 H, dd, *J* 10.7 and 8.2 Hz, H-2a or 3a), 4.148 (1 H, dd, *J* 11.0 and 6.4 Hz, H-6b), 3.851 (1 H, dd, *J* 11.0 and 4.3 Hz, H-6a). 3.784 (1 H, d, *J* 3.1 Hz, H-4b), 3.695 (3 H, s, OMe), 3.510 (1 H, t, *J* 6.4 Hz, H-5b), 2.140 (3 H, s, CH₂COMe), and 1.200 (9 H, s, ¹Bu). Anal. Calcd for C₆₅H₆₉No₁₆: C, 69.69; H, 6.21; N, 1.25. Found: C, 69.55; H, 6.23; N, 1.18.

O-2,4-di-O-Benzyl-3-O-levulinoyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 → 4)-3,6di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranose (42).—A mixture of 41 (1.00 g, 0.89 mmol) and ammonium cerium(IV) nitrate (4.917 g, 8.97 mmol) in 1:1.15:1 toluene–MeCN–H₂O (230 mL) was vigorously stirred for 3.5 h at 20°C, then diluted with EtOAc. The organic layer was washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄) and evaporated in vacuo. Chromatography of the residue on SiO₂ in 5:2 toluene–EtOAc gave 42 (785 mg, 87%); R_f 0.35 and 0.30 (5:2 toluene–EtOAc). ¹H NMR data (CDCl₃–D₂O): δ 5.318 (0.33 H, d, J 3.7 Hz, H-1aα), 5.280 (0.67 H, d, J 8.6 Hz, H-1aβ), 3.458 (0.67 H, t, J 6.7 Hz, H-5bβ), 3.411 (0.33 H, t, J 6.7 Hz, H-5bα), 2.143 (3 H, s, CH₂COMe), 1.185, and 1.167 (9 H, 2s, ¹Buα and β). Anal. Calcd for C₅₈H₆₃NO₁₅: C, 68.69; H, 6.26; N, 1.38. Found: C, 68.54; H, 6.32; N, 1.30.

O-(2,4-di-O-Benzyl-3-O-levulinoyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (10). —To a stirred solution of 42 (494 mg, 0.49 mmol) in (ClCH₂)₂ (4 mL) were added CCl₃CN (0.49 mL, 4.99 mmol) and DBU (14 µL, 0.094 mmol) at -20° C. The mixture was stirred for 1 h at -20° C, then directly chromatographed on SiO₂ in 4:1 toluene–EtOAc to give 10 (550 mg, 98%); [α]_D +65.1° (c 0.9); R_f 0.41 (4:1 toluene–EtOAc). ¹H NMR data (CDCl₃): δ 8.521 (1 H, s, NH), 6.386 (1 H, d, J 8.2 Hz, H-1a), 4.808 (1 H, d, J 10.1 and 3.1 Hz, H-3b), 4.142 and 3.943 (2 H, 2dd, J 11.0 and 6.7 Hz, H-6b), 3.470 (1 H, t, J 6.7 Hz, H-5b), 2.143 (3 H, s, CH₂COMe), and 1.198 (9 H, s, ¹Bu). Anal. Calcd for C₆₀H₆₃Cl₃N₂O₁₅: C, 62.21; H, 5.48; N, 2.42. Found: C, 62.13; H, 5.51; N, 2.32.

Benzyl O-(2,4-di-O-benzyl-3-O-levulinoyl-6-O-pivaloyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,-4,6-tri-O- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-O-pivaloyl- β -D-glucopyranoside (43).—To a stirred mixture of compounds 11 (859 mg, 0.89 mmol) and 10 (543 mg, 0.47 mmol) and 4A molecular sieves (1.8 g) in (ClCH₂)₂ (12 mL) was added a solution of 0.84 M Me₃SiOTf in (ClCH₂)₂ (111 μ L, 0.093 mmol) at -20°C. The mixture was stirred for 2 h at -20°C, neutralized with Et₃N, diluted

with EtOAc, and filtered through Celite. The filtrate was washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 5:1 toluene–EtOAc to give **43** (762 mg, 83%); $[\alpha]_D = -0.7^\circ$ (*c* 1.1); R_f 0.31 (5:1 toluene–EtOAc). ¹H NMR data (CDCl₃); δ 5.365 (1 H, d, J 8.5 Hz, H-1c), 5.011 (1 H, dd, J 9.2 and 7.9 Hz, H-2a), 4.841 (1 H, d, J 9.2 and 3.4 Hz, H-3d), 3.957 (1 H, d, J 3.1 Hz, H-4b), 3.770 (1 H, d, J 3.4 Hz, H-4d), 3.768 (1 H, dd, J 9.8 and 7.4 Hz, H-2d), 3.529 (1 H, dd, J 9.8 and 3.1 Hz, H-3b), 3.440 (1 H, dd, J 9.8 and 7.9 Hz, H-2b), 3.397 (1 H, t, J 9.2 Hz, H-3a), 2.143 (3 H, s, CH₂CO*Me*), 1.133 and 1.082 (18 H, 2s, 2¹Bu). Anal. Calcd for C₁₁₇H₁₂₇NO₂₆: C, 71.58; H, 6.52; N, 0.71. Found: C, 71.37; H, 6.50; N, 0.67.

