Cascade Radical Reaction Induced by Polarity-Mismatched Perfluoroalkylation

Eito Yoshioka, Kentefu, Xin Wang, Shigeru Kohtani, Hideto Miyabe*

School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan Fax +81(78)3042794; E-mail: miyabe@huhs.ac.jp Received 27 May 2011

Abstract: Cascade radical addition–cyclization–trapping reaction proceeded via the unfavorable polarity-mismatched addition of electrophilic perfluoroalkyl radicals to electron-deficient acceptors.

Key word: radical, fluoro, cyclization, enantioselective, cascade

Over the last fifteen years, enantioselective radical reactions, particularly intermolecular radical reactions have made great advances.¹ However, enantiocontrol in radical cyclizations still remains a major challenge,² although significant progress has been made recently by several approaches.³⁻¹⁰ Moreover, less is known about stereoselective reactions of perfluoroalkyl radicals.¹¹ Therefore, there have been no studies on perfluoroalkyl radical mediated enantioselective cyclizations.

In contrast to nucleophilic alkyl radicals which generally react with electron-deficient alkenes, perfluoroalkyl radicals are classified into electrophilic radicals (Scheme 1).¹² As expected from their electrophilic property, the reported studies have concentrated on the reaction with electronrich alkenes including π -sufficient aromatic compounds.¹³ The polarity-mismatched additions of perfluoroalkyl radicals to electron-deficient alkenes are rare,¹⁴ which are frequently plagued by the formation of dimeric or polymeric by-products. Therefore, the development of the cascade transformations involving such process is a challenging task. In this communication, we report new cascade addition-cyclization-trapping reactions involving the unfavorable mismatched perfluoroalkylation, together with the control of enantioselectivities on the basis of our cyclization strategy.¹⁰ With the objective to study the polarity-mismatched interaction of perfluoroalkyl radicals, the substrate 1, having both electron-deficient and electronrich acceptors, was employed, since the direct comparison of two competitive reaction pathways (path a and path b) could lead to informative suggestions regarding the dominant factors controlling perfluoroalkylation step in cascade process.

The reactions of **1** having two kinds of polarity-inverted radical acceptors were performed with triethylborane as a radical initiator in CH_2Cl_2 at 20 °C (Scheme 2). At first, *n*- C_3F_7I was employed as a primary perfluoroalkyl radical source and Lewis acids were evaluated (Table 1, entries

SYNLETT 2011, No. 14, pp 2085–2089 Advanced online publication: 10.08.2011 DOI: 10.1055/s-0030-1261167; Art ID: U04511ST © Georg Thieme Verlag Stuttgart · New York

1-4). We were amazed to find the unfavorable mismatched path a giving 2a as a major course. Particularly, $Zn(OTf)_2$ accelerated the present cascade sequence to form the products 2a and 3a in 71% combined yield and 73:27 ratio (entry 1).¹⁵ Interestingly, square planar Cu(OTf)₂ led to an enhancement of ratio into 94:6, although the chemical yield diminished to 54% (entry 3).¹⁶ Perfluoroalkyl radicals exhibit extraordinary reactivity, relative to their hydrocarbon counterparts.^{17,18} Therefore, the enhanced reactivity of perfluoroalkyl radicals allowed for the polarity-mismatched perfluoroalkylation of an electron-deficient acceptor, though an electron-rich acceptor belongs to same molecule. In our previous investigation using substrate 1 and nucleophilic alkyl radicals, no cyclic product was obtained in the absence of Lewis acid.^{10a} In marked contrast, the enhanced reactivity of perfluoroalkyl radical promoted the cyclization even without the geometry-control by Lewis acid (entry 4). Similar regioselectivity and chemical efficiency were observed when primary $n-C_4F_9I$ was employed in the presence of $Zn(OTf)_2$ (entry 5). The branched secondary perfluoro-

polarity-matched alkenes with radicals

 $Scheme 1 \quad Cascade \ radical \ reaction \ of \ substrate \ 1 \ with \ perfluoro-alkyl \ radical; \ ML = Lewis \ acid$

LETTER

alkyl radicals are known to exhibit greater electrophilicities than primary perfluoroalkyl radicals.¹⁹ The use of secondary *iso*- C_3F_7 and *cyclo*- C_6F_{11} radicals had a moderate impact on two competitive pathways and the formation of **3c** and **3d** increased via the matched path b (entries 6–8).

