DOI: 10.1002/ejoc.200700102

Synthesis of Polyhydroxylated Pyrano-Pyrrole Derivatives from Carbohydrate Precursors

Sébastien Naud,^[a] Muriel Pipelier,^[a] Guillaume Viault,^[a] Ané Adjou,^[a] François Huet,^[b] Stéphanie Legoupy,^[b] Anne-Marie Aubertin,^[c] Michel Evain,^[d] and Didier Dubreuil*^[a]

Keywords: Cycloaddition / Ring contraction / Pyridazine / Pyrrole / a-Pyrone / Carbohydrates

The efficient synthesis of novel polyhydroxy-tetrahydropyrano-pyrroles from acetylenic carbohydrate precursors in three to four steps is described. The methodology involves, as key steps, the ring contraction of pyridazine intermediates

Introduction

Styryl lactones, α -pyrone derivatives (5,6-dihydro-2*H*-pyran-2-one), isolated from natural sources have attracted much attention during the last decade owing to their medicinal potential, for example, as antiviral, antitumoral, antimalarial, or antifungal agents.^[1]

The biological activities of such α,β -unsaturated δ -lactones are mainly attributed to their Michael acceptor character.^[2,3] However, the broad range of biological targets aimed at by the α -pyrone skeleton can also be ascribed to the presence of various functionalized substituents, such as unsaturated alkyl, aryl, or hydroxylated side-chains. a-Pyrones with a polyol system form the basic skeleton of several natural products. For example, α -pyrones bearing free or acetylated polyhydroxylated side-chains, such as passifloricin A (1),^[4] (+)-goniotriol (2a),^[5] (+)-boronolide (3a),^[6] and analogues **2b**^[7] and **3b**, express antiprotozoal, antimalarial, and antitumoral activities (Figure 1). (+)-Furanopyrone goniothalenol [(+)-4], known as altholactone, isolated from Goniothalamus giganteus, is an example of a cis-fused bicyclic derivative and has been found to be very toxic towards mice during a P338 in vivo antileukemic screening.[8]

- [b] Univ. du Maine, CNRS, Laboratoire de Synthèse Organique, UCO2M, UMR 6011, Faculté des Sciences et des Techniques, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
- [c] Faculté de Médecine, Institut de Virologie, INSERM U 544, Université Louis Pasteur,

3 rue Koeberlé, 67000 Strasbourg, France

[d] Univ. Nantes, CNRS, Institut des Matériaux Jean Rouxel, UMR 6502, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, B. P. 92208, 44322 Nantes Cedex 3, France

obtained by an inverse-demand Diels-Alder reaction and

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,

subsequent intramolecular lactonization.

Germany, 2007)

Figure 1. Examples of natural α -pyrones.

 α -Pyrones fused to hydroxylated aromatic or nonaromatic rings (Figure 2) are also found in antimalarial dihydroisocoumarin derivatives **5**,^[9] antitumoral psymberin (**6**),^[10] and cytotoxic hippeastrine (**7**),^[11] whereas dehydroaltenusin (**8**) has been observed to inhibit mammalian DNA polymerase α .^[12]

A large number of active sesquiterpene lactones, like vernolepin (9),^[13] have been isolated from plant extracts and show tumor-inhibiting activity. Recently, the indololactone (10),^[14] obtained in the course of the production of quinolinone analogues of pancratistatin, has been shown to act by a different mechanism against pancreas and breast adenocarcinoma. In this particular case, a hydrogen-bonding donor–acceptor pairing effect between the indole ring and the keto ester group has been suggested. Bergenin (11) is a 1,2*trans C*-aryl glucoside with anti-HIV and anti-inflammatory potential.^[15]

3296

[[]a] Univ. Nantes, CNRS, Laboratoire de Synthèse Organique, UMR 6513, Faculté des Sciences et des Techniques,
2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
E-mail: didier.dubreuil@univ-nantes.fr

Figure 2. Biologically active compounds presenting an α -pyrone backbone.

As a result of our interest in the synthesis of pyrrole heterocycles by ring contraction of pyridazine precursors using Boger's chemical strategy^[16] or an alternative electrosynthesis methodology developed in our laboratory,^[17–20] we have developed a synthesis of novel linear (pyrone type **A**) and cyclic polyhydroxylated pyrrolo-pyrone derivatives (pyrone types **B** and **C**) (Figure 3) structurally analogous to boronolide (**3a**), altholactone (**4**), indololactone (**10**), or bergenin (**11**).

Figure 3. Targeted polyhydroxy-tetrahydropyrano-pyrroles.

Recently, we validated a general efficient synthetic approach to pyrrolo-pyrones **A** bearing a polyol side-chain.^[21] The synthetic route involves the successive introduction of pyrrolo and pyrone residues at the anomeric position of an open ribosyl sugar. We wish here to highlight the potential of this strategy by the preparation of furano- and pyrano-tetrahydropyrano-pyrrole analogues **B** and **C** using a similar synthetic approach (retrosynthesis 1, Scheme 1). Thus, access to the polyhydroxylated pyrano-pyrrole analogues **IV** was envisaged from acetylenic dienophile intermediates **I**, derived from furanose (series **A** and **B**) and pyranose (series **C**) sugars, by a reaction sequence involving cycloaddition, ring contraction, and lactonization.