Benzyl O-(2,4-di-O-benzyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-O-(3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-O-pivaloyl-β-D-glucopyranoside (44). —A mixture of 43 (739 mg, 0.38 mmol) and hydrazine-acetic acid (173 mg, 19 mmol) in 4:1 EtOH-THF (70 mL) was stirred for 1.5 h at 20°C. The mixture was diluted with CHCl₃ and then washed with aq NaHCO₃, aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 2:1 hexane-EtOAc gave 44 (426 mg, 61%); [α]D 0° (*c* 1.3); *R*_f 0.27 (2:1 hexane-EtOAc). ¹H NMR data CDCl₃) δ 5.379 (1 H, d, J 8.5 Hz, H-1c), 5.012 (1 H, dd, J 9.5 and 8.2 Hz, H-2a), 4.289 (1 H, d, J 7.9 Hz, H-1a, 1b or 1d), 4.237 (1 H, d, J 7.6 Hz, H-1a, 1b or 1d), 4.226 (1 H, dd, J 9.8 and 8.5 Hz, H-2c or 3c), 4.141 (1 H, dd, J 11.0 and 6.7 Hz, H-6d), 4.094 (1 H, dd, J 9.8 and 8.9 Hz, H-4c), 3.985 (1 H, d, J 2.4 Hz, H-4b), 3.700 (1 H, d, J 1.5 Hz, H-4d), 3.446 (1 H, dd, J 9.8 and 7.6 Hz, H-2b), 3.399 (1 H, t, J 9.5 Hz, H-3a), 1.144 and 1.082 (18 H, 2s, 2'Bu). Anal. Calcd for C₁₁₂H₁₂₁NO₂₄: C, 72.12; H, 6.54; N, 0.75. Found: C, 72.25; H, 6.57; N, 0.81.

Benzyl O-(2,4-di-O-benzyl-3-O-levulinoyl-6-O-pivaloyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4-di-O-benzyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(3, 6-di-O-benzyl-2-deoxy-2phthalimido- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-benzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-O-pivaloyl- β -D-glucopyranoside (45).—To a stirred mixture of compounds 44 (624 mg, 0.34 mmol) and 10 (412 mg, 0.36 mmol) and 4A molecular sieves (1.9 g) in $(ClCH_2)_2$ (10 mL) was added a solution of 0.84 M Me₃SiOTf in (ClCH₂)₂ (60 μ L, 0.05 mmol) at -20°C. The mixture was stirred for 1 h at -20° C, quenched with Et₃N, diluted with EtOAc, and filtered through Celite. The filtrate was washed successively with aq NaHCO₃ and aq NaCl, dried (Na_2SO_4) , and evaporated in vacuo. The residue was purified by successive chromatography, first on SiO₂ in 3:2 hexane-EtOAc and then on Bio-Beads S-X3 $(22 \times 900 \text{ mm})$ in toluene to give 45 (773 mg, 81%); [α]D - 0.4° (c 0.8); R_f 0.43 (5:1 toluene-EtOAc). ¹H NMR data CDCl₃); δ 5.387 (1 H, d, J 8.3 Hz, H-1c or 1e), 5.191 (1 H, d, J 8.3 Hz, H-1c or 1e), 4.933 (1 H, dd, J 9.5 and 8.1 Hz, H-2a), 4.819 (1 H, dd, J 10.0 and 3.2 Hz, H-3f), 4.267 (2 H, 2d, J 8.1 Hz, H-1a and 1b or 1d), 4.299 and 4.101 (2 H, 2dd, J 10.7 and 8.3 Hz, H-2c,2e), 3.806 (1 H, d, J 3.2 Hz, H-4f), 3.756 (1 H, d, J 3.2 Hz, H-4b or 4d), 2.146 (3 H, s, CH₂COMe), 1.139 (9 H,

s, ¹Bu), and 1.072 (18 H, s, 2¹Bu). Anal. Calcd for C₁₇₀H₁₈₂NO₃₈: C, 71.36; H, 6.41; N, 0.98. Found: C, 71.37; H, 6.46; N, 0.96.