Scheme 2 Regiochemical courses in cascade radical reaction of 1

The regiochemical courses are controlled by two factors: (1) the stability of intermediate radicals and (2) the polar effect by fluorine's potent σ inductive electron-withdrawing property (Figure 1).²⁰ With regard to factor 1, the stabilization of an intermediate radical **A** by resonance promotes the polarity-mismatched addition path a. With regard to factor 2,²⁰ the mismatched perfluoroalkyl radical addition path a leads to the matched polarization **C** in cyclization step, whereas matched path b gives the polarity-mismatched interaction **D**. For the comparison, the result using more nucleophilic isopropyl radical is shown in entry 9 (Table 1), which had selectively afforded the product **2e** with high *cis* selectivity.^{10a} At this stage, erosion of *cis/trans* diastereoselectivities in perfluoroalkyl radical reactions is questioned. The stability of perfluoroalkyl radicals

 Table 1
 Cascade Reaction of 1 with Perfluoroalkyl Radicals

is lower than that of nucleophilic isopropyl radical;¹² thus, the final iodine atom-transfer process is relatively slow. Therefore, it can be assumed that the slow trapping step and the high stability of intermediate radical \mathbf{A} would allow the reversibility between radical \mathbf{A} and cyclized radical, leading to low *cis/trans* diastereoselectivity.

1) stability of radicals

Figure 1 Two factors directing regiochemical courses

Introduction of a substituent at β -position of an electrondeficient acceptor apparently inhibits the mismatched addition due to steric effects (Scheme 3). The reaction of substrate 4 having a β -methyl group gave the cyclized but ethylidene product 5 and the simple adduct 6 predominantly through the matched addition. Notably, the formation of uncyclized adduct 6 supports our hypothesis of polar effect on cyclization step (see: E).

The circumstances in the presence of a chiral Lewis acid promoted the polarity-mismatched perfluoroalkylation of the electron-deficient acceptor in 1 (Scheme 4, Table 2). Reactions of 1 with perfluoroalkyl iodides were per-

Entry	RI	Lewis acid	Product	Ratio ^a of 2:3	Yield (%) ^b	cis/trans ^a
1 ^c	$n-C_3F_7I$	Zn(OTf) ₂	2a + 3a	73:27	71	59:41
2 ^c	$n-C_3F_7I$	Yb(OTf) ₃	2a + 3a	73:27	60	58:42
3°	$n-C_3F_7I$	Cu(OTf) ₂	2a + 3a	94:6	54	60:40
4 ^c	$n-C_3F_7I$	none	2a + 3a	72:28	49	54:46
5°	n-C ₄ F ₉ I	Zn(OTf) ₂	2b + 3b	72:28	74	63:37
6 ^c	<i>i</i> -C ₃ F ₇ I	Zn(OTf) ₂	2c + 3c	62:38	77	79:21
7°	<i>i</i> -C ₃ F ₇ I	Cu(OTf) ₂	2c + 3c	78:22	36	81:19
8 ^c	$c - C_6 F_{11} I$	Zn(OTf) ₂	2d + 3d	61:39	66	77:23
9 ^d	<i>i</i> -PrI	Zn(OTf) ₂	2e		41	>98:2

^a Determined by ¹H NMR spectroscopic analysis.

^b Combined yield of the isolated products.

^c Reactions were carried out with perfluoroalkyl iodides (5 equiv), Lewis acid (1 equiv), and Et₃B in hexane (1.0 M, 5 equiv).

^d Reaction was carried out with isopropyl iodides (30 equiv), Zn(OTf)₂ (1 equiv), and Et₃B in hexane (1.0 M, 5 equiv); see ref. 10a.

Scheme 3 Reaction of substrate 4 having a β -methyl group

formed at -78 °C in the presence of chiral Lewis acid prepared from box ligand 7 and Zn(OTf)₂.¹⁰ In general, the use of ligand 7 led not only to an enhancement in product ratio but also an improvement in cis/trans diastereoselectivity. The reaction of 1 with a n-C₃F₇ radical in CH₂Cl₂ proceeded effectively to form the products 2a and 3a in 95:5 ratio and 88% combined yield (entry 1). Although cis/trans diastereoselectivity was still low, the major product cis-2a was isolated in 76% ee along with trans-2a in 88% ee.²¹ The addition of hexafluoro-2-propanol (HFIP) as an acidic solvent led to lower product ratio and enantioselectivity (entry 2). In contrast, higher enantioselectivities were obtained, when the reaction was carried out in CH_2Cl_2 -toluene (1:1; entry 3). The enantioselectivities and *cis/trans* diastereoselectivities were increased by changing the perfluoroalkyl radicals from primary to secondary (entries 4-7). The reaction with secondary iso-