The formation of the α -pyrone skeletons IV is the result of an intramolecular transesterification reaction between a selected free hydroxy group of the sugar moiety and an ester group of the pyrrolo heterocycles III. The intermediates III result from the ring contraction of suitable functionalized pyridazine heterocycles II produced by an inverse-demand Diels–Alder cycloaddition reaction between acetylenic sugar dienophiles I and dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12). Thus, D-ribose, D-galactose, and D-glucose were chosen to initiate the syntheses as these sugars seem to be suitable precursors to express different chiral polyhydroxylated side-chains on the targeted α -pyrone analogues.

Results and Discussion

Preparation of Sugar C-Acetylenic Dienophiles

We have already shown^[21] that the introduction of phenylacetylene and hexyne anions, generated in situ from phen-

Scheme 1. Retrosynthesis 1.

3297

ylacetylene or hexyne in THF at -5 °C, onto the 2,3,5-tri-O-benzylribofuranose (13)^[22,23] gives a 1:1 ratio of the diastereoisomers 14-(5*R*)/14-(5*S*) and 15-(5*R*)/15-(5*S*) in 87 and 85% yields, respectively (Scheme 2). If both diols 14 are candidates for producing linear polyhydroxylated pyrone analogues IV in series A, access to furanosylpyrone derivatives IV in series B from D-ribose entails the selection of the 14-(5*S*) isomer to produce, by intramolecular cyclization, the required anomeric acetylenic furanosyl 16*a* with the desired α configuration (Figure 4). Indeed, the anomer 16 β , resulting from the 14-(5*R*) diol precursor, will not allow the final intramolecular formation of the pyrone ring.

Scheme 2. Reagents and conditions: (a) phenylacetylene (2.2 equiv.), *n*BuLi (2.0 equiv., 2.4 M in hexanes), THF, -5 °C, then **13** (1.0 equiv.) at 10 °C and then 2 h at room temp., 87%; (b) hexyne (2.2 equiv.), *n*BuLi (2.0 equiv., 2.4 M in hexanes), THF, -5 °C, then **13** (1.0 equiv.) at 10 °C and then 2 h at room temp., 85%.

Figure 4. ORTEP diagram of acetylenic 16a.

The cyclization process, occurring by a favorable regioselective intramolecular S_N2 substitution at the C-5 center with inversion of configuration, was initiated by treatment with tosyl chloride in pyridine.^[24] Thus, the target furanosyl α -acetylenic 16 α was formed from 14-(5S) in 52% yield together with a small amount of the L-lyxose analogue 17a (7%) resulting from a tosylation side-reaction at the C-2 hydroxy function. The structure of C-ribosyl 16a was unambiguously confirmed by X-ray crystallography (Scheme 2).^[25] The formation of the L isomer 17β was not detected during the cyclization of the 14-(5R) isomer by the same procedure, which occurred in a moderate 39% yield. Alcohol activation using triflic anhydride or the Mitsunobu^[26] procedure does not improve the intramolecular cyclization reaction of this series of compounds.

As Marco-Contelles et al. have already described for 2,3,4,6-tetra-*O*-benzylglucopyranose,^[27] we also failed to achieve acetylenic anion addition followed by intermolecular cyclization to the corresponding acetylenic α -*C*-pyranosyl in the galacto series.

We therefore studied a *C*-glycosylation process (Scheme 3, Table 1) to access the target α -*C*-glycopyranosyl dienophiles **21**, **27**, and **29** required to prepare the type **C** pyrrolo-pyrone.

Scheme 3.

2,3,4,6-Tetra-O-benzylglucopyranosyl bromide (19) and 6-O-acetyl-2,3,4-tri-O-benzylglucopyranosyl chloride (20) are described in the literature as the best potent glycosyl donors to provide the corresponding α -C-glucopyranosyls 21 and 22 in the presence of (phenylethynyl)tributylstannane and ZnCl₂ (61%)^[28] or AgBF₄ (73%)^[29] promoters, respectively (Table 1, entries 1 and 2). Dondoni et al.^[30] have observed that stereoselective α -C-glycosylation of 1-Oacetyl-2,3,4,6-tetra-O-benzylglucose and -galactose donors 23 and 24 can also occur when tributylstannyl(trimethylsilyl)acetylene is used in the presence of TMSOTf, providing the α -C-acetylenic glycosyls **25** and **26** in 65 and 87% yields, respectively (entries 3 and 4). We prepared 1,2-cis phenylacetylene glucosyl 21 and galactosyl 27 from donors 23 and 24 in the presence of TMSOTf (2 equiv.) in CH₂Cl₂ at room temp. in lower yields of 42 and 51%, respectively (entries 5 and 6). No improvement in the reaction was observed starting from 1,6-di-O-acetylated galactoside donor 28 and the corresponding phenylacetylene α -C-galactosyl 29 was isolated in a similar yield of 52% (entry 7). Note that, surprisingly, the formation of the β -C-galactosyl anomer was not observed during these latter processes.

