

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: G. Kehr, G. Erker, C. G. Daniliuc, D. W. Stephan and C. Eller, *Chem. Commun.*, 2015, DOI: 10.1039/C5CC01806D.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

COMMUNICATION

RSCPublishing

INICIALION

Thiophene Synthesis by 1,1-Carboboration

Cite this: DOI: 10.1039/xoxxooooox

Christina Eller,^{a,b} Gerald Kehr,^a Constantin G. Daniliuc,^{a‡} Douglas W. Stephan,*^b Gerhard Erker*^a

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 20 March 2015. Downloaded by Mahidol University on 24/03/2015 06:34:03.

Reaction of bis(*tert*-butylethynyl)sulfide with the boron Lewis acid reagents X-B(C₆F₅)₂ (X = CH₃, Cl, C₆F₅) in pentane at r.t. gave the respective borylated thiophenes in a sequence of 1,1-carboboration reactions. In contrast, bis(phenylethynyl)sulfide reacted with B(C₆F₅)₃ only in a 2:1 molar ratio to give a benzothiophene derivative.

The 1,1-carboboration reaction has become an increasingly attractive alternative to the 1,2-hydroboration reaction for making substituted alkenylboranes.¹ Using strongly electrophilic $R-B(C_6F_5)_2$ boranes has resulted in a major improvement of the 1,1-carboboration reaction since now alkynes with conventional organic substituents could undergo this reaction under mild conditions to give 1 (Scheme 1).²⁻⁴

With geminal diacetylenes (2), sequential alkyne 1,1-carboboration reactions (3) followed by intramolecular 1,1-alkenylboration of 4 have resulted in the formation of heterocyclic elementacyclopentadienes (5). Siloles,^{5,6} phospholes⁷ and even boroles^{8,9} have been prepared by facile one-pot procedures in this way (Scheme 2).^{10,11} In this manuscript, we describe an extension of this 1,1-carboboration protocol to the preparation of a series of thiophenes.¹¹ Suitably substituted linked thiophenes play an important role in organic materials chemistry.¹²

Treatment of bis(phenylethynyl)sulfide $6a^{13}$ with 0.5 molar equiv. of $B(C_6F_5)_3$ in pentane gave a red solution. After 2 d at 25 °C the mixture was worked up to give the substituted benzothiophene product 8a in 58% yield. Compound 8a was characterized by X-ray diffraction

(Figure 1). The X-ray crystal structure analysis shows the planar benzothiophene framework with a phenyl substituent at the α -position of the thiophene ring and a C₆F₅ substituent at the β -carbon atom. The annulated phenylene ring has phenyl groups on C4, C6 and C7 and bears a SH substituent on C5.

Analogous treatment of *bis*(*p*-tolylethynyl)sulfide **6b** with $B(C_6F_5)_3$ (0.5 molar equiv.) afforded the analogous benzothiophenethiol product **8b** in 40% yield after chromatographic workup. Again, the ³⁹F NMR signals were typical of a single C_6F_5 substituent and the ³H NMR spectrum showed the expected SH signal. Also all expected ³³C NMR resonances were observed and the formation of **8b** was confirmed by X-ray diffraction (see the Supporting Information).

Compounds **8a,b** are obtained by a hydrolytic cleavage of the S-B(C₆F₅)₂ linkage during the workup procedure. The proposed precursors **7a,b** were confirmed by a series of 2D NMR experiments in which the formation of the compounds **7** was observed *in situ*. Three of the four Ph substituents and the single C₆F₅ group at the thiophene ring exhibit hindered rotation at room temperature on the NMR time scale. The S-B(C₆F₅)₂ moiety gives rise to inequivalent C₆F₅ groups and consequently shows two sets of three ¹⁹F NMR resonances (see Supporting Information). The *in situ* experiments also confirmed the 2 : 1 **Ga** : B(C₆F₅)₃ stoichiometry of the reaction, as the corresponding reaction in a 1 : 1 molar ratio invariably gave a mixture of **7a** and a 0.5 molar equivalents of unused borane (identified by ¹⁹F NMR spectroscopy). Similar monitoring of the *in situ* reaction between **6b** and B(C₆F₅)₃ showed NMR signals of the intermediate S[B] product **7b** (see the Supporting Information).

Figure 1. A view of the molecular structure of compound **8a** (thermal ellipsoids are shown with 30% probability).