 Table 2
 Enantioselective Cascade Radical Reaction of 1^a

 C_3F_7 radical in CH₂Cl₂ gave the cyclic product *cis*-**2c** with 90% ee in 92:8 *cis/trans* selectivity, although product ratio diminished to 82:18 due to high electrophilicity of secondary perfluoroalkyl radicals (entry 4). Similar result was also obtained in CH₂Cl₂-toluene (entry 5). In the presence of activated 4 Å molecular sieves, *cis*-**2c** was formed with 92% ee (entry 6). Reaction with *cyclo*-C₆F₁₁ radical was also facile to give *cis*-**2d** in 91% ee with good *cis/trans* diastereoselectivity (entry 7).

Scheme 4 Reaction in the presence of chiral Lewis acid

These results indicate that the three-dimensional arrangement of two radical acceptors was efficiently controlled by a ternary complex of ligand, Lewis acid and substrate at low temperature. Assuming that there is a tetrahedral or *cis*-octahedral geometry around the zinc center,²² tentative model of octahedral complex is proposed for accounting the product stereochemistry (Figure 2). In this organization, two oxygen atoms of substrate **1** occupy two equatorial directions and the aryl group of ligand **7** shields the electron-rich allyl group of substrate **1**.

We finally explored the reaction of substrate **8** having a methyl group at a terminal of electron-rich acceptor (Scheme 5). As expected, the steric effect had an impact on regiochemical courses and promoted the polarity-mismatched perfluoroalkylation exclusively. The reaction with a n-C₃F₇ radical gave the four stereoisomeric cyclic

	/ prohibited	
	trictly	
-	s S	
1	tion	
; r	tribu	
-	dist	
-	ized	
5	thori	
)	naut	
5		
	only	
ì	nse	
r t	nal	
ι -	erso	
ı	a D	•
2	ed fe	
	bade	
	wnlo	
-	op s	
	was	
-	Jent	
	cnu	
	s do	
	This	

Entry	RI	Solvent	Time	Ratio ^b	Yield	cis/trans ^b	ee (%) ^d	
			(d)	of 2 :3	(%) ^c		cis-2	trans-2
1	$n-C_3F_7I$	CH ₂ Cl ₂	2	95:5	88	62:38	76	88
2	$n-C_3F_7I$	CH ₂ Cl ₂ -HFIP (9:1)	3	78:22	78	86:14	6	13
3	$n-C_3F_7I$	CH ₂ Cl ₂ -toluene (1:1)	1	97:3	78	64:36	87	90
4	<i>i</i> -C ₃ F ₇ I	CH ₂ Cl ₂	5	82:18	44	92:8	90	
5	<i>i</i> -C ₃ F ₇ I	CH ₂ Cl ₂ -toluene (1:1)	5	81:19	46	92:8	91	
6 ^e	<i>i</i> -C ₃ F ₇ I	CH ₂ Cl ₂	5	79:21	40	94:6	92	
7	$c-C_6F_{11}I$	CH ₂ Cl ₂	3	74:26	73	92:8	91	

^a Reactions were carried out with perfluoroalkyl iodides (5 equiv), $Zn(OTf)_2$ (1 equiv), ligand 7 (1 equiv), and Et_3B in hexane (1.0 M, 5 equiv) at -78 °C.

^b Determined by ¹H NMR spectroscopic analysis.

^c Combined yield.

^d Determined by HPLC analysis.

^e The reaction was carried out in the presence of activated 4 Å molecular sieves.

Figure 2 Tentative model

products **9** in 91% combined yield [*cis*-**9** (major)/*cis*-**9** (minor)/*trans*-**9** (major)/*trans*-**9** (minor) = 50:23:21:6].²³ The major isomer of *cis*-**9** was obtained with 87% ee, along with the minor isomer of *cis*-**9** (75% ee) and the major isomer of *trans*-**9** (87% ee).

Scheme 5 Enantioselective reaction of 8 with *n*-C₃F₇ radical

In conclusion, we have developed the cascade radical reactions²⁴ starting from the polarity-mismatched perfluoroalkylation of an electron-deficient acceptor, providing an enantioselective synthetic approach to chiral γ -lactams.