Entry	Glycosyl donor	\mathbb{R}^1	\mathbb{R}^4	$\mathbb{R}^{4'}$	R ⁶	R	Conditions	Product, yield [%]	Ref.
1	19	Br	OBn	Н	OBn	Ph	$ZnCl_2$, CCl_4 , reflux	21 , 61	[28]
2	20	Cl	OBn	Η	OAc	Ph	AgBF ₄ , 4 Å MS, 1,2-DCE, –30 °C	22 , 73	[29]
3	23	OAc	OBn	Н	OBn	TMS	TMSOTf, CH ₂ Cl ₂ , room temp.	25 , 65	[30]
4	24	OAc	Н	OBn	OBn	TMS	TMSOTf, CH_2Cl_2 , room temp.	26 , 87	[30]
5	23	OAc	OBn	Н	OBn	Ph	TMSOTf, CH ₂ Cl ₂ , room temp.	21 , 42	
6	24	OAc	Н	OBn	OBn	Ph	TMSOTf, CH ₂ Cl ₂ , room	27 , 51	
7	28	OAc	Н	OBn	OAc	Ph	TMSOTf, CH_2Cl_2 , room temp.	29 , 52	

Table 1. α -C-Glycosylation yields.

Access to Pyridazine C-Sugars

We have previously achieved the [4+2] cycloaddition of acetylenic *C*-ribosyls **16** β and **18** β with tetrazine **12**, leading to the pyridazinic ribosyl analogues **30** (56%) and **31** (65%), respectively.^[31] Thus, a similar process was applied to the acetylenic dienophiles **14-(5***R***)**, **32**, **34**, **16** α , **21**, **26**, **27**, and **29** (Scheme 4).

Unexpectedly, the attempted inverse-demand Diels– Alder reaction between acetylenic **14-(5***R*) and the electron-deficient dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (**12**)^[32,33] failed to give the expected pyridazine and the acetylenic *C*-ribosyl **16** β was obtained instead as a single isolable product in a low 28% yield. This failure can be ascribed to the intrinsic reactivity of the free hydroxy groups of the acetylenic diol **14** as Seitz^[34] has shown that alcohols, thiols, or amines react by nucleophilic addition with tetrazine **12**. This behavior could then be used to explain the partial recyclizing process that can occur following an intramolecular Mitsunobu-like rearrangement and the predominant degradation of the reagents observed in the course of this reaction.

Therefore, the acetylenic diols 14 and 15 have to be protected. Thus, after benzylation of the free hydroxy groups at C-2 and C-4 of diols 14-(5*R*), 14-(5*S*), and 15-(5*R*,*S*), the benzylated acetylenic dienophiles 32-(3*R*), 32-(3*S*), and 34-(7*R*,*S*) were treated with tetrazine 12 in the [4+2] cycload-

Scheme 4.

dition step to give, after 5 d under toluene reflux, the expected pyridazines 33-(1'*R*), 33-(1'*S*), and 35-(1'*R*,*S*) in 55, 66, and 46% yields, respectively (Scheme 4). These yields are a result of the steric hindrance between the two partners slowing down the reaction, during which a partial degradation of tetrazine occurred. The pyridazine isomers 35-(1'*R*) and 35-(1'*S*) were isolated by semipreparative HPLC on a silica gel column. Inlactosyl-, and α -*C*-glucosyl-phenyl-pyridazines 36, 37, 38, and 39 were formed in 49, 46, 45, and 50% yields, respectively, from dienophiles 16a, 27, 29, and 21 (Scheme 4). However, we were surprised to observe that no reaction occurred starting from trimethylsilylacetyl-ene dienophile 26, even after increasing the amount of diene 12 and the time of the cycloaddition process (Scheme 4, Table 2).

Table 2. [4+2] Cycloaddition process of acetylenic pyranosyls with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12).

Acetylenic pyranosyl	R ⁴	R4′	R ⁶	R	Product, % yield
26	H	OBn	OBn	TMS	no reaction
27	H	OBn	OBn	Ph	37, 46
29	H	OBn	OAc	Ph	38, 45
21	OBn	H	OBn	Ph	39, 50

Preparation of the Pyrrole C-Analogues

Pyridazines 33 and 35–39 were converted into pyrroles 40, 41, and 44–47 by a ring contraction process with 20 equiv. of zinc dust in refluxing acetic acid, according to the Boger procedure (Scheme 5, Table 3).^[16]

Scheme 5.

When the reactions were carried out with the 1'R series over several hours, the yields of pyrroles 40-(1'R) and 41-(1'R) did not exceed 18% after 15 h (entries 1 and 3). Under these reaction conditions, a surprising concomitant partial deprotection of the benzyl ether groups at C-1' and C-4' was observed leading to the formation of diols 42-(1'R) and 43-(1'R) as byproducts in 44 and 16% yields, respectively. The position of the free hydroxy groups was assigned thanks to an HMBC NMR experiment. Indeed, the 2'-H, 3'-H, and 5'-H atoms of pyrroles 42-(1'R) and 43-(1'R) are correlated with a benzylic methylenic carbon atom, whereas 1'-H and 4'-H do not show such correlations. These experiments prove that the hydroxy groups at C-1' and C-4' are deprotected under extended catalyzed reduction conditions. This unexpected selective benzyl ether cleavage is probably due to the prior release of the activated propargylic benzyl group at C-1' in the presence of zinc.^[16] The subsequent reduction of benzyl at C-4' could be ascribed to an intermolecular assistance occurring by the predominant formation