Benzyl O-(2, 4-di-O-benzyl-6-O-pivalovl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-di-D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-di)-D-(acetamido-3,6-di-O-benzyl-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4-di-O-benzyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-O-benzyl-2-de $oxy-\beta-d-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzyl-\beta-d-galactopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzyl-\beta-d-galactopyranosyl-\beta-galactopyranosyl-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-\beta-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-galactopyranosyl-b-gal$ 4)-3,6-di-O-benzyl-2-O-pivaloyl-β-D-glucopyranoside (46).—To a solution of 45 (457 mg, 0.16 mmol) in EtOH (40 mL) were added hydrazine hydrate (1.25 mL, 26 mmol). The mixture was stirred for 50 h under reflux and evaporated in vacuo. The residue was purified by chromatography on SiO₂ in 3:1 toluene-EtOAc and then evaporated in vacuo. To the solution of the residue in MeOH (11 mL) was added Ac₂O (0.4 mL, 4.2 mmol), and the mixture was stirred for 2 h at 20°C and coevaporated with toluene. Chromatography of the residue on SiO₂ in 3:1 toluene-EtOAc gave 46 (335 mg, 81%); $[\alpha]_D - 1.8^\circ$ (c 0.9); $R_f = 0.33$ (5:2 toluene-EtOAc). ¹H NMR data (CDCl₃); δ 5.176 (1 H, d, J 8.2 Hz, NHAc), 5.125 (1 H, dd, J 9.5 and 7.9 Hz, H-2a), 5.092 (1 H, d, J 7.9 Hz, H-1c or 1e), 5.073 (1 H, d, J 7.9 Hz, H-1c or 1d), 1.423 and 1.390 (6 H, 2s, 2NAc), 1.143, 1.113, and 1.073 (27 H, 3s, 3'Bu). Anal. Calcd for C₁₅₃H₁₇₆NO₃₄ · 0.5H₂O: C, 70.54; H, 6.89; N, 1.08. Found: C, 70.51; H, 6.84; N, 1.05.

Benzyl O-[methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)-B-D-glucopyranosyluronate]- $(1 \rightarrow 3)$ -O-(2, 4-di-O-benzyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O- $(2-acetamido-3, 6-di-O-benzyl-2-deoxy-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2, 4-di-O-benzyl-2-deoxy-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2, 4-di-O-benzyl-2-deoxy-2-deox$ *zyl-6-O-pivaloyl-β-D-galactopyranosyl*)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-O-benzyl-2 $deoxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-O-pivaloyl-B-D-glucopyranoside (47).—To a mixture of CuBr₂ 424 mg, 1.9 mmol), AgOTf (600 mg, 2.3 mmol), Bu₄NBr (31 mg, 0.099 mmol), and 4A molecular sieves (1 g) was added a solution of compounds 8 (320 mg, 0.56 mmol) and 46 (233 mg, 0.09 mmol) in MeNO₂ (8 mL), and the mixture was stirred at 20°C. After 3 h, a solution of 8 (102 mg, 0.178 mmol) in MeNO₂ (1.5 mL) was added, and stirring was continued for additional 2 h at 20°C. The mixture was diluted with EtOAc and aq NaHCO₃ and then filtered through Celite. The filtrate was washed with aq NaCl, dried (Na_2SO_4) and evaporated in vacuo. The residue was purified by successive chromatography, first on Bio-Beads S-X4 $(22 \times 900 \text{ mm})$ in toluene and then on SiO₂ in 1:1 hexane-EtOAc, to give 47 (174 mg, 62%); R_f 0.27 (1:1 hexane-EtOAc); $[\alpha]_D$ -13.1° (c 1.3). ¹H NMR data (CDCl₃): δ 5.626 (1 H, t, J 9.5 Hz, H-3g), 5.506 (1 H, t, J 9.5 Hz, H-4g), 5.469 (1 H, dd, J 9.5 and 7.6 Hz, H-2g), 5.186 (1 H, d, J 7.6 Hz, H-1g), 5.124 (1 H, d, J 7.9 Hz, NHAc), 5.083 (1 H, dd, J 9.8 and 7.9 Hz, H-2a), 5.057 (1 H, d, J 8.2 Hz, NHAc), 4.189 (1 H, d, J 9.5 Hz, H-5g), 3.666 (3 H, s, COOMe), 2.418, 2.327 (6 H, 2s, 2C₆H₄Me), 1.885 (3 H, s, CH₂COMe), 1.393 and 1.385 (6 H, 2s, 2NAc), 1.134, 1.113, and 1.058 (27 H, 3s, 3^tBu). Anal. Calcd for C₁₈₁H₂₀₄N₂O₄₄: C, 69.87; H, 6.61; N, 0.90. Found: C, 69.55; H, 6.62; N, 0.81.

