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Reaction of bis(tert-butylethynyl)sulfide with the boron Lewis 

acid reagents X-B(C6F5)2 (X = CH3, Cl, C6F5) in pentane at 

r.t. gave the respective borylated thiophenes in a sequence of 

1,1-carboboration reactions. In contrast, bis(phenylethynyl)-

sulfide reacted with B(C6F5)3 only in a 2:1 molar ratio to give 

a benzothiophene derivative. 

The 1,1-carboboration reaction has become an increasingly attractive 

alternative to the 1,2-hydroboration reaction for making substituted 

alkenylboranes.1 Using strongly electrophilic R-B(C6F5)2 boranes has 

resulted in a major improvement of the 1,1-carboboration reaction 

since now alkynes with conventional organic substituents could 

undergo this reaction under mild conditions to give 1 (Scheme 1).2-4 

 
Scheme 1 

With geminal diacetylenes (2), sequential alkyne 1,1-carboboration 

reactions (3) followed by intramolecular 1,1-alkenylboration of 4 have 

resulted in the formation of heterocyclic elementacyclopentadienes 

(5). Siloles,5,6 phospholes7 and even boroles8,9 have been prepared by 

facile one-pot procedures in this way (Scheme 2).10,11 In this 

manuscript, we describe an extension of this 1,1-carboboration 

protocol to the preparation of a series of thiophenes.11 Suitably 

substituted linked thiophenes play an important role in organic 

materials chemistry.12 

Treatment of bis(phenylethynyl)sulfide 6a13 with 0.5 molar equiv. of 

B(C6F5)3 in pentane gave a red solution. After 2 d at 25 ºC the mixture 

was worked up to give the substituted benzothiophene product 8a in 

58% yield. Compound 8a was characterized by X-ray diffraction 

(Figure 1). The X-ray crystal structure analysis shows the planar 

benzothiophene framework with a phenyl substituent at the α-

position of the thiophene ring and a C6F5 substituent at the β-carbon 

atom. The annulated phenylene ring has phenyl groups on C4, C6 and 

C7 and bears a SH substituent on C5. 

 
Scheme 2 

Analogous treatment of bis(p-tolylethynyl)sulfide 6b with B(C6F5)3 (0.5 

molar equiv.) afforded the analogous benzothiophenethiol product 8b 

in 40% yield after chromatographic workup. Again, the 19F NMR 

signals were typical of a single C6F5 substituent and the 1H NMR 

spectrum showed the expected SH signal. Also all expected 13C NMR 

resonances were observed and the formation of 8b was confirmed by 

X-ray diffraction (see the Supporting Information).  

Compounds 8a,b are obtained by a hydrolytic cleavage of the S-

B(C6F5)2 linkage during the workup procedure. The proposed 

precursors 7a,b were confirmed by a series of 2D NMR experiments in 

which the formation of the compounds 7 was observed in situ. Three 

of the four Ph substituents and the single C6F5 group at the thiophene 

ring exhibit hindered rotation at room temperature on the NMR time 
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scale. The S-B(C6F5)2 moiety gives rise to inequivalent C6F5 groups and 

consequently shows two sets of three 19F NMR resonances (see 

Supporting Information). The in situ experiments also confirmed the 2 

: 1 6a : B(C6F5)3 stoichiometry of the reaction, as the corresponding 

reaction in a 1 : 1 molar ratio invariably gave a mixture of 7a and a 0.5 

molar equivalents of unused borane (identified by 19F NMR 

spectroscopy). Similar monitoring of the in situ reaction between 6b 

and B(C6F5)3 showed NMR signals of the intermediate S[B] product 7b 

(see the Supporting Information). 

 
Figure 1. A view of the molecular structure of compound 8a (thermal ellipsoids 

are shown with 30% probability). 

 
Scheme 3 

Scheme 3 provides a possible mechanistic pathway for the selective 

formation of the 2 : 1 carboboration product of compound 6 with 

B(C6F5)3. Initial 1,1-carboboration at one arylalkynyl unit effects 

transfer of the C6F5 group generating the alkenylborane intermediate 

9. Subsequent intermolecular 1,1-vinylboration reaction with a second 

equivalent of 6 generates 10 which thermally undergoes an 

intramolecular ring-closing [2+2+2]cycloaddition reaction forming 11. 

Finally Lewis acid induced opening of the thiirane ring gave the 

observed product 7 which was converted to the thiol derivative 8 on 

hydrolysis during the work-up. 

 
Scheme 4 

 
Figure 2. Molecular structure of the borylthiophene derivative 13a (thermal 

ellipsoids are shown with 30% probability). 

In contrast the reaction of bis(tert-butylethynyl)sulfide (12)13 with a 

small series of RB(C6F5)2 reagents in pentane gave the respective 

borylated thiophene derivatives (Scheme 4). For example, the 

reaction of bis(tert-butylethynyl)sulfide (12) with MeB(C6F5)2
14 in 

pentane solution for 10 days resulted in a yellow solution that on 

cooling to −35 °C yielded the product 13a in 50% yield. 1H/13C NMR 

data showed signals attributed to inequivalent tert-butyl substituents 

and a methyl substituent. The B(C6F5)2 substituent showed a 11B NMR 

resonance (δ 63.9) and 19F NMR features (Δδ19Fm,p = 15.3) typical of a 

planar tricoordinated boron center. The product 13a was also 

characterized by X-ray diffraction (Figure 2) confirming the nature of 

this borylthiophene product with a pair of tert-butyl substituents 

bonded to the α-carbon atoms and methyl and B(C6F5)2 substituents 

on the β-carbon atoms of the thiophene ring. This confirms selective 

migration of the methyl group from boron to carbon during the 1,1-

carboboration.2 

In a similar fashion reactions of bis(tert-butylethynyl)sulfide (12) with 

the ClB(C6F5)2 or B(C6F5)3 afforded 13b or 13c in 45% and 50% yield, 

respectively. NMR data and X-ray crystal structures (see the 

Supporting Information) confirmed chloride and C6F5 migrations 

yielding the β-substituted thiophenes. 

