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ABSTRACT

In the presence of siloxanes as stoichiometric reductants, chiral copper-bisphosphine complexes catalyze highly enantioselective reductive
Michael cyclizations of substrates containing two r,�-unsaturated carbonyl moieties. The diastereochemical outcome of these reactions is
dependent upon whether biaryl- or ferrocene-based chiral bisphosphines are employed.

Catalytic hydrometalation of R,�-unsaturated carbonyl com-
pounds represents a powerful method for accessing metal
enolates, allowing chemo- and regioselective enolization of
substrates possessing multiple acidic sites.1 In situ trapping of
enolates generated in this fashion in aldol,2 Mannich,2d,3 and
Michael reactions2d,4,5 enables the formation of a wide range
of valuable chemical building blocks. Although the utilization
of chiral metal-ligand complexes in these reactions provides
an obvious entry to enantiomerically enriched products,
catalytic asymmetric variants have thus far been restricted
to reductive aldol6 and Mannich reactions.3f,7 To our
knowledge, the only reports of catalytic enantioselective
reductive Michael reactions employ a chiral secondary amine
as the catalyst.8a,b

Our recent studies into the development of enantioselective
reductive aldol cyclizations revealed that in the presence of
1,1,3,3-tetramethyldisiloxane (TMDS) as a terminal reduc-
tant, chiral copper-bisphosphine complexes catalyze the
formation of �-hydroxylactones with modest levels of
enantioselection (up to 83% ee).6j,9 Herein, we demonstrate
that these complexes are also effective in reductive Michael
reactions to afford cyclic products with high enantioselec-
tivities.

Our investigations began with a survey of biaryl-based
chiral bisphosphines L1-L6 using bis-enoate 1a as a test
substrate (Table 1). Using 5 mol % of Cu(OAc)2·H2O, 5 mol
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% of ligand, and 1.0 equiv of TMDS in THF at room
temperature, cyclization to the indane derivative 2a was
successful in all cases, and except when (R)-HEXAPHEMP
(L5) was employed (entry 5), complete consumption of
starting material was observed.10 Bisphosphines L1-L6
generally provided comparable levels of diastereo- and

enantioselection, but marginally superior results were ob-
tained using (S)-SEGPHOS (L1) (entry 1).

Next, the scope of this process was explored (Table 2),
and a number of aromatic-tethered bis-R,�-unsaturated

carbonyl compounds were found to undergo cyclization with
modest yields,11 but with reasonable to high diastereoselec-
tivities12 and high enantioselectivites. Using (S)-SEGPHOS
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Table 1. Survey of Chiral Ligands for Reductive Michael
Cyclization of 1aa

entry ligand drb ee (%)c

1 L1 10:1 94(+)
2 L2 9:1 84(+)
3 L3 6:1 81(-)
4 L4 6:1 87(-)
5d L5 5:1 84(-)
6 L6 6:1 92(-)

a Reactions were conducted using 0.065 mmol of 1a in THF (0.2 mL).
Unless otherwise stated, complete consumption of 1a was observed.
b Determined by 1H NMR analysis of the unpurified reaction mixtures.
c Determined by chiral HPLC analysis of the unpurified reaction mixtures.
The absolute stereochemistry of 2a was not determined. The sign of optical
rotation is provided in parentheses. d Reaction proceeded to 80% conversion
as determined by 1H NMR analysis.

Table 2. Scope of Enantioselective Copper-Catalyzed Reductive
Michael Cyclizations

a Isolated yields of pure major diastereomers unless otherwise specified.
b Determined by 1H NMR analysis of the unpurified reaction mixtures.
c Enantiomeric excess of major diastereomer as determined by chiral HPLC
analysis. The absolute stereochemistry was not determined. The sign of
optical rotation is provided in parentheses. d Yield of a mixture of inseparable
diastereomers. e Reaction conducted using (R)-BINAP (L4). f Reaction
conducted using (S)-DM-SEGPHOS (L2).
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(L1), cyclization of 1a provided 2a as a 12:1 mixture of
diastereomers with 94% ee for the major isomer (entry 1),
while the bis-methyl ester analogue 1b resulted in diminished
diastereoselectivity but comparable enantioselectivity (entry
2). Fluorine substitution on the benzene ring was tolerated
(entry 3), as was the use of methyl ketones (entry 5). With
(R)-BINAP (L4) as the ligand, bis-tert-butyl ester 1d
containing fluorine substitution on the benzene ring success-
fully provided 2d in 90% ee (entry 4). Finally, aniline-
tethered substrate 1f underwent cyclization to provide
piperidine 2f with 4:1 dr13 and 91% ee using (S)-DM-
SEGPHOS (L2) (entry 6).