O-[Methyl 3-O-levulinovl-2,4-di-O-(p-methylbenzoyl)-B-D-glucopyranosyluronate]- $(1 \rightarrow 3)$ -O-(2,4-di-O-acetyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O- $(2-acetamido-3, 6-di-O-acetyl-2-deoxy-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2, 4-di-O-ace$ tyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-O-acetyl-2-de $oxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6)-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6)-D-(24)-O-3,6-di-O-acetyl-2-O-pivaloyl-D-glucopyranosyl acetate (48).—A mixture of 47 (210 mg, 0.068 mmol) and 10% Pd-C (240 mg) in MeOH (34 mL) was stirred under H₂ for 20 h at 50°C, diluted with CHCl₃ and filtered through Celite. The filtrate was concentrated in vacuo. To a solution of the residue in pyridine (12 mL) were added Ac₂O (4 mL) and DMAP. The mixture was stirred for 1 h at 20°C and then coevaporated with EtOH and toluene. Chromatography of the residue on SiO₂ in 4:5 toluene-acetone gave 48 (137 mg, 83%) as a 1:1 mixture of the α and β anomers; R_f 0.34 (4:5 toluene-EtOAc). ¹H NMR data (CDCl₃): δ 6.288 (0.5 H, d, J 3.7 Hz, H-1a α), 5.694 (0.5 H, d, J 8.2 Hz, H-1a β), 5.562 (1 H, t, J 9.5 Hz, H-3g), 5.489 (1 H, t, J 9.5 Hz, H-4g), 5.430 (1 H, d, J 3.7 Hz, H-4b, 4d or 4f), 5.196 (1 H, dd, J 9.5 and 7.3 Hz, H-2g), 4.819 (1 H, d, J 7.3 Hz, H-1g), 4.604 (1 H, d, J 7.3 Hz, H-1c), 4.343 and 4.335 (2 H, 2d, J 7.9 Hz, H-1b, 1d or 1f), 4.176 (1 H, d, J 9.5 Hz, H-5g), 3.679 (3 H, s, COOMe), 2.410 and 2.402 (6 H, 2s, 2C₆H₄Me). Anal. Calcd for C₁₁₁H₁₄₈N₂O₅₈ · H₂O: C, 54.28; H, 6.16; N, 1.14. Found: C, 54.17; H, 6.03; N, 1.37.

O-[Methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)-β-D-glucopyranosyluronate $] - (1 \rightarrow 3) - O - (2, 4 - di - O - acetyl - 6 - O - pivaloyl - \beta - D - galactopyranosyl) - (1 \rightarrow 4) -$ $O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4-di-O-acetyl-2-deoxy-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-(1 \rightarrow 3)-(1$ acetyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-O-acetyl-2 $deoxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2, 4, 6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2, 4, 6)-D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2, 4, 6)-D-galactopyranosyl)- $(1 \rightarrow 3)$ -D-(2, 4, 6)-D-(2, 6)-D-(2,4)-O-3,6-di-O-acetyl-2-O-pivaloyl-D-glucopyranose (49).—A mixture of 48 (137 mg, 0.056 mmol) and piperidine acetate (65 mg, 0.45 mmol) in THF (10 mL) was stirred for 49 h at 20°C. The mixture was diluted with water and extracted with CHCl₂. The organic layer was washed with aq NaCl, dried (Na₂SO₄) and evaporated in vacuo. Chromatography of the residue on SiO_2 in 2:3 toluene-acetone gave 49 (118 mg, 88%); R_f 0.36 (2:3 toluene-acetone). ¹H NMR data (CDCl₃): δ 5.556 (1 H, t, J 9.5 Hz, H-3g), 5.483 (1 H, t, J 9.5 Hz, H-4g), 5.434 (1 H, d, J 3.1 Hz, H-4b, 4d or 4f), 5.350 (1 H, d, J 3.7 Hz, H-4b, 4d or 4f), 5.198 (1 H, dd, J 9.5 and 7.6 Hz, H-2g), 4.821 (1 H, d, J 7.6 Hz, H-1g), 4.600 (1 H, d, J 7.6 Hz, H-1c or 1e), 4.355 and 4.328 (2 H, 2d, J 7.9 Hz, H-1b, 1d or 1f), 4.180 (1 H, d, J 9.5 Hz, H-5g), 3.670 (3 H, s, COOMe), 2.411, 2.403 (6 H, 2s, C₆H₄Me), 1.212, 1.209, 1.203, 1.117, and 1.172 (27 H, 5s, ^tBu). Anal. Calcd for C₁₀₉H₁₄₆N₂O₅₇ · toluene: C, 55.99; H, 6.24; N, 1.13. Found: C, 56.25; H, 6.68; N, 1.37.

O-[Methyl-3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2,4-di-O-acetyl-6-O-pivaloyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2acetamido-3,6-di-O-acetyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4-di-O-acetyl-6-O-pivaloyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O- 3,6-di-O-acetyl-2-O-pivaloyl-D-glucopyranosyl fluoride (6).—To a solution of 49 (48 mg, 20 μ mol) in (ClCH₂)₂ (2.5 mL) was added diethylaminosulfur trifluoride (10 μ L, 82 μ mol). The mixture was stirred for 10 min at 0°C and then 1.5 h at 20°C. The mixture was diluted with CHCl, and washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 4:5 toluene-acetone gave 6 (44 mg, 92%) as a 1:4 mixture of the α and β anomers; R_{f} 0.36 (4:5 toluene-acetone). ¹H NMR data (CDCl₃): δ 5.649 (0.2 H, dd, J 53.4 and 2.7 Hz, H-1aa), 5.563 (1 H, t, J 9.5 Hz, H-3g), 5.488 (1 H, t, J 9.5 Hz, H-4g), 5.311 (0.8 H, dd, J 52.8 and 5.8 Hz, H-1a β), 5.305 (1 H, d, J 2.7 Hz, H-4b, 4d or 4f), 5.289 (1 H, d, J 3.7 Hz, H-4b, 4d or 4f), 5.197 (1 H, dd, J 9.5 and 7.3 Hz, H-2g), 4.820 (1 H, d, J 7.3 Hz, H-1g), 4.689 and 4.608 (2 H, 2d, J 7.6 Hz, H-1c and 1e), 4.333 (1 H, d, J 7.9 Hz, H-1b, 1d or 1f), 4.177 (1 H, d, J 9.5 Hz, H-5g), 3.678 (3 H, s, COOMe), 2.410, 2.402 (6 H, 2s, 2C₆H₄Me), 1.212 (9 H, s, ¹Bu), 1.209 (9 H, s, ¹Bu), 1.189 and 1.186 (9 H, 2s, ¹Bu). Anal. Calcd for C₁₀₉H₁₄₅FN₂O₅₆ · toluene: C, 55.94; H, 6.19; N, 1.12. Found: C, 56.17; H, 6.50; N, 1.13.

