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The synthesis and bioluminescence of allyl-substituted luciferin derivatives as substrates for 

firefly luciferase are reported. The allylation of luciferins induced bathochromic shift (15–40 

nm) of the bioluminescence emission. Upon combination with other chemical modifications for 

bioluminescence wavelength tuning, novel red emitting luciferin analogs were obtained with 

emission maxima at 685 and 690 nm. 

2009 Elsevier Ltd. All rights reserved. 
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   Luminescent (e.g. fluorescent and bioluminescent) systems that emit light in the red or near-infrared (NIR) region have recently 
been reported as powerful chemical probes for the observation of biological phenomena and other applications.

1–4
 In particular, the 

demand for NIR-luminescent systems for non-invasive and operationally simple diagnosis techniques, such as in vivo imaging, has 

grown drastically.
5
 The optical window (650–950 nm) is expected to allow sensitive detection during in vivo imaging by avoiding 

unexpected absorption of visible and IR light by living specimen. While various NIR-fluorescent systems
 
have been developed, 

including cyanines
6,7

 or boron-dipyrromethenes (BODIPYs),
8
 only few NIR-bioluminescent systems have been reported.

9–16
 In the 

luciferin bioluminescence reaction, photons are emitted from the excited state of oxyluciferin (2), which is a metabolic product of 
the firefly luciferin (1a) after adenylation by firefly luciferase, followed by a reaction with molecular oxygen (Figure 1).

17
 The 

excited state of 2 emits only at ca. 560 nm in the presence of natural luciferase. During the course of our studies on the development 

of luciferin analogues,
10,11,16

 we discovered that the replacement of benzothiazole with other aromatic rings causes a dramatic shift 

of the emission wavelength. We have described a method to tune the emission wavelength of luciferins (Figure 1), in which the 

extension of the π-conjugation between the thiazoline moiety and the aromatic ring affords a large bathochromic shift (ca. 100 nm), 

while substitution of the hydroxide moiety with dimethylamine provides a smaller bathochromic shift (ca. 30  

nm).
10

 This approach has been applied to other luciferin derivatives, such as naphthyl luciferin
18

 (NapLuc, 3a; n = 0) and 

dimethylanilyl luciferin (DmaLuc, n = 0) to obtain the red-emitting vinyl analogues NapVLuc (4a), DmaVLuc (5a), and 

DmaDVLuc (6a) (Figure 2). Especially 6a exhibits promising bioluminescence properties in the NIR region (em = 680 nm) that 

could potentially be exploited for the in vivo imaging of deep tissue.
19,20

 However, the further extension of the π-conjugation of 

luciferin analogues renders the compound instable, resulting in a dramatic suppression of the luminescence activity. Another type of 

NIR luciferins has been developed based on the modification of D-aminoluciferin. Cyclic alkylaminoluciferins (CycLucs)
14

 and N-
cycloalkylaminoluciferins such as cybLuc

15
 exhibit red (600–650 nm) bioluminescence and these luciferins can be used for in vivo 

bioimaging of deep tissue such as brain tissue.
15,21

 Modifications of D-luciferin (1a) by halogenation,
22–24

 alkylation,
25

 and 

alkynylation
26

 at the C-4’, -5’, and -7’ positions have also been reported to produce intriguing bioluminescence features. Recently, 

we have reported the synthesis of C-7’ ally luciferin (1b) and its interesting bio-orthogonal luminescence properties.
27

 The C-7’ 

allylation of 1a induced a bathochromic shift (40 nm) of the emission wavelength, implying a weaker enzymatic recognition of the 

benzothiazole ring and the formation of an excited state with lower energy. However, the detailed effects of such an allyl 
substitution on the bioluminescence emission of other known luciferase substrates remain to be elucidated. Based on these 

observations, we herein report the application of said allylation method for the further tuning of the bioluminescence wavelength of 

known luciferins. 

 
Figure 1. Bioluminescence reaction mechanism and structure–
wavelength relationship for luciferins. 