Scheme 3 provides a possible mechanistic pathway for the selective formation of the 2 : 1 carboboration product of compound **6** with $B(C_6F_5)_3$. Initial 1,1-carboboration at one arylalkynyl unit effects transfer of the C_6F_5 group generating the alkenylborane intermediate **9**. Subsequent intermolecular 1,1-vinylboration reaction with a second equivalent of **6** generates **10** which thermally undergoes an intramolecular ring-closing [2+2+2]cycloaddition reaction forming **11**.

Finally Lewis acid induced opening of the thiirane ring gave the observed product **7** which was converted to the thiol derivative **8** on hydrolysis during the work-up.

Scheme 4

Figure 2. Molecular structure of the borylthiophene derivative **13a** (thermal ellipsoids are shown with 30% probability).

In contrast the reaction of $bis(tert-butylethynyl)sulfide (12)^{13}$ with a small series of $RB(C_6F_5)_2$ reagents in pentane gave the respective borylated thiophene derivatives (Scheme 4). For example, the reaction of bis(tert-butylethynyl)sulfide (12) with $MeB(C_6F_5)_2^{14}$ in pentane solution for 10 days resulted in a yellow solution that on cooling to -35 °C yielded the product 13a in 50% yield. ¹H/¹³C NMR data showed signals attributed to inequivalent *tert*-butyl substituents and a methyl substituent. The $B(C_6F_5)_2$ substituent showed a ¹¹B NMR resonance (δ 63.9) and ¹⁹F NMR features ($\Delta \delta^{19} F_{m,p}$ = 15.3) typical of a planar tricoordinated boron center. The product 13a was also characterized by X-ray diffraction (Figure 2) confirming the nature of this borylthiophene product with a pair of tert-butyl substituents bonded to the α -carbon atoms and methyl and B(C₆F₅)₂ substituents on the θ -carbon atoms of the thiophene ring. This confirms selective migration of the methyl group from boron to carbon during the 1,1carboboration.²

In a similar fashion reactions of bis(*tert*-butylethynyl)sulfide (**12**) with the CIB(C₆F₅)₂ or B(C₆F₅)₃ afforded **13b** or **13c** in 45% and 50% yield, respectively. NMR data and X-ray crystal structures (see the Supporting Information) confirmed chloride and C₆F₅ migrations yielding the β -substituted thiophenes.

Interestingly repetition of the reaction between the bis(*tert*-butylethynyl)sulfide (12) and B(C₆F₅)₃ in the polar solvent dichloromethane, monitored by NMR spectroscopy, showed a slightly different outcome. After ca. 30 min. two new compounds were formed and identified as the products 13c, and the new compound 14 in a 13c : 14 \approx 2 : 1 molar ratio (Scheme 5). Slow evaporation of the dichloromethane solvent at -35 °C eventually gave single crystals of

Published on 20 March 2015. Downloaded by Mahidol University on 24/03/2015 06:34:03

Journal Name

product **14** (Figure 3). In solution compound **14** shows a ¹¹B NMR resonances (δ 7.7) consistent with a tetracoordinated borate fragment, while the ¹⁹F NMR signals are consistent with three C₆F₅ substituents. The ¹H/¹³C NMR resonances correspond to a single methyl substituent and a pair of geminal methyl group in addition to a *tert*-butyl substituent. These data together with the results of an X-ray diffraction analysis confirmed that compound **14** contains a sevenmembered ring featuring a bis(alkenyl)sulfide fragment subunit interacting with the transannular B-C₆F₅ group (B1-S1 2.073(2) Å). The unsaturated C₃-bridge is a tetrasubstituted allyl unit with a CMe₂ unit adjacent to boron and the remaining C(Me)=C(C₆F₅) group connecting it to sulfur.

Figure 3. A projection of the molecular structure of compound **14**. Thermal ellipsoids are shown with 30% probability.

The products **13c** and **14** are formed in competing pathways (Scheme 6). We assume a reaction pathway of the **1**,**1**-carboboration reaction that is similar to that proposed by Wrackmeyer et al.^{15,16} This should then proceed by means of a reactive intermediate **16**¹⁵ formed subsequently to the initial **1**,**1**-carboboration step at the first alkynyl unit (**15**). The intramolecular **1**,**1**-vinylboration starting from the intermediate **16** would directly give the thiophene derivative **13c** (pathway [a] in Scheme 6). It is well conceivable that reaction branching might be occur at the stage of the intermediate **16** \leftrightarrow **16'**,¹⁶ involving the Wagner-Meerwein rearrangement step from the tert-butyl group at the activated bridging alkynyl group (**16'**) to enter into a typical carbenium ion pathway via **17** (which was successfully trapped by PMe₃ to give **18** (see the Supporting Information)) and **19** to give the observed competing product **14** (pathway [b] in Scheme 6).