O-/Methyl 3-O-levulinoyl-2,4-di-O-(p-methylbenzoyl)-β-D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2,4-di-O-acetyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-O-(2acetamido-3,6-di-O-acetyl-2-deoxy-β-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4-di-O-acetyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-O-(2-acetamido-3.6-di-O-acetyl-2-deoxy-β-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-O-(3,6-di-O-acetyl-2-O-pivaloyl-β-D-glucopyranosyl)-(1 \rightarrow 1)-3-O-benzoyl-2R, 3S,4E-2-N-tetracosanoylsphingenine (50).—To a stirred mixture of SnCl₂ (57 mg, 0.29 mmol), AgOTf (45 mg, 0.29 mmol) and 4A molecular sieves (0.32 g) was added a solution of 6 (92 mg, 0.038 mmol) and 7 (44 mg, 0.058 mmol) in freshly distilled CHCl₃ (3.5 mL) at -20° C. The mixture was gradually warmed up over 20 h to 20°C, diluted with CHCl₃, and filtered through Celite. The filtrate was washed successively with aq NaHCO₃ and aq NaCl, dried (Na₂SO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 4:3 toluene-acetone gave 50 (55 mg, 46%) and recovered α-fluoride (13 mg, 14%).

Compound **50** had: $[\alpha]_D + 10.5^{\circ}$ (c 1.1); R_f 0.20 (4:3 CCl₄-acetone). ¹H NMR data (CDCl₃): δ 5.870 (1 H, dt, J 15.0 and 7.6 Hz, H-5Cer), 5.723 (1 H, d, J 9.5 Hz, NHCer), 5.563 (1 H, t, J 9.5 Hz, H-3g), 5.573 (1 H, t, J 7.6 Hz, H-3Cer), 5.489 (1 H, t, J 9.5 Hz, H-4g), 5.454 (1 H, dd, J 15.0 and 7.6 Hz, H-4Cer), 5.431 (1 H, d, J 3.1 Hz, H-4b, 4d or 4f), 5.372 (1 H, d, J 7.9 Hz, NHAc), 5.326 (1 H, d, J 8.2 Hz, NHAc), 5.285 (1 H, d, J 3.4 Hz, H-4b, 4d or 4f), 5.196 (1 H, dd, J 9.5 and 7.3 Hz, H-2g), 5.180 (1 H, t, J 9.5 Hz, H-3a), 4.887 (1 H, dd, J 9.5 and 7.9 Hz, H-2a), 4.819 (1 H, d, J 7.3 Hz, H-1g), 4.652 (1 H, d, J 7.6 Hz, H-1c or 1e), 4.599 (1 H, d, J 7.3 Hz, H-1g), 4.652 (1 H, d, J 7.6 Hz, H-1c or 1f), 4.284 (1 H, d, J 8.2 Hz, H-1b, 1d or 1f), 4.176 (1 H, d, J 9.5 Hz, H-5g), 3.679 (3 H, s, COOMe), 2.409 and 2.401 (6 H, 2s, 2C₆H₄Me), 1.212, 1.206, and 1.141 (27 H, 3s, 3¹Bu), and 0.879 (6 H, t, J 7.0 Hz, 2CH₂Me). Anal. Calcd for C₁₅₈H₂₃₁N₃O₆₀ · 3H₂O: C, 59.55; H, 7.50; N, 1.32. Found: C, 59.29; H, 7.36; N, 1.21.