Table 3. Ring contractio	n process of	f pyridazine	derivatives.
--------------------------	--------------	--------------	--------------

Entry	R	R'	Pyridazine	Reaction time	Pyrrole (yield)
1	Ph	BnO OBn BnO OBn BnO BnO Star	33-(1' <i>R</i>)	15 h	$\begin{array}{c} \textbf{40-(1'R)} < 5\% + \\ \textbf{42-(1'R)} & \textbf{44\%} \\ \\ \textbf{BnO} & OBn \\ HO & OH \\ HO & OH \\ HO & HO \\ BnO & HO \\ \hline \end{array}$
2				30 min	40-(1'R) 46%
3	Bu	BnO OBn BnO OBn BnO OBn	35-(1' <i>R</i>)	15 h	41-(1'R) 18% + 43-(1'R) 16% BnO $(P_{A})^{C} = R'$ HO $(P_{A})^{C} = R'$
4	1			30 min	41-(1'R) 68%
5	Ph	BnO OBn BnO BnO Jaw	33-(1' <i>S</i>)	30 min	40-(1'S) 60%
6	Bu	BnO OBn BnO BnO Free	35-(1' <i>S</i>)	30 min	41-(1'S) 60%
7	Ph	BnO O Start	36	30 min	44 56%
8	Ph	BnO OBn BnO BnO	37	30 min	45 70%
9	Ph	BnO OAc BnO BnO	38	30 min	46 57%
10	Ph	BnO BnO BnO	39	30 min	47 27%

of a furanosyl ring under thermal conditions. However, a decrease in the reaction time to 30 min limited the debenzylation side-reaction to the production of just traces of byproducts and the targeted pyrroles 40-(1'R) and 41-(1'R) were isolated in 46 and 68% yields, respectively (entries 2 and 4). Ring contraction of pyridazines 33-(1'S) and 35-(1'S) was also performed over 30 min, leading to the pyrroles 40-(1'S) and 41-(1'S) in yields of 60% (entries 5 and 6). In this series, after 15 h, no hydroxy deprotection was detected even though the isolated yields were somewhat lower. The transformation of pyridazines *C*-ribosyl 36 and *C*-pyranosyl 37, 38, and 39 was also performed similarly to provide the pyrroles *C*-ribosyl 44 in 56% yield and *C*-galacto- and glucopyranosyls 45, 46, and 47 in yields of 70, 57, and 27%, respectively (entries 7–10).

Synthesis of Pyrano Analogues

The tetrahydropyrano-pyrroles, as the (R,S) diastereoisomers, were then synthesized over two general steps from the protected pyrrolo sugars by debenzylation and subsequent

intramolecular transesterification between the hydroxy group at C-2' and one of the ester groups of the pyrrole moiety (Scheme 6).

Thus, debenzylation of pyrroles 40-(1'*R*), 40-(1'*S*), 41-(1'*R*), and 41-(1'*S*) under hydrogenation conditions (H₂, Pd/C) afforded the corresponding pyrroles 48-(1'*R*), 48-(1'*S*), 49-(1'*R*), and 49-(1'*S*) in good yields (85-98%).^[35] These compounds could not be purified in the pyrrolo diester form as a partial intramolecular lactonization occurred spontaneously on silica gel giving the pyrano-pyrroles 50-(4*R*), 50-(4*S*), 51-(4*R*), and 51-(4*S*), respectively, whereas

the hydrolysis of pyrroles **48** and **49** by 2 M aqueous NaOH in methanol solution yielded the corresponding diacids **52** and **53** in a quantitative manner.

However, lactonization was fully achieved in a basic medium (Na₂CO₃, MeOH) to provide the pyrano-pyrroles **50**-(**4***R*), **50-(4***S*), **51-(4***R*), and **51-(4***S*) in moderate-to-good yields (38–72%). The proposed structure and the stereochemistry of **50-(4***S*) were assigned in the solid state (Figure 5).^[36]

In more constrained structures, such as the ribosyl and pyranosyl series, the deprotection and lactonization events

Scheme 6.

Figure 5. ORTEP diagram of pyrano-pyrone 50-(4S).

take place successively during the hydrogenation reaction of **44**, **45**, and **47**, leading to the cyclic pyrano-pyrroles **54**, **55**, and **56** spontaneously in 78, 73, and 20% yields, respectively (Scheme 6). The observed yields for the synthesis of pyrano-pyrroles of the glucopyranosyl series are lower than those of the other series. This has not yet been explained, but new conditions are currently being investigated in an effort to improve the results. In the case of pyrrole **46**, a deacetylation step was required before the hydrogenation to provide the pyrone **55** in 60% yield.