 
Figure 2. Structure of luciferins 1-6. 
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Scheme 1. Syntehsis allyl-substituted  luciferins (3b, 4b, 5b, 6b) 

The effect of allyl substitution on the firefly bioluminescence of luciferin derivatives (3b, 4b, 5b, and 6b) was investigated 
(Figure 2). The synthesis of 3b started with the O-allylation of 6-cyano-2-naphthol (7) to afford an allyl ether, followed by a Claisen 

rearrangement, which selectively proceeded at the C-7’ position to afford 8 in high yield. A cyclocondensation with D-cysteine 

ultimately converted 8 into 5’-allyl NapLuc (3b) (Scheme 1A). To access 5’-allyl NapVLuc (4b), a twofold O-allylation of 

commercially available 6-hydroxy-2-naphthoic acid (9) was carried out, followed by a Claisen rearrangement to afford 5’-allyl 

naphthalene 10. After protection of the hydroxyl group with TBS, the allyl ester was reduced with DIBALH and subsequently 

oxidized into aldehyde 11 (Scheme 1B). A Wittig reaction then furnished a vinyl ester, which yielded carboxylic acid 12 upon 
hydrolysis with NaOH aq. Subsequently, 12 was condensed with H-D-Cys(Trt)-OMe, followed by the formation of a thiazoline ring 

with Tf2O and OPPh3
28

 to furnish 13. The desired luciferin 4b was ultimately isolated following the hydrolysis of the methyl ester 

moiety. Similarly, the synthesis of 3’-allyl DmaLuc (5b) and DmaVLuc (6b) started with the bromination of commercially available 

4-dimethylaminobenzaldehyde (14), followed by a Pd-catalyzed Stille coupling with allyltributyltin to afford allyl arene 15 (Scheme 

1C). A Wittig or Horner–Wadsworth–Emmons reaction of the aldehyde with phosphonic acid diester 16 afforded the corresponding 

vinyl and dienyl esters, which yielded the carboxylic acids 17 and 18 upon hydrolysis with NaOH aq. The desired luciferins 5b and 
6b were isolated in the same manner as 4b. 
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The bioluminescence (BL) spectra of the synthetic luciferins with recombinant firefly luciferase (Ppy; Photinus pyralis) are 
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Figure 3. Normalized bioluminescence emission spectra for 3a (λ

max
 = 555 nm), 3b ((λ

max
 = 570 nm), 4a (λ

max
 = 655 nm), 4b 

(λ
max

 = 690 nm), 5a (λ
max

 = 565 nm), 5b (λ
max

 = 575 nm), 6a (λ
max

 = 670 nm), and 6b (λ
max

 = 685 nm). 

shown in Figure 3. The allylated NapLuc 3b displays a bathochromic shift (15 nm) of the emission maximum compared to that of 

3a (Table 1). On the other hand, allylated NapVLuc 4b exhibits a larger bathochromic shift (35 nm) of its peak maximum relative to 

that of 4a, with an emission wavelength similar to that of 1b. Regarding the effect of allyl substitution on the DmaLuc derivatives, 

5b (10 nm) and 6b (15 nm) display bathochromically shifted peak maxima compared to the non-allylated compounds. We then 
measured the chemiluminescence (CL) spectra, which reflect the energy level of the excited states without any effect of the enzyme, 

in order to evaluate the effect of allyl substitution. However, the observed chemiluminescence maxima of allylated luciferins (1–6b) 

are not significantly changed relative to those of the original luciferins (1–6a), indicating that allyl substitution on the aromatic rings 

of luciferin does not significantly affect the energy levels of the oxyluciferins in excited singlet state. Because relative Vmax (rel. 

Vmax) values were determined by using the data of emitted photons with a constant concentration of the luciferase, a rel. Vmax value is 

proportional to the product of the rate constant of the overall reaction (kcat) and the bioluminescence quantum yield (Φbl). The rel. 
Vmax values of 3a and 3b are similar to each other, and 4a and 4b also have similar rel. Vmax values, indicating that the allyl 

modification to the hydroxyl-substituted analogues has an insignificant effect on the kcat and Φbl properties. Interestingly, the rel. 

Table 1. Luminescence wavelength and kinetic properties of 

the synthetic luciferins 1-6 

Comp. 