O- β -DGlucopyranosyluronic acid- $(1 \rightarrow 3)$ -O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -O-(2 - 1)acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -O- $(2\text{-}acetamido-2\text{-}deoxy-\beta-D-glucopyranosyl})-(1 \rightarrow 3)-O-\beta-D-galactopyranosyl-(1 \rightarrow 4)-$ O- β -D-glucopyranosyl- $(1 \rightarrow 1)$ -2R,3S,4E-2-N-tetracosanoylsphingenine, sodium salt (4).—To a solution of 50 (6.0 mg, 1.9 μ mol) in 97:3 THF-H₂O (2 mL) was added a solution of 1.25 N LiOH (70 μ L). The mixture was stirred for 1 h at -15° C and then gradually warmed over 4 h to 0°C. The resultant mixture was diluted with toluene and evaporated in vacuo. A solution of the residue in 0.15 M NaOMe-1:1 McOH-THF (1 mL) was stirred for 6 h at 20°C, neutralized with solid CO₂, and then evaporated in vacuo. Chromatography of the residue over Sephadex LH-20 in 6:4:1 CHCl₃-MeOH-H₂O gave 4 (2.5 mg, 68%); R_f 0.54 (6:3:0.8 CHCl₃-MeOH-H₂O). ¹H NMR data (49:1 Me₂SO- d_6 -D₂O, 60°C): δ 5.558 (1 H, dt, J 15.4 and 7.0 Hz, H-5Cer), 5.375 (1 H, dd, J 15.4 and 7.0 Hz, H-4Cer), 4.688 (2 H, d, J 8.1 Hz, H-1c, 1e), 4.369 (1 H, d, J 7.7 Hz, H-1g), 4.318 (1 H, d, J 7.7 Hz, H-1b, 1d or 1f), 4.283 (2 H, d, 7.7 Hz, H-1b, 1d or 1f), 4.174 (1 H, d, J 7.7 Hz, H-1a), and 0.856 (6 H, t, J 7.0 Hz, $2CH_2CH_3$).

O-[Methyl-2,4-di-O-(p-methylbenzoyl)- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2, 4-di-O-acetyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-Oacetyl-2- $deoxy-\beta$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2, 4-di-O-acetyl-6-O-pivaloyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-3,6-di-O-acetyl-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(3,6-di-O-acetyl-2-O-pivaloyl- β -D-glucopyranosyl)- $(1 \rightarrow 1)$ -3-O-benzoyl-2R,3S,4E-2-N-tetracosanoylsphingenine (51).—A mixture of 50 (21 mg, 6.7 μ mol) and hydrazine-acetic acid (1.4 mg, 15 μ mol) in EtOH (3 mL) was stirred for 1 h at 20°C. The mixture was diluted with CHCl₃ and then washed successively with aq NaHCO₃ and aq NaCl, dried (Na_2SO_4) , and evaporated in vacuo. Subsequent purification on preparative TLC (4:3 CCl₄-acetone) gave 51 (15.5 mg, 76%); $[\alpha]_D$ +11.6° (c 1.0); R_f 0.26 (5:4 toluene-acetone). ¹H NMR data (CDCl₃): δ 5.870 (1 H, dt, J 15.3 and 7.6 Hz, H-5Cer), 5.721 (1 H, d, J 9.2 Hz, NHAc), 5.535 (1 H, t, J 9.5 Hz, H-3Cer), 5.363 (1 H, d, J 8.6 Hz, NHAc), 5.177 (1 H, t, J 9.5 Hz, H-3a), 5.085 (1 H, dd, J 9.6 and 6.4 Hz, H-2g), 5.069, 4.992, and 4.955 (3 H, 3dd, J 9.8 and 7.9 Hz, H-2b,2d,2f), 4.884 (1 H, d, J 6.4 Hz, H-1g), 4.883 (1 H, dd, J 9.8, 7.6 Hz, H-2a), 4.652 and 4.610 (2 H, 2d, J 7.6 Hz, H-1c or 1e), 4.408 (1 H, d, J 7.6 Hz, H-1a), 4.208 (1 H, d, J 9.8 Hz, H-5g), 3.698 (3 H, s, COOMe), 2.418 and 2.411 (6 H, 2s, 2C₆H₄Me), 1.214, 1.209, and 1.141 (27 H, 3s, 3¹Bu), and 0.879 (6 H, t, J 7.0 Hz, 2CH₂Me). Anal. Calcd for C₁₅₃H₂₂₅N₃O₅₈·H₂O: C, 60.20; H, 7.50; N, 1.38. Found: C, 59.88; H, 7.44; N, 1.46.

O-[Methyl 2,4-di-O-(p-methylbenzoyl)-3-O-sulfo-β-D-glucopyranosyluronate]-(1 → 3)-O-(2,4-di-O-acetyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-D-glucopyranosyl)-(1 → 3)-O-(2,4-di-O-acetyl-6-O-pivaloyl-β-D-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-Dglucopyranosyl)-(1 → 3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)-(1 → 4)-O-(3,6di-O-acetyl-2-O-pivaloyl-β-D-glucopyranosyl)-(1 → 1)-3-O-benzoyl-2R,3S,4E-2-N- tetracosanoylsphingenine, sodium salt (52).—A solution of 51 (9.4 mg, 3.1 μ mol) and sulfur trioxide-trimethylamine complex (18 mg, 130 μ mol) in DMF (0.8 mL) was stirred for 66 h at 55°C and then cooled to room temperature. MeOH (0.5 mL) and CHCl₃ (0.5 mL) were added, and the solution was applied to a column of Sephadex LH-20 packed in 1:1 MeOH-CHCl₃, and elution was carried out in the same solvent. Conversion into the sodium salt by passage through a column of Dowex-50 × 2 (Na⁺) resin in 9:1 MeOH-H₂O and purification on preparative TLC (10:1 CHCl₃-MeOH) gave 52 (6.9 mg, 71%), together with recovered 51 (2.4 mg, 26%).