Conclusions

We have synthesized seven novel tetrahydropyrano-pyrroles 50-(1'R), 50-(1'S), 51-(1'R), 51-(1'S), 54, 55, and 56 in eight or nine steps from D-ribose, D-galactose, and Dglucose (Figure 5). The key step of the synthesis is the ring contraction of a pyridazine, which was achieved by a Diels-Alder cycloaddition reaction. The biological properties of the linear pyrano-pyrroles were evaluated on KB cells, HIV, HSV, hepatitis C, and on Leishmania panamensis, but did not show any significant activity. Biological tests on cyclic pyrano-pyrroles are currently underway. Some analogues of the tetrahydropyrano-pyrroles are presently being synthesized from other furanose and pyranose sugars to study the influence of chain length and of the hydroxy configuration. We also plan to introduce aryl or alkyl substituents onto the terminal part of the osidic skeleton to mimic goniotriol (2a) and boronolide (3a) side-chains (Figure 6).

In addition, alkyl or aryl substituents will be introduced onto the sugar skeleton, in analogy with goniotriol (2a) and boronolide (3a). Pyrrole intermediates, such as 46, which present a selectively different protection of 6-OH, are good candidates to initiate such modifications. This work is currently under investigation in our group and will be reported elsewhere.

Figure 6. Synthesized polyhydroxy-tetrahydropyrano-pyrroles.

Experimental Section

Solvents were purified and dried by standard methods prior to use. All reactions were carried out under argon. ¹H and ¹³C NMR spectra were recorded with a Bruker AC 400 or AC 300 spectrometer with TMS used as the internal standard in ¹H NMR spectra. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. All assignments were confirmed with the aid of two-dimensional ¹H,¹H (COSYGPQF) or ¹H,¹³C (INV4GPQF) or ¹H,¹³C (INV4GPLRNDQF) experiments using standard Bruker pulse programs. All reactions were monitored by TLC on commercially available precoated plates (Kieselgel 60 F254) and the products were visualized with a mostaïne solution [250 mL H₂O, 10.5 g of (NH₄)₆Mo₇O₂₄·4H₂O, 0.5 g of Ce(SO₄)₂, and 15 mL of H₂SO₄]. Kieselgel 60, 230-400 mesh (Merck), was used for column chromatography. Optical rotations were measured at 20 ± 1 °C with a Perkin-Elmer 341 instrument in the indicated solutions whose concentrations are expressed in g/100 mL. Mass spectra were measured by CI with NH₃ on a quad. Hewlett-Packard 5989A instrument. HRMS were measured with a MS/MS ZABSpec TOF spectrometer from Micromass (Positive Electrospray, solvent: MeOH) at the "Centre Régional de Mesures Physiques de l'Ouest", Rennes, France. FTIR spectra were obtained in the 500–4000 cm⁻¹ range with a Bruker Vector 22 FT-IR spectrometer using NaCl pellets. For HPLC purification, a KROMASIL semipreparative column was used.

Procedure A – Addition of Acetylene Derivatives to 2,3,5-Tri-O-benzyl-D-ribose: Phenylacetylene or hexyne (2.2 equiv.) was added dropwise under argon to a stirred solution of *n*-butyllithium (2.0 equiv., 2.4 M in hexanes) in THF in an ice–salt bath. The solution became dark. The mixture was warmed to 10 °C and turned yellow. Then, 2,3,5-tri-O-benzyl-D-ribose (1.0 equiv.) in THF was added dropwise. The mixture was stirred at room temperature for 2 h. Solvent was concentrated under reduced pressure and saturated aqueous N4-HCl solution was added to the resulting residue which was then extracted with EtOAc. The organic layer was dried with Na_2SO_4 and concentrated under reduced pressure.