The boryl substituent at these thiophenes can be removed by protonolysis: treatment of *in situ* generated **13c** with excess acetic acid in pentane solution (r.t., 2 h) gave the trisubstituted thiophene derivative **20** in 80% yield (Scheme 7).

Scheme 6. WM: Wagner-Meerwein rearrangement

Alternatively, **13c** was subjected to a Suzuki-Miyaura cross-coupling reaction with phenyl iodide. This afforded replacement of the boryl substituent by a phenyl group to give **21** (Scheme 7). Cross coupling with α -iodothiophene gave the bis(thiophene) derivative **22** (Scheme 7). Both compounds were isolated and characterized by spectroscopy and X-ray diffraction (see the Supporting Information and Figure 4). In the case of **22** the attachment of the 2-thienyl substituent at the β -carbon atom (C4) of the central tetra-substituted thiophene ring was confirmed by the X-ray crystal structure analysis: it exhibits a marked deviation from planarity (θ C5A-C4A-C6A-S2A 93.2(3)°).

With this study we have the extended sequential 1,1-carboboration/ 1,1-vinylboration reaction scheme to the synthesis of thiophene derivatives. A limited series of intermolecular variants to yield functionalized benzothiophenes and intramolecular variants yielding substituted boryl-thiophenes was described and these borylsubstituted heteroarenes were shown to be amenable to crosscoupling reactions.

Figure 4. A projection of the bis(thienyl) product **22** [thermal ellipsoids are shown with 30% probability; only one molecule of two found in the asymmetric unit is shown (molecule A)].

Our present study shows that the 1,1-carboboration reaction yielding the thiophene 13c is competing with a carbocation route. We cannot decide whether these two pathways are representing different reaction branches from the beginning or if the branching occurs at the stage of a common intermediate such as e.g. the zwitterion $16 \leftrightarrow 16'$ which offers an attractive route to the assumed carbenium ion intermediate 17. In dichloromethane both the products of the 1,1carboboration and the competing carbenium ion route are experimentally observable and discernable. This observation will probably be useful for designing selective additional applications of the unique 1,1-carboboration reaction and its subsequent reaction sequences in order to further extend the scope of application of this attractive carbon-carbon bond forming reaction. We think that this new synthetic scheme might become a welcome methodical addition to the existing variants of thiophene syntheses.

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Notes and references

^{*a*} Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany; E-Mail: erker@uni-muenster.de; Fax: +49-251-8336503.

^b Department of Chemistry University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.

‡ X-ray crystal structure analysis

[†] Electronic Supplementary Information (ESI) available: Detailed description of the experiments, characterization of all compounds and crystal structure data as CIF files (CCDC numbers are 1044969 to 1044977): See DOI: 10.1039/c000000x/

- 1 B. Wrackmeyer, *Coord. Chem. Rev.* 1995, **145**, 125; b) B. Wrackmeyer, *Heteroat. Chem.* 2006, **17**, 188.
- 2 a) C. Chen, F. Eweiner, B. Wibbeling, R. Fröhlich, S. Senda, Y. Ohki, K. Tatsumi, S. Grimme, G. Kehr and G. Erker, *Chem. Asian J.* 2010, 5, 2199; b) C. Chen, G. Kehr, R. Fröhlich and G. Erker, *J. Am. Chem. Soc.* 2010, 132, 13594; c) C. Chen, R. Fröhlich, G. Kehr and G. Erker, *Org. Lett.* 2011, 13, 62.
- 3 Review: G. Kehr and G. Erker, Chem. Commun., 2012, 48, 1839.