Acknowledgement

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (H.M.) and for Young Scientists (B) (E.Y.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

For general information details for radical reactions, see:

 (a) Renaud, P.; Gerster, M. Angew. Chem. Int. Ed. 1998, 37, 2562.
 (b) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
 (c) Radicals in Organic Synthesis, Vol. 1; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001.
 (d) Radicals in Organic Synthesis, Vol. 2; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001.
 (e) Bar, G.; Parsons, A. F. Chem. Soc. Rev. 2003, 32, 251.
 (f) Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263.
 (g) Tojino, M.; Ryu, I. Multicomponent Reactions; Zhu, J.; Bienayme, H., Eds.; Wiley-VCH: Weinheim, .
 (h) Zimmerman, J.; Sibi, M. P. Top. Curr. Chem. 2006, 263, 107.
 (i) Godineau, E.; Landais, Y. Chem. Eur. J. 2009, 15, 3044.
 (j) Rowlands, G. J. Tetrahedron 2009, 65, 8603.
 (k) Rowlands, G. J. Tetrahedron 2010, 66, 1593.

- (2) (a) Miyabe, H.; Takemoto, Y. *Chem. Eur. J.* 2007, *13*, 7280.
 (b) Yoshioka, E.; Kohtani, S.; Miyabe, H. *Heterocycles* 2009, *79*, 229.
- (3) (a) Nishida, M.; Hayashi, H.; Nishida, A.; Kawahara, N. *Chem. Commun.* **1996**, 579. (b) Hiroi, K.; Ishii, M. *Tetrahedron Lett.* **2000**, *41*, 7071.
- (4) (a) Yang, D.; Gu, S.; Yan, Y.-L.; Zhu, N.-Y.; Cheung, K.-K. J. Am. Chem. Soc. 2001, 123, 8612. (b) Yang, D.; Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y. Angew. Chem. Int. Ed. 2002, 41, 3014. (c) Yang, D.; Zheng, B.-F.; Gao, Q.; Gu, S.; Zhu, N.-Y. Angew. Chem. Int. Ed. 2006, 45, 255.
- (5) (a) Curran, D. P.; Liu, W.; Chen, C. H.-T. J. Am. Chem. Soc. 1999, 121, 11012. (b) Bruch, A.; Ambrosius, A.; Fröhlich, R.; Studer, A.; Guthrie, D. B.; Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 11452.
- (6) (a) Aechtner, T.; Dressel, M.; Bach, T. *Angew. Chem. Int. Ed.* **2004**, *43*, 5849. (b) Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. *Nature (London)* **2005**, *436*, 1139.
 (c) Breitenlechner, S.; Bach, T. *Angew. Chem. Int. Ed.* **2008**, *47*, 7957.
- (7) Gansäuer, A.; Shi, L.; Otte, M. J. Am. Chem. Soc. 2010, 132, 11858.
- (8) (a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. *Science* 2007, *316*, 582. (b) Jang, H.-Y.; Hong, J.-B.; MacMillan, D. W. C. *J. Am. Chem. Soc.* 2007, *129*, 7004. (c) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. *J. Am. Chem. Soc.* 2009, *131*, 11640. (d) Rendler, S.; MacMillan, D. W. C. *J. Am. Chem. Soc.* 2010, *132*, 5027.
- (9) (a) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Bräse, S. J. Am. Chem. Soc. 2009, 131, 2086. (b) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Bräse, S. J. Am. Chem. Soc. 2009, 131, 6640.
- (10) We have reported the strategy using hydroxamate ester as a coordination tether with a chiral Lewis acid. See:
 (a) Miyabe, H.; Asada, R.; Toyoda, A.; Takemoto, Y. *Angew. Chem. Int. Ed.* **2006**, *45*, 5863. (b) Miyabe, H.; Toyoda, A.; Takemoto, Y. *Synlett* **2007**, 1885.
- (11) (a) Yajima, T.; Nagano, H. Org. Lett. 2007, 9, 2513.
 (b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875.
- (12) For a review on perfluoroalkyl radicals, see: Dolbier, W. R. Jr. *Chem. Rev.* **1996**, *96*, 1557.
- (13) (a) Miura, K.; Taniguchi, M.; Nozaki, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1990, 31, 6391. (b) Avila, D. V.; Ingold, K. U.; Lusztyk, J.; Dolbier, W. R. Jr.; Pan, H.-Q.; Muir, M. J. Am. Chem. Soc. 1994, 116, 99. (c) Iseki, K.; Asada, D.; Takahashi, M.; Nagai, T.; Kobayashi, Y. Tetrahedron: Asymmetry 1996, 7, 1205. (d) Tsuchii, K.; Ueta, Y.; Kamada, N.; Einaga, Y.; Nomoto, A.; Ogawa, A. Tetrahedron Lett. 2005, 46, 7275. (e) Cao, H.-P.; Xiao, J.-C.; Chen, Q.-Y. J. Fluorine Chem. 2006, 127, 1079. (f) Mikami, K.; Tomita, Y.; Ichikawa, Y.; Amikura, K.; Itoh, Y. Org. Lett. 2006, 8, 4671. (g) Uenoyama, Y.; Fukuyama, T.; Morimoto, K.; Nobuta, O.; Nagai, H.; Ryu, I. Helv. Chim. Acta 2006, 89, 2483. (h) Petrik, V.; Cahard, D. Tetrahedron Lett. 2007, 48, 3327. (i) Tomita, Y.; Ichikawa, Y.; Itoh, Y.; Kawada, K.; Mikami, K. Tetrahedron Lett. 2007, 48, 8922. (j) Ma, Z.; Ma, S. Tetrahedron 2008, 64, 6500. (k) Li, Y.; Li, H.; Hu, J. Tetrahedron 2009, 65, 478.
- (14) (a) Qiu, Z.-M.; Burton, D. J. J. Org. Chem. 1995, 60, 3465.
 (b) Yajima, T.; Nagano, H.; Saito, C. Tetrahedron Lett. 2003, 44, 7027. (c) Tonoi, T.; Nishikawa, A.; Yajima, T.; Nagano, H.; Mikami, K. Eur. J. Org. Chem. 2008, 1331.
 (d) Ueda, M.; Iwasada, E.; Miyabe, H.; Miyata, O.; Naito, T. Synthesis 2010, 1999.