Interestingly repetition of the reaction between the bis(tert-

butylethynyl)sulfide (12) and B(C6F5)3 in the polar solvent 

dichloromethane, monitored by NMR spectroscopy, showed a slightly 

different outcome. After ca. 30 min. two new compounds were 

formed and identified as the products 13c, and the new compound 14 

in a 13c : 14  ≈ 2 : 1 molar ratio (Scheme 5). Slow evaporation of the 

dichloromethane solvent at −35 °C eventually gave single crystals of 
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product 14 (Figure 3). In solution compound 14 shows a 11B NMR 

resonances (δ 7.7) consistent with a tetracoordinated borate 

fragment, while the  19F NMR signals are consistent with three C6F5 

substituents. The 1H/13C NMR resonances correspond to a single 

methyl substituent and a pair of geminal methyl group in addition to a 

tert-butyl substituent. These data together with the results of an X-ray 

diffraction analysis confirmed that compound 14 contains a seven-

membered ring featuring a bis(alkenyl)sulfide fragment subunit 

interacting with the transannular B-C6F5 group (B1-S1 2.073(2) Å). The 

unsaturated C3-bridge is a tetrasubstituted allyl unit with a CMe2 unit 

adjacent to boron and the remaining C(Me)=C(C6F5) group connecting 

it to sulfur. 

 
Scheme 5 

 
Figure 3. A projection of the molecular structure of compound 14. Thermal 

ellipsoids are shown with 30% probability.  

The products 13c and 14 are formed in competing pathways (Scheme 

6). We assume a reaction pathway of the 1,1-carboboration reaction 

that is similar to that proposed by Wrackmeyer et al.15,16 This should 

then proceed by means of a reactive intermediate 1615 formed 

subsequently to the initial 1,1-carboboration step at the first alkynyl 

unit (15). The intramolecular 1,1-vinylboration starting from the 

intermediate 16 would directly give the thiophene derivative 13c 

(pathway [a] in Scheme 6). It is well conceivable that reaction 

branching might be occur at the stage of the intermediate 16 ↔ 

16’,16 involving the Wagner-Meerwein rearrangement step from the 

tert-butyl group at the activated bridging alkynyl group (16’) to enter 

into a typical carbenium ion pathway via 17 (which was successfully 

trapped by PMe3 to give 18 (see the Supporting Information)) and 19 

to give the observed competing product 14 (pathway [b] in Scheme 

6). 

The boryl substituent at these thiophenes can be removed by 

protonolysis: treatment of in situ generated 13c with excess acetic 

acid in pentane solution (r.t., 2 h) gave the trisubstituted thiophene 

derivative 20 in 80% yield (Scheme 7). 

 
Scheme 6. WM: Wagner-Meerwein rearrangement 

Alternatively, 13c was subjected to a Suzuki-Miyaura cross-coupling 

reaction with phenyl iodide. This afforded replacement of the boryl 

substituent by a phenyl group to give 21 (Scheme 7). Cross coupling 

with α-iodothiophene gave the bis(thiophene) derivative 22 (Scheme 

7). Both compounds were isolated and characterized by spectroscopy 

and X-ray diffraction (see the Supporting Information and Figure 4). In 

the case of 22 the attachment of the 2-thienyl substituent at the β-

carbon atom (C4) of the central tetra-substituted thiophene ring was 

confirmed by the X-ray crystal structure analysis: it exhibits a marked 

deviation from planarity (θ C5A-C4A-C6A-S2A 93.2(3)°). 

 
Scheme 7 

With this study we have the extended sequential 1,1-carboboration/ 

1,1-vinylboration reaction scheme to the synthesis of thiophene 

derivatives. A limited series of intermolecular variants to yield 

functionalized benzothiophenes and intramolecular variants yielding 

substituted boryl-thiophenes was described and these 
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borylsubstituted heteroarenes were shown to be amenable to cross-

coupling reactions. 

 
Figure 4. A projection of the bis(thienyl) product 22 [thermal ellipsoids are 

shown with 30% probability; only one molecule of two found in the asymmetric 

unit is shown (molecule A)]. 

Our present study shows that the 1,1-carboboration reaction yielding 

the thiophene 13c is competing with a carbocation route. We cannot 

decide whether these two pathways are representing different 

reaction branches from the beginning or if the branching occurs at the 

stage of a common intermediate such as e.g. the zwitterion 16 ↔ 16’ 

which offers an attractive route to the assumed carbenium ion 

intermediate 17. In dichloromethane both the products of the 1,1-

carboboration and the competing carbenium ion route are 

experimentally observable and discernable. This observation will 

probably be useful for designing selective additional applications of 

the unique 1,1-carboboration reaction and its subsequent reaction 

sequences in order to further extend the scope of application of this 

attractive carbon-carbon bond forming reaction. We think that this 

new synthetic scheme might become a welcome methodical addition 

to the existing variants of thiophene syntheses. 
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