Compound **52** had: $[\alpha]_{\rm D}$ + 16.5° (*c* 0.6, MeOH); R_f 0.45 (10:1 CHCl₃–MeOH). ¹H NMR data (CD₃OD); δ 5.883 (1 H, dt, *J* 15.3 and 7.0 Hz, H-5Cer), 5.568 (1 H, t, *J* 7.0 Hz, H-3Cer), 5.488 (1 H, dd, *J* 15.3 and 7.0 Hz, H-4Cer), 5.440, 5.362, and 5.348 (3 H, 3d, *J* 3.7 Hz, H-4b,4d,4f), 5.191 (1 H, dd, *J* 9.5 and 7.9 Hz, H-2g), 5.181 (1 H, t, *J* 9.5 Hz, H-3a), 4.976 (1 H, t, *J* 9.5 Hz, H-3g), 4.965 (1 H, d, *J* 7.9 Hz, H-1g), 4.851 (1 H, dd, *J* 9.5 and 7.9 Hz, H-2a), 4.687 and 4.650 (2 H, 2d, *J* 7.9 Hz, H-1c,1e), 4.606 (1 H, d, *J* 7.9 Hz, H-1a), 4.472, 4.432, and 4.420 (3 H, 3d, *J* 7.9 Hz, H-1b,1d,1f), 4.294 (1 H, d, *J* 9.5 Hz, H-5g), 3.628 (3 H, s, COOMe), 2.403, 2.390 (6 H, 2s, 2C₆H₄Me), 1.235, 1.229, and 1.153 (27 H, 3s, 3^tBu), and 0.894 (6 H, t, 2CH₂Me). Anal. Calcd for C₁₅₃H₂₂₄N₃NaO₆₁S · 5H₂O: C, 56.95; H, 7.31; N, 1.30. Found: C, 56.66; H, 6.96; N, 1.25.

O-(3-O-Sulfo- β - β - β -glucopyranosyluronic acid)-(1 \rightarrow 3)-O- β - β - β -galactopyranosyl)- $(1 \rightarrow 4)$ -O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -O-(2-acetamido-2-deoxy-B-D-glucopyranosyl)- $(1 \rightarrow 3)$ -O-B-D-galactopyranosyl- $(1 \rightarrow 4)$ -O- β -D-glucopyranosyl)- $(1 \rightarrow 1)$ -2R,3S,4E-2-N-tetracosanoylsphingenine, disodium salt (2).—To a solution of 52 (4.6 mg, 1.5 μ mol) in 97:3 THF-H₂O (2 mL) was added a solution of 1.25 N LiOH (85 μ L) at -15°C. The mixture was gradually warmed over 1 h to 0°C. The resultant mixture was diluted with toluene and evaporated in vacuo. A solution of the residue in 0.15 M NaOMe-1:1 MeOH-THF (0.9 mL) was stirred for 2.5 h at 20°C, neutralized with solid CO₂, and then evaporated in vacuo. Chromatography of the residue over Sephadex LH-20 in 5:5:1 CHCl₃-MeOH-H₂O gave 2 (1.1 mg, 37%); R_f 0.47 $(6:3:0.8 \text{ CHCl}_3-\text{MeOH}-\text{H}_2\text{O})$. ¹H NMR data $(49:1 \text{ Me}_2\text{SO-}d_6-\text{D}_2\text{O}, 60^\circ\text{C})$: δ 5.605 (1 H, dt, J 15.4 and 7.0 Hz, H-5Cer), 5.423 (1 H, dd, J 15.4 and 7.0 Hz, H-4Cer), 4.730 (2 H, d, J 7.7 Hz, H-1c and 1e), 4.553 (1 H, d, J 7.7 Hz, H-1g), 4.359 (1 H, d, J 7.3 Hz, H-1b,1d or 1f), 4.332 (2 H, d, J 7.3 Hz, H-1b.1d or 1f), 4.221 (1 H, d, J 7.7 Hz, H-1a), 4.039 (1 H, t, J 8.8 Hz, H-3g), and 0.905 (6 H, t, J 7.3 Hz, 2CH, Me).

ACKNOWLEDGMENTS

Part of this work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and also by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for NMR measurements, Ms. M. Yoshida and her staff for elemental analyses, and Ms. A. Takahashi for technical assistance.