(2R,3R,4S,5R)-1,3,4-Tribenzoxy-7-phenylhept-6-yne-2,5-diol [14-(5R)] and (2R,3R,4S,5S)-1,3,4-Tribenzoxy-7-phenylhept-6-yne-2,5diol [14-(5S)]: These compounds were synthesized according to procedure A from phenylacetylene (3.4 mL, 36.60 mmol), n-butyllithium (13.9 mL, 33.30 mmol) in THF (40 mL), and 2,3,5-tri-O-benzyl-D-ribose (13) (7.0 g, 16.60 mmol) in THF (10 mL). Chromatographic purification on silica gel (petroleum ether/EtOAc, 82.5:17.5) gave compounds 14-(5R) and 14-(5S) (7.59 g, 87%) in a ratio of 1:1. 14-(5*R*): Syrup; R_f (petroleum ether/EtOAc, 7:3) = 0.40. ¹H NMR (300 MHz, CDCl₃): δ = 2.62 (d, ³J = 3.3 Hz, 1 H, 2-OH), 3.22 (d, ${}^{3}J$ = 8.1 Hz, 1 H, 5-OH), 3.55 (dd, $J_{1a,1b}$ = 9.8, $J_{1a,2} = 3.3$ Hz, 1 H, 1a-H), 3.62 (dd, $J_{1b,1a} = 9.8$, $J_{1b,2} = 6.9$ Hz, 1 H, 1b-H), 3.90 (dd, $J_{4,3} = 6.5$, $J_{4,5} = 3.6$ Hz, 1 H, 4-H), 3.98 (dd, $J_{3,4} = 6.5, J_{3,2} = 4.7$ Hz, 1 H, 3-H), 4.20 (m, 1 H, 2-H), 4.49 (s, 2 H, $CH_2(Bn)$), 4.71 (s, 2 H, $CH_2(Bn)$), 4.74 (d, $^2J = 11.3$ Hz, 1 H, $CH_2(Bn)$), 4.89 (d, ²J = 11.3 Hz, 1 H, $CH_2(Bn)$), 4.90 (m, 1 H, 5-H), 7.23–7.46 (m, 20 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 63.0$ (C-5), 71.0, 71.1 (C-1, C-2), 73.5, 74.1, 74.2 (3 CH₂(Bn)), 80.2 (C-3), 80.6 (C-4), 86.1, 88.5 (2C_{alkvne}), 122.7 (Cq(Ph)), 128.0-131.8 (CH(Ar)), 137.6-138.0 (Cq(Bn)) ppm. MS (CI⁺, NH₃): m/z = 540 [M + NH₄]⁺, 523 [M + H]⁺. IR: \tilde{v} = 3457 (OH), 2203 $(C \equiv C) \text{ cm}^{-1}$. $[a]_{D}^{20} = -10.5$ (c = 0.57, CHCl₃). $C_{34}H_{34}O_{5}H_{2}O_{5}$ (540.64): calcd. C 75.53, H 6.71; found C 75.69, H 6.44. 14-(5S): White needles; m.p. 66 °C; R_f (petroleum ether/EtOAc, 7:3) = 0.32. ¹H NMR (300 MHz, CDCl₃): δ = 3.61 (dd, $J_{1a,1b}$ = 9.7, $J_{1a,2}$ = 6.0 Hz, 1 H, 1a-H), 3.69 (dd, $J_{1b,1a} = 9.7$, $J_{1b,2} = 3.2$ Hz, 1 H, 1b-H), 4.00 (m, 2 H, 3-H, 4-H), 4.23 (m, 1 H, 2-H), 4.48 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.52 (d, ²J = 11.2 Hz, 1 H, CH₂(Bn)), 4.54 $(d, {}^{2}J = 11.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{2}(\text{Bn})), 4.67 (d, {}^{2}J = 11.2 \text{ Hz}, 1 \text{ H},$ CH₂(Bn)), 4.74 (d, ${}^{2}J$ = 11.8 Hz, 1 H, CH₂(Bn)), 4.86 (d, ${}^{2}J$ = 11.8 Hz, 1 H, CH₂(Bn)), 4.97 (d, $J_{5,4} = 5.3$ Hz, 1 H, 5-H), 7.21– 7.43 (m, 20 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 63.4 (C-5), 69.7 (C-1), 71.1 (C-2), 73.3, 73.4, 73.5 (3 CH₂(Bn)), 79.8, 80.8 (C-3, C-4), 86.4, 88.4 (2Calkyne), 122.7 (Cq(Ph)), 128.0-131.8 (CH(Ar)), 137.8–138.1 (Cq(Bn)) ppm. MS (CI⁺, NH₃): *m*/*z* = 540 $[M + NH_4]^+$, 523 $[M + H]^+$. IR: $\tilde{v} = 3457$ (OH), 2203 (C=C) cm⁻¹. $[a]_{D}^{20} = -6.6$ (c = 0.95, CHCl₃). C₃₄H₃₄O₅·0.5H₂O (531.64): calcd. C 76.81, H 6.64; found C 77.12, H 6.46.

