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Abstract: Alfyk d@mylphosphme oxides (7) undergo stereoseleclt Ve 1,3-dlpolor cycionddJtjons w~rh nl[riie 

ox&es 10 @ve d2-lsoXazo~lner (8) 

WwWwhi~e ox&s (91 

These may be reduced, also sfereoseiecitreiy, 10 gamrno-ahqdroxyai~y(_ 

.hmwecrfic Mmg-Homer rype elrmrnarzan of Ph2P&-from arnlno a[&& (9~ 

Homoallybc amrnes have been made by several Strategres. For smple compounds such as (I, R = H or 

Me) azlde displacement of an arene sulphonatc and subsequent reduction am suo~essfui ] More recently, attack 

of an 311~1 metal on immes (2) has been used to make homoallyhc ammes (3).2 This approach can be very 

srereoselectlve when one of ~1, R2, or R3 1s chnal, but gives no control WV double bond geometry. A related 

approach 1s the attack of allenyl met& (4) on Imines (2),3 which has the same drawback A third strategy 15 ro 

react a 3-ammopropyi phosphonmm y11d (5) W&I an aldehyde.4 Thus method grves mixtures of geometrre 

Isomer!, of homoallyllc ammes (6) UI which the Z-Isomer predarninates. 

We used rh~s Wittig strategy5 when making allylic ammes from 2-am~n~*yldiph~ny~phosphlne oxIdes. 

The double bond was created by standard Wmlg-Homer chemistry. the attack of a dlphenylphosphinoyl- 

stabihsed amon on a symmetncaI ketone and elimination of Ph2PUy-. The present work creates the necesszy 

P-C-C-O unit in a different way. The oxygen 1s introduced in a masked fom-i, as the isoxazohne (8) Kedncuon 

then reveals the OH group in the ammo alcohol (9), and Ph~P02- elimmation gives the homoallyhc amines 
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(10). Sakurai and co-workers have used a similar cycloadditive approach, based on 1,3-dipolar cycloaddition 

to allylic silanes.6 

Allylic diphenylphosphine oxides (7) are readily available from allylic alcohols (RI = alkyl)’ or acetals 

(RI = alkoxy).g They undergo 1,3-dipolar cycloadditions with nitrile oxides in the expected regiochemical 

sense9 to give 3,5-disubstituted AZ-isoxazolines (8). The reaction is slow, needing days or weeks to reach 

completion, but is dramatically accelerated by ultrasound: the reaction may then be complete within a few 

hours.l* When RI was H, primary alkyl or alkoxy, yields were moderate to excellent (see Table 1). The best 

nitrile oxide was benzonitrile oxide, i.e. R2 = Ph. Alkyl nitrile oxides did not react with hindered alkenes (7; R1 

= Pr” or Bui), and very hindered alkenes (7, R* = Pri or cyclopentyl) did not react even with benzonitile oxide. 

The reaction was stereoselective, with diastereomer ratios ranging from 3.0:1 to 5.1: 1. Anti-8 was the major 

product,” which is consistent with Houk’s transition state model for nitrile oxide cycloadditions.12 when Ph$‘O 

is in the least sterically demanding ‘anti’ position. In almost every case, the diastereomers were readily 

separable by column chromatography. 

(anti-S) 

R2 

Table 1: Nitrile Oxide Cycloadditions to Allylic Phosphine Oxides (7) 

R’ H H Me Me Me Me Me Pm Bui Me0 Et0 Et0 

R* Pm Ph Me Pm n-H+ Ph COEt Ph Ph Ph Pr” Ph 

Yield/% 96 59 10 86 95 93 44b 73 55 66 63 63 

Recovered 7 18 88 63C 8 32 

Ratiod - - >5:1 4:l 3:1 4.3:1 4:l 5.1:1 S:l 3.3:1 2S:l 4:l 

%Hexyl bDiastereomers could not be separated CNot recrystallised dunti-8:vn-8 

Careful choice of reducing agent is necessary for the reduction of isoxazolines (8) to amino alcohols (9). 

We found that the nickel chloride/sodium borohydride system of Annunziata et ~‘~3 worked well, the reduction 

being very soon complete even at -30°C. Yields were good to excellent (see Tables 2 and 3). The two 

stereocentres already present in isoxazoline (8) are not affected by the reduction, but the stereoselectivity in the 

creation of the third centre is sometimes low. A variety of metals, including Ti, Co, Pd, Pt, and Ce, was tried in 
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an effort to improve the stereoselecuvtty of the reduction, but none worked better than Ni. The stereochemistry 

of the new centre relative to the other two has been determined m only one case,t4 as the diastereomers of (9a), 

and also of (Ss), are often hard to separate by colum chromatography Thus is not tmportant, however, as the 

two pre-existing chiral centres are sacnticed in a stereoselecnve manner to make the double bond, and the final 

product (10) has only one chirdl cenrre 

NiCl,AH,O 
NaBH, 

MeOH 
-30” c 

Table 2: Reduction of the Isoxazolines Anfi-8 

31 

NiCl,.6HzO 
NaBH, 

MeOH 
-30” c 

Table 3: Reduction of the Isoxazolines Syn-8 

31 

The 6-amino-P-hydroxydiphenylphosphme oxides (9) may be converted into homoallyhc ammes (10) 

of known double bond geometry by our standard condmons of NaH m DMF. 5.15 The stereospecific ehmmanon 

means that the double bond geometry 1s controlled by the stereochemistry of the ongmal cycloaddmon Thus 

alcohols (9a) give E-alkenes and alcohols (9s) give Z-alkenes The ammes were isolated as their hydro- 

chlorides,, m ytelds of 4.5 to 84%, e.g , (E-10, Rt=Me. R*=Ph) 81%; (Z-lO,Rt=Me, R2=Ph) 74% 

1. NaH / DMF 

2. HCJ 
(E-10) 

In summary, we have developed a short, moderately stereoselective route to homoallyhc amines (10) of 

defined double bond geometry, the Tao isomers bemg formed quite separately. The E isomer IS the major 

product by this route, which therefore complements that of De Castro Dantas, Laval, and Lanes 4 
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