- (15) The structures of *cis*-**2a**,**b**, *trans*-**2a**,**b** and **3a**,**b** were confirmed by HMQC, HMBC, and NOESY experiments.
- (16) In general, the copper(II) Lewis acids are unsuitable for radical reactions due to extinction of radical species. For a successful example of radical reaction using copper(II) Lewis acids, see: Friestad, G. K.; Shen, Y.; Ruggles, E. L. *Angew. Chem. Int. Ed.* 2003, *42*, 5061.
- (17) Smart, B. E. In *Chemistry of Organic Fluorine Compounds II, ACS Monograph 187*; Hudlicky, M.; Pavlath, S. E., Eds.; American Chemical Society: Washington DC, **1995**, 979– 1010.
- (18) For studies on reactivity and structure of perfluoroalkyl radicals, see: (a) Krusic, P. J.; Bingham, R. C. *J. Am. Chem. Soc.* **1976**, *98*, 230. (b) Bernardi, F.; Cherry, W.; Shaik, S.; Epiotis, N. D. *J. Am. Chem. Soc.* **1978**, *100*, 1352. (c) Dewar, M. J. S.; Olivella, S. *J. Am. Chem. Soc.* **1978**, *100*, 5290. (d) Wong, M. W.; Pross, A.; Radom, L. J. Am. Chem. Soc. **1994**, *116*, 11938.
- (19) The electrophilicity of perfluoroalkyl radicals followed the order $1^{\circ} < 2^{\circ} < 3^{\circ}$; see ref. 12.
- (20) Avilla, D. V.; Ingold, K. U.; Lusztyk, J.; Dolbier, W. R. Jr.;
 Pan, H.-Q.; Muir, M. J. Am. Chem. Soc. 1994, 116, 99.
- (21) The absolute configuration at the stereocenter of *cis*-2**a**-**d** was assumed by similarity between the present reaction and the previously reported study. See ref. 10a.
- (22) (a) Sibi, M. P.; Yang, Y.-H. *Synlett* **2008**, 83. (b) Evans, D. A.; Kozlowski, M. C.; Tedrow, J. S. *Tetrahedron Lett.* **1996**, 37, 7481.
- (23) Both *cis*-9 and *trans*-9 were respectively obtained as two diastereomers concerning the newly generated stereocenter at iodinated carbon.
- (24) General Procedure for Enantioselective Radical Reaction: A solution of substrate 1 or 8 (100 mg or 106 mg, 0.43 mmol), Zn(OTf)₂ (156 mg, 0.43 mmol) and ligand 7 (153 mg, 0.43 mmol) in CH₂Cl₂ (4.3 mL) was stirred for 1 h under Ar atmosphere at 20 °C. To the reaction mixture were added RI (2.15 mmol) and Et₃B (1.05 M in hexane, 2.05 mL, 2.15 mmol) at -78 °C. After being stirred at the same temperature for 1–5 d, the reaction mixture was diluted with sat. NaHCO₃ and then extracted with CH₂Cl₂. The organic