(2R,3R,4S,5R)-1,3,4-Tribenzoxyundec-6-yne-2,5-diol [15-(5R)] and (2R,3R,4S,5S)-1,3,4-Tribenzoxyundec-6-yne-2,5-diol [15-(5S)]:These compounds were synthesized according to procedure A from (4.2 mL, 36.70 mmol), *n*-butyllithium hexyne (13.9 mL, 33.40 mmol) in THF (40 mL), and 2,3,5-tri-O-benzyl-D-ribose (13) (7.0 g, 16.70 mmol) in THF (10 mL). Chromatographic purification on silica gel (petroleum ether/EtOAc, 75:25) afforded a mixture of two inseparable isomers 15-(5R) and 15-(5S) (7.1 g, 85%). Only a small amount was purified by semipreparative HPLC (hexanes/EtOAc, 85:15, 2 mL/min) for analyses. 15-(5R): Syrup; R_f (petroleum ether/EtOAc, 8:2) = 0.16. ¹H NMR (300 MHz, CDCl₃): δ = 0.89 (t, $J_{11,10}$ = 7.2 Hz, 3 H, 3×11-H), 1.37–1.53 (m, 4 H, 2×9-H, 2×10-H), 2.25 (td, $J_{8,9}$ = 7.0, $J_{8,10}$ = 1.9 Hz, 2 H, 2×8-H), 2.65 (m, 1 H, 2-OH), 3.06 (d, ${}^{3}J$ = 7.3 Hz, 1 H, 5-OH), 3.54 (dd, $J_{1a,1b} = 9.8$, $J_{1a,2} = 3.2$ Hz, 1 H, 1a-H), 3.60 (dd, $J_{1b,1a} = 9.8$, $J_{1b,2}$ = 6.8 Hz, 1 H, 1b-H), 3.77 (dd, $J_{4,3}$ = 6.1, $J_{4,5}$ = 4.0 Hz, 1 H, 4-H), 3.90 (dd, $J_{3,4} = 6.1$, $J_{3,2} = 5.1$ Hz, 1 H, 3-H), 4.15 (m, 1 H, 2-H), 4.49 (s, 2 H, CH₂(Bn)), 4.63-4.71 (m, 4 H, CH₂(Bn), 5-H), 4.83 $(d, {}^{2}J = 11.3 \text{ Hz}, 1 \text{ H}, \text{CH}_{2}(\text{Bn})), 7.27-7.37 \text{ (m, 15 H, H(Ar)) ppm.}$ ¹³C NMR (75 MHz, CDCl₃): δ = 13.7 (C-11), 18.7 (C-8), 22.2 (C-10), 30.8 (C-9), 62.6 (C-5), 71.0 (C-1), 71.1 (C-2), 73.5, 74.0 (3 CH₂(Bn)), 79.3 (C_{alkyne}), 80.1 (C-3), 80.8 (C-4), 87.0 (C_{alkyne}), 128.0–128.6 (CH(Ar)), 137.7–138.0 (Cq(Ar)) ppm. MS (CI⁺, NH₃): $m/z = 520 [M + NH_4]^+$, 503 $[M + H]^+$. IR: $\tilde{v} = 3456$ (OH), 2230 $(C \equiv C) \text{ cm}^{-1}$. $[a]_D^{20} = +8.4$ (c = 1.11, CHCl₃). $C_{32}H_{38}O_5 \cdot 0.25H_2O$ (507.14): C 75.79, H 7.65; found C 75.78, H 7.63. 15-(5S): White needles; m.p. 30 °C; R_f (petroleum ether/EtOAc, 8:2) = 0.11. ¹H NMR (300 MHz, CDCl₃): δ = 0.88 (t, $J_{11,10}$ = 7.2 Hz, 3 H, 3×11-H), 1.35–1.50 (m, 4 H, 2×9-H, 2×10-H), 2.22 (td, $J_{8,9} = 7.0, J_{8,10}$ = 1.9 Hz, 2 H, 2×8-H), 3.60 (dd, $J_{1a,1b}$ = 9.7, $J_{1a,2}$ = 6.2 Hz, 1 H, 1a-H), 3.66 (dd, $J_{1b,1a} = 9.7$, $J_{1b,2} = 3.2$ Hz, 1 H, 1b-H), 3.85 (dd, $J_{4,5} = 5.3, J_{4,3} = 3.3$ Hz, 1 H, 4-H), 3.93 (dd, $J_{3,2} = 7.2, J_{3,4} =$ 3.3 Hz, 1 H, 3-H), 4.20 (ddd, $J_{2,3} = 7.2$, $J_{2,1a} = 6.2$, $J_{2,1b} = 3.2$ Hz, 1 H, 2-H), 4.47–4.75 (m, 6 H, CH₂(Bn), 5-H), 4.81 (d, ${}^{2}J$ = 12.0 Hz, 1 H, CH₂(Bn)), 7.22–7.38 (m, 15 H, H(Ar)) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 13.7 \text{ (C-11)}, 18.7 \text{ (C-8)}, 22.1 \text{ (C-10)}, 30.8$ (C-9), 63.2 (C-5), 69.8 (C-2), 71.1 (C-1), 73.3, 73.3, 73.5 (3 CH₂(Bn)), 79.2 (C_{alkyne}), 79.9 (C-3), 81.0 (C-4), 87.4 (C_{alkyne}), 127.8-128.6 (CH(Ar)), 138.0-138.2 (Cq(Ar)) ppm. MS (CI+, NH₃): $m/z = 520 [M + NH_4]^+$, 503 $[M + H]^+$. IR: $\tilde{v} = 3456$ (OH), 2230 $(C \equiv C) \text{ cm}^{-1}$. $[a]_{D}^{20} = +10.6 (c = 1.21, \text{ CHCl}_3)$. $C_{32}H_{38}O_5 \cdot 0.5H_2O_5 \cdot$ (511.75): calcd. C 75.12, H 7.68; found C 75.23, H 7.44.