BL 

λ
max 

[nm]
a 

CL 

λ
max 

[nm]
b 

rel. Vmax 
e
 Km

f
 [µM] 

1a 570 585
c
 100 160 ± 58

g
 

1b 610 580
c
 4.1 370 ± 50 

3a 555 515
c
 0.096 58 ± 13 

3b 570 520
c
 0.12 28 ± 5.6 

4a 655 605
c
 0.10 3.2 ± 0.88 

4b 690 610
c
 0.13 3.3 ± 0.54 

5a 565 580
d
 6.3 4.4 ± 2.0 

5b 575 580
d
 0.10 71 ± 27 

6a 670 665
d
 1.9 2.0 ± 0.3 

6b 685 660
d
 0.12 17 ± 4.1 

a
 Bioluminescence emission maxima; 

b
 Chemiluminescence emission 

maxima; 
c
 Chemiluminescence was measured using 1.25 mM luciferin 

methyl ester and 125 mM t-BuOK in DMSO; 
d
 Chemiluminescence was 

measured using 1 mM luciferin, T
3
P, and Et

3
N in DMF;

29
 

e,f
 The kinetic 

constants are apparent values, determined by measurement of the initial 
rates of light emission from 0.02 µM to 200 µM luciferin, 2 µg Ppy and 
80 µM ATP-Mg.

30,31
 The rel. V

max
 values were shown by comparison 

with the value for 1a. 
g
 The K

m
 value strongly depends on the 

measurement conditions. The value of 1a obtained in this study is 
essentially consistent with previously reported data that were measured 

under identical conditions.
18,31
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Vmax values of 5b and 6b are one order of magnitude less than those of 5a and 6a, respectively. This result indicates that the allyl 
modification to the dimethylamino-substituted analogues affects an interaction between the substrate and the luciferase, resulting in 

a decrease of the reaction rate and/or the efficiency of photon production. The bathochromic shifts observed in 5b and 6b are 

probably related to the Km values, which are higher than those of 5a and 6a, implying a weaker enzymatic recognition similar to 

1b.
27

 However, even though NapLuc derivatives also showed bathochromic shifts, the kinetic properties indicated equally strong 

enzymatic recognition. This result probably implies a different binding mode for NapLuc derivatives with luciferase, which 

stabilized the conformation of lower energy state of their metabolites. The in vivo bioimaging with NIR substrates 4b and 6b was 
investigated in CAG-ffLuc-cp156 transgenic mice

33
 (Fig. 4A). Low but detectable bioluminescence was observed for each substrate. 

Interestingly, the overall photon output of 4b and 6b was 2.3 and 3.4%, respectively, compared to that of 1a in spite of the lower 

Vmax values (Fig. 4B). 6a also exhibited brighter in vivo than in vitro bioluminescence, due to the higher membrane permeability, 

lower saturation concentration, and NIR bioluminescence.
19

 The photon output of 4b and 6b should accordingly also be enhanced 

due to these bioluminescence and pharmacokinetic properties. 

   In conclusion, we have synthesized a series of allylated luciferins as prospective bioluminescence probes. Allylic substitution on 
the aromatic moieties induces small but detectable bathochromic shifts (15–40 nm) of the emission wavelength. This approach can 

be combined with other known methods for the tuning of the bioluminescence wavelength. The luciferin analogues 4b and 6b 

exhibit NIR emission at 690 and 685 nm, respectively. To our knowledge, 4b is thus the substrate with the longest emission 

wavelength for native firefly luciferase. Recently, a significant improvement of luminous efficacy of synthetic luciferins with 

mutant luciferases has been reported.
14,25,34

 We have also reported the enzyme specificity of 7’-allyl luciferin (1b), i.e., the 

combination with 1b and Eluc, a click beetle luciferase, improved the luminous efficacy.
27

 Although the NIR luciferins reported 
here exhibit much lower emission intensity, it should be possible to improve the luminous efficacy with mutant luciferase(s). Most 

importantly, the modification strategy for known luciferins should provide access to the next generation of NIR bioluminescence 

tools.  
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Highlights 

 

 Allyl-substituted luciferin derivatives were designed and synthesized. 

 Bioluminescence properties of allyl luciferin derivatives were evaluated. 
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 The allylation of luciferins induced bathochromic shift of their bioluminescence. 

 The longest near-infrared bioluminescence emission wavelength was achieved. 
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