Efforts to apply similar reaction conditions to substrates
containing aromatic ketones were unsuccessful. For example,
attempted cyclization of bis-phenyl ketone 1g (see Scheme
1) resulted in a complex mixture of unidentified products.

Therefore, investigations to identify workable conditions for
this substrate were undertaken.

After extensive experimentation, it was discovered that
CuF(PPh3)3·2MeOH in conjunction with the commercially
available Taniaphos ligand L714,15 was effective in toluene
when polymethylhydrosiloxane (PMHS) was used as the
reductant. To ensure high conversions, the optimized pro-

cedure involved reaction of 1g with PMHS (one hydride
equivalent) in the presence of 5 mol % of the copper-ligand
complex for 24 h, followed by addition of a solution of a
second batch of catalyst and reductant (5 mol % and one
hydride equivalent, respectively), and reaction for a further
24 h.

Using these conditions, 1g gave indane 2g as one observ-
able diastereomer (>19:1 dr) in 83% ee and 46% yield
(Scheme 1, eq 1). Importantly, the diastereochemical out-
come in this reaction, where the two substituents on the five-
membered ring possess a trans-relationship,16 is opposite to
that shown in Table 2. In similar fashion, substrate 1h
containing p-chlorophenyl ketones underwent cyclization to
provide 2h as the only observable diastereomer (>19:1 dr)
in 90% ee at -20 °C (Scheme 1, eq 2).17 In this case, the
relative and absolute stereochemistries of 2h were confirmed
by X-ray crystallography (Figure 1). It was also of interest

to evaluate the regioselectivity in the cyclization of the
unsymmetrical substrate 1i. In the event, this reaction did
not require two portionwise additions of the copper-ligand
complex and reductant, and provided two diastereomeric
products 2ia and 2ib in 80% ee and 67% ee, respectively,
where the major regioisomers are the result of initial

(11) Complete consumption of the starting material was observed in
these reactions, and 1H NMR spectroscopy of unpurified material (obtained
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remaining mass balance is not clear at this time.
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crystallography of a derivative. See Supporting Information for details.
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T.; Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P. Angew. Chem.,
Int. Ed. 1999, 38, 3212–3215. (b) Ireland, T.; Tappe, K.; Grossheimann,
G.; Knochel, P. Chem.sEur. J. 2002, 8, 843–852. (c) Tappe, K.; Knochel,
P. Tetrahedron: Asymmetry 2004, 15, 91–102.

(15) Other ferrocene-based ligands such as Josiphos, Mandyphos, and
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(16) The stereochemistry of 2g was assigned by comparison with
literature data and by analogy with the stereochemistry of 2h, which was
secured by X-ray crystallography (see Figure 1). See Supporting Information
for details.

(17) Conducting the cyclization of 1g at -20 °C led to only low
conversions.

Scheme 1. Enantioselective Reductive Michael Cyclizations of
Substrates Containing Aromatic Ketonesa

a rr ) Regioisomeric ratio as determined by 1H NMR analysis. Product
isolated as an inseparable regioiosmeric mixture.

Figure 1. X-ray structure of reductive Michael product 2h.
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conjugate reduction at the phenyl-substituted enone followed
by addition of the resulting enolate to the methyl-substituted
enone (Scheme 1, eq 3).18 Finally, cyclization of the oxygen-
tethered substrate 1j led to tetrahydropyran 2j19 in 54% yield
but in only 52% ee (Scheme 1, eq 4).

In summary, asymmetric copper-catalyzed reductive Michael
cyclizations have been reported. Although the yields of these
reactions are modest, various indanes and heterocycles are
generated with generally good to high levels of diastereo-
selection and high enantioselectivities. These results further
add to the increasing repertoire of reactions catalyzed by
copper hydride complexes.9
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(18) The regioselectivity of this reaction is consistent with other
(racemic) reports of reductive Michael cyclizations involving unsymmetrical
substrates. See refs 4a,d and 4e.

(19) The relative stereochemistry of 2j was assigned by comparison with
literature data. See ref 4a.
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