phase was dried over Na2SO4 and concentrated at reduced pressure. The residue was roughly purified by preparative TLC (hexane-EtOAc, 3:1) to give the mixture of products. The ratio of products was determined by ¹H NMR analysis of the mixture. Second purification of the mixture by preparative TLC (benzene-EtOAc, 10:1 or hexane-EtOAc, 6:1, 2-fold development) afforded the isolated products. Representative Products: cis-2a: colorless crystals; mp 99-99.5 °C (hexane). IR (KBr): 2948, 1717, 1458 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.38–7.50 (m, 5 H), 5.04 (d, J = 11.0 Hz, 1 H), 5.02 (d, J = 11.0 Hz, 1 H), 3.50 (dd, J = 9.2, 6.6 Hz, 1 H), 3.19–3.30 (m, 2 H), 2.73 (t, J = 11.4 Hz, 1 H), 2.39–2.58 (m, 2 H), 2.26 (br dd, J = 37.0, 16.0 Hz, 1 H), 1.32 (d, J = 1.6Hz, 3 H). ¹³C NMR (CDCl₃): δ = 170.8, 134.7, 129.6, 129.3, 128.7, 118.3 (tt, J = 257, 31 Hz), 117.5 (qt, J = 289, 34 Hz), 108.4 (tsext, J = 265, 36 Hz), 76.9, 51.1, 44.5, 44.2, 31.0 (t, J = 21 Hz), 22.2, 4.1. ¹⁹F NMR (CDCl₃): $\delta = -80.6$ (t, J =19.5 Hz, 3 F), -106.2 (dm, J = 273 Hz, 1 F), -116.0 (dm, J =273 Hz, 1 F), -128.3 (br s, 2 F). MS (EI⁺): *m*/*z* = 528 (25) $[M + H^+]$, 91 (100). HRMS (EI⁺): m/z $[M + H^+]$ calcd for C₁₇H₁₈F₇INO₂: 528.0270; found: 528.0260. Anal. Calcd for C₁₇H₁₇F₇INO₂: C, 38.73; H, 3.25; N, 2.66. Found: C, 38.74; H, 3.22; N, 2.60. HPLC (Chiralcel AD-H, hexane-2propanol, 95:5; flow: 1.0 mL/min, l = 254 nm); t_{R} (major) = 6.7 min, $t_{\rm R}$ (minor) = 8.9 min. A sample of 87% ee by HPLC analysis gave $[\alpha]_{D}^{24}$ +28.3 (c = 0.40, CHCl₃). **3a**: colorless oil. IR (KBr): 2968, 2932, 1714, 1455 cm⁻¹. ¹H NMR $(CDCl_3): \delta = 7.34-7.47 \text{ (m, 5 H)}, 5.09 \text{ (d, } J = 11.0 \text{ Hz}, 1 \text{ H)},$ 5.04 (d, J = 11.0 Hz, 1 H), 3.48 (t, J = 8.5 Hz, 1 H), 3.37 (dd, *J* = 8.5, 1.8 Hz, 1 H), 3.23 (d, *J* = 11.0 Hz, 1 H), 3.05 (d, *J* = 11.0 Hz, 1 H), 2.45 (m, 1 H), 2.26-2.42 (br m, 2 H), 1.30 (s, 3 H). ¹³C NMR (CDCl₃): δ = 170.1, 134.7, 129.5, 129.1, 128.6, 117.6 (qt, J = 288, 34 Hz), 117.4 (tt, J = 256, 32 Hz), 108.4 (tsext, J = 265, 38 Hz), 77.2, 50.1 (d, J = 5 Hz), 44.0, 33.9, 28.1 (t, J = 21 Hz), 25.0, 6.4. ¹⁹F NMR (CDCl₃): $\delta =$ -80.9 (t, J = 9 Hz, 3 F), -113.7 (dm, J = 273 Hz, 1 F), -116.0(dm, J = 273 Hz, 1 F), -127.8 (dd, J = 290, 5 Hz, 1 F), -128.2 (dd, J = 290, 5 Hz, 1 F). HRMS (ESI): $m/z [M + H^+]$ calcd for C₁₇H₁₈F₇INO₂: 528.0270; found: 528.0269.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.