- 4 a) C. Jiang, O. Blacque and H. Berke, Organometallics 2010, 29, 125;b) C. Fan, W. Piers, M. Parvez and R. McDonald, Organometallics 2010, 29, 5132.
 - a) R. Köster, G. Seidel, J. Süß and B. Wrackmeyer, *Chem. Ber.* 1993,
 126, 1107; b) R. Köster, G. Seidel, I. Klopp, C. Krüger, G. Kehr, J. Süß and B. Wrackmeyer, *Chem. Ber.* 1993, 126, 1385; c) B. Wrackmeyer, G. Kehr and J. Süß, J. *Chem. Ber.* 1993, 126, 2221; d)
 B. Wrackmeyer, O. L. Tok, E. V. Klimkina, W. Milius, *Eur. J. Inorg. Chem.* 2010, 2276.
 - a) G. Dierker, J. Ugolotti, G. Kehr, R. Fröhlich and G. Erker, *Adv. Synth. Catal.* 2009, **351**, 1080; b) J. Ugolotti, G. Kehr, R. Fröhlich and G. Erker, *Chem. Commun.*, 2010, **46**, 3016.
 - a) J. Möbus, Q. Bonnin, K. Ueda, R. Fröhlich, K. Itami, G. Kehr and G. Erker, *Angew. Chem. Int. Ed.*, 2012, **51**, 1954; b) J. Möbus, A. Galstyan, A. Feldmann, C. G. Daniliuc, R. Fröhlich, C. A. Strassert, G. Kehr and G. Erker, *Chem. Eur. J.*, 2014, **20**, 11883.
 - 8 a) F. Ge, G. Kehr, C. G. Daniliuc and G. Erker, J. Am. Chem. Soc. 2014, 136, 68; b) F. Ge, G. Kehr, C. G. Daniliuc and G. Erker, Organometallics, 2015, 34, 229.
 - 9 For 1,1-carboboration reactions to group 4 metallacyclopentadienes see e.g.: a) A. Sebald and B. Wrackmeyer, J. Chem. Soc., Chem. Commun. 1983, 1293; b) A. Sebald and B. Wrackmeyer, J. Organomet. Chem. 1986, **304**, 271; c) B. Wrackmeyer, A. Pedall and J. Weidinger, J. Organomet. Chem. 2002, **649**, 225.
 - 10 For a zirconocene route to thiophenes see e.g. S. A. Johnson, F.-Q. Liu, M. C. Suh, S. Zürcher, M. Haufe, S. S. H. Mao and T. Don Tilley, J. Am. Chem. Soc. 2003, 125, 4199.
 - 11 C. Eller, C. G. Daniliuc, R. Fröhlich, G. Kehr and G. Erker, Organometallics 2013, 32, 384.
 - E.g. a) A. Wakamiya, K. Mori, T. Araki and S. Yamaguchi, J. Am. Chem. Soc. 2009, 131, 10850; b) G. C. Welch and G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 4632; c) A. Iida and S. Yamaguchi, J. Am. Chem. Soc. 2011, 133, 6952; d) S. Saito, K. Matsuo and S. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 9130; e) Z. B. Henson, K. Müllen and G. C. Bazan, Nat. Chem. 2012, 4, 699; f) J. A. Love, I. Nagao, Y. Huang, M. Kuik, V. Gupta, C. J. Takacs, J. E. Coughlin, L. Qi, T. S. van der Poll, E. J. Kramer, A. J. Heeger, T.-Q. Nguyen and G. C. Bazan, G. C. J. Am. Chem. Soc. 2014, 136, 3597.
 - 13 Q. Su, Z.-J. Zhao, F. Xu. P.-C. Lou, K. Zhang, D.-X. Xie, L. Shi, Q.-Y. Cai, Z.-H. Peng and D.-L. An, *Eur. J. Org. Chem.* 2013, 1551.
 - B(C₆F₃)₃: a) A. G. Massey and A. J. Park, *J. Organomet. Chem.* 1964, 2, 245; b) C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Fröhlich, *Organometallics* 2005, 24, 4760; MeB(C₆F₅)₂: see ref. 2c; ClB(C₆F₅)₂: J. D. Parks, W. E. Piers and G. P. A. Yap, *Organometallics* 1998, 17, 5492.
 - 15 a) B. Wrackmeyer, K. Horchler and R. Boese, *Angew. Chem. Int. Ed.* 1989, 28, 1500; b) B. Wrackmeyer, G. Kehr and R. Boese. *Angew. Chem. Int. Ed.* 1991, 30, 1370; c) B. Wrackmeyer, S. Kundler and R. Boese, *Chem. Ber.* 1993, 126, 1361; d) B. Wrackmeyer, S. Kundler, W. Milius and R. Boese, *Chem. Ber.* 1994, 127, 333.
 - a) B. Wrackmeyer, G. Kehr, A. Sebald and J. Kümmerlen, *Chem. Ber.* 1992, **125**, 1597; b) B. Wrackmeyer, G. Kehr and S. Willbold, *J. Organomet. Chem.* 1999, **590**, 93; c) B. Wrackmeyer, P. Thoma, S. Marx, T. Bauer and R. Kempe, *Eur. J. Inorg. Chem.* 2014, 2103.

Page 5 of 5

Journal Name

TOC