REFERENCES

- 1 H. Iijima, Y. Nakahara, and T. Ogawa, Tetrahedron Lett., in press.
- 2 A.A. Ilyas, R.H. Quarles, T.D. McIntosh, M.J. Doberson, B.D. Trapp, M.C. Dalakas, and R.O. Brady, Proc. Natl. Acad. Sci. U.S.A., 81 (1984) 1225-1229.
- 3 A.A. Ilyas, R.H. Quarles, and R.O. Brady, Biochem. Biophys. Res. Commun., 122 (1984) 1206–1211;
 T. Abo, M.D. Coper, and C.M. Balch, J. Immunol., 129 (1982) 1752–1757.
- 4 K.H. Chou, A.A. Ilyas, J.E. Evans, C. Costello, R.H. Quarles, and F.B. Jungalwala, *Biochem. Biophys. Res. Commun.*, 261 (1986) 11717-11725; T. Ariga, T. Kohriyama, L. Freedo, N. Latov, M. Saito, K. Kon, S. Ando, M. Suzuki, M.E. Hemling, K.L. Rinehart, Jr., S. Kusunoki, and R.K. Yu, J. Biol. Chem., 262 (1987) 848-853.
- 5 E. Nobie-Orgazio, A.P. Hays, N. Latov, G. Perman, J. Glier, M.E. Shy, and L. Freddo, *Neurology*, 34 (1984) 1336-1342; J. Kruse, R. Mailhammer, H. Wernecke, A. Faissner, I. Sommer, C. Goridis, and M. Schachner, *Nature (London)*, 311 (1984) 153-155.
- 6 G. Keilhauer, A. Faissner, and M. Schashner, *Nature (London)*, 316 (1985) 728-730; V. Künemund, F.B. Jungalawa, G. Fischer, D.H. Chou, G. Keihause, and M. Schachner, *J. Cell Biol.*, 106 (1988) 213-223.
- 7 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31 (1990) 1597-1600.
- 8 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 32 (1991) 1569-1572.
- 9 J.C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lerderman, J. Choay, G. Torri, and P. Sinaÿ, *Carbohydr. Res.*, 130 (1984) 221-241; M. Petitou, P. Duchaussoy, I. Ledermen, J. Choay, J.C. Jacquinet, P. Sinaÿ, and G. Torri, *ibid.*, 167 (1987) 67-75; Y. Ichikawa, R. Monden, and H. Kuzuhara, *Tetrahedron Lett.*, 27 (1986) 611-614; T. Beetz, and C.A.A. van Boeckel, *ibid.*, 27 (1986) 5889-5892; H. Lucas, J.E.M. Basten, Th.G. van Dither, D.G. Meuleman, S.F. van Aelst, and C.A.A. van Boeckel, *Tetrahedron*, 46 (1990) 8207-8228.
- 10 K. Koike, M. Numata, M. Sugimoto, Y. Nakahara, and T. Ogawa, Carbohydr. Res., 158 (1986) 113-123.
- 11 S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 29 (1988) 4097-4100.
- 12 G.N. Bollenback, J.W. Long, D.G. Benjamin, and J.A. Lindquist, J. Am. Chem. Soc., 77 (1955) 3310-3315.
- 13 T. Ogawa and M. Matsui, Carbohydr. Res., 54 (1977) c17-c21.
- 14 D. Wagner and J. Verheyden, J. Org. Chem., 39 (1974) 24–30; C. Auge, S. David, and A. Veyrieres, J. Chem., Soc., Chem. Commun., (1976) 375–376; M.A. Nashed, and L. Anderson, Tetrahedron Lett., (1976) 3503–3506; R.M. Munavu and H.H. Szmant, J. Org. Chem., 41 (1976) 1832–1836.
- 15 Y. Ito and T. Ogawa, Agric. Biol. Chem., 50 (1986) 3227-3230.
- 16 R.U. Lemieux, T. Takeda, and B.Y. Chung, ACS Symp. Ser., 39 (1976) 90-115.
- 17 E.J. Corey, S. Kim, S. Yoo, K.C. Nicolaou, L.S. Melvin, Jr., P.J. Brunelle, J.R. Flack, E.J. Trybulsky, R. Lett, and R.W. Sheldrake, J. Am. Chem. Soc., 100 (1978) 4620-4622.
- 18E.J. Corey and W.J. Suggs, J. Org. Chem., 38 (1973) 3224; R. Gigg and C.D. Warren, J. Chem. Soc., C, (1968) 1903–1911.
- 19 T. Fukuyama, A.A. Laird, and L.M. Hotchkiss, Tetrahedron Lett., 26 (1985) 6291-6292.
- 20 R.R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19 (1980) 731-732; R.R. Schmidt, J. Michel, and M. Roos, Liebigs Ann. Chem. (1984) 1343-1357.
- 21 S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155 (1986) c6-c10.
- 22 Wm. Rosenbrook, Jr., D.A. Riley, and P.A. Lartey, *Tetrahedron Lett.*, 26 (1985) 3-4; G.H. Posner and S.R. Haines, *ibid.*, 26 (1985) 5-8.
- 23 T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., (1981) 431-432.
- 24 H.J. Koeners, J. Verhoeven, and J.H. van Boom, Rec. Trav. Chim. Pays-Bas, 100 (1981) 65-72.