 $1-(2',3',5'-\text{Tri-}O-\text{benzyl-}\alpha-\text{D-ribofuranosyl})-2-\text{phenylacetylene}$ (16 α): The diastereoisomer 14-(5S) (1 equiv., 1.5 g, 2.87 mmol) was dissolved in dry pyridine (8 mL) and the resulting solution was heated at 50-60 °C. Tosyl chloride (2 equiv., 820 mg, 4.31 mmol) was added portionwise and the reaction mixture was stirred at this temperature for 3 h. After hydrolysis and extraction with CH₂Cl₂, the organic phase was dried with MgSO4 and concentrated to dryness under reduced pressure. The crude was purified by column chromatography on silica gel (petroleum ether/EtOAc, 95:5) to yield 16 α (753 mg, 52%), which was recrystallized from Et₂O. White needles; m.p. 88–90 °C; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.41. ¹H NMR (300 MHz, CDCl₃): δ = 3.57 (dd, $J_{5'a,5'b}$ = 11.1, $J_{5'a,4'}$ = 3.6 Hz, 1 H, 5'a-H), 3.71 (dd, $J_{5'b,5'a}$ = 11.1, $J_{5'b,4'}$ = 3.0 Hz, 1 H, 5'b-H), 4.12 (m, 2 H, 2'-H, 3'-H), 4.34 (m, 1 H, 4'-H), 4.43 (d, ${}^{2}J$ = 12.0 Hz, 1 H, CH₂(Bn)), 4.48 (d, ${}^{2}J$ = 12.3 Hz, 1 H, CH₂(Bn)), 4.57 (d, ${}^{2}J$ = 12.3 Hz, 1 H, CH₂(Bn)), 4.62 (d, ${}^{2}J$ = 11.7 Hz, 1 H, $CH_2(Bn)$), 4.80 (d, ${}^{2}J$ = 12.0 Hz, 1 H, $CH_2(Bn)$), 4.95 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.97 (d, $J_{1',2'}$ = 3.0 Hz, 1 H, 1'-H), 7.18–7.48 (m, 20 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 69.6 (C-5'), 71.5 (C-1'), 72.6, 73.2, 73.6 (3 CH₂(Bn)), 78.4 (C-$ 2', C-3'), 80.3 (C-4'), 85.2, 87.9 (2Calkyne), 122.9 (Cq (Ph)), 127.7-131.9 (CH(Ar)), 138.1-138.3 (Cq(Bn)) ppm. MS (CI⁺, NH₃): m/z = 522 $[M + NH_4]^+$. $[a]_D^{20} = +103.0$ (c = 1.00, CHCl₃).

1-(2',3',5'-Tri-O-benzyl-α-L-lyxofuranosyl)-2-phenylacetylene (17a): This compound was obtained as a byproduct (7%) during the synthesis of **16a**. Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.46. ¹H NMR (300 MHz, CDCl₃): δ = 3.70 (dd, $J_{5'a,5'b}$ = 9.9, $J_{5'a,4'}$ = 3.3 Hz, 1 H, 5'a-H), 3.80 (dd, $J_{5'b,5'a}$ = 9.9, $J_{5'b,4'}$ = 5.9 Hz, 1 H, 5'b-H), 4.20 (m, 2 H, 2'-H, 3'-H), 4.50 (m, 1 H, 4'-H), 4.50 (d, ²J = 11.9 Hz, 1 H, CH₂(Bn)), 4.60 (m, 2 H, CH₂(Bn)), 4.76 (m, 3 H, CH₂(Bn)), 4.93 (m, 1 H, 1'-H), 7.20–7.55 (m, 20 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 68.9 (C-5'), 70.4 (C-1'), 72.8, 73.6, 73.7 (3 CH₂(Bn)), 77.6 (C-2' or C-3'), 78.9 (C-4'), 84.5 (C-2' or C-3'), 86.4, 87.3 (2C_{alkyne}), 122.6 (Cq (Ph)), 127.7–131.9 (CH(Ar)), 137.8–138.3 (Cq(Bn)) ppm. MS (CI⁺, NH₃): m/z = 522 [M + NH₄]⁺.

Procedure B – **Preparation of Glycosyl-** α **-D-phenylacetylene:** A mixture of 1-*O*-acetyl-glycosyl, (phenylethynyl)tributylstannane (2 equiv.), activated 4 Å powdered molecular sieves (same weight as glycosyl), and anhydrous CH₂Cl₂ (4 mL/mmol) was stirred at room temperature for 15 min, and then trimethylsilyl triflate (2 equiv.) was added dropwise. The dark-brown mixture was stirred

at room temperature for an additional 1.5 h, diluted with Et₃N (0.6 mL/mmol) and CH₂Cl₂ (15 mL/mmol), filtered through a pad of Celite, and concentrated. The residue was eluted from a column of silica gel (petroleum ether/EtOAc, 95:5 to 85:15).

1-(2',3',4',6'-Tetra-O-benzyl-α-D-galactopyranosyl)-2-phenylacetylene (27): This compound was synthesized according to procedure B from 1-O-acetyl-galactosyl 24 (500 mg, 0.86 mmol), (phenylethynyl)tributylstannane (602 µL, 1.72 mmol), molecular sieves (500 mg) and trimethylsilyl triflate (310 μ L, 1.72 mmol) in CH₂Cl₂ (4 mL). After work up with Et₃N (0.6 mL) and purification, the galactosylphenylacetylene 27 (262 mg) was obtained (51%). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.71. ¹H NMR (300 MHz, CDCl₃): δ = 3.57 (m, 2 H, 6'-H), 3.93–3.99 (m, 2 H, 4'-H, 3'-H), 4.15-4.22 (m, 2 H, 5'-H, 2'-H), 4.37 (d, ${}^{2}J$ = 11.6 Hz, 1 H, CH₂(Bn)), 4.48 (d, ${}^{2}J$ = 11.6 Hz, 1 H, CH₂(Bn)), 4.59 (d, ${}^{2}J$ = 11.4 Hz, 1 H, CH₂(Bn)), 4.72–4.78 (m, 3 H, CH₂(Bn)), 4.85 (d, ²J = 11.9 Hz, 1 H, $CH_2(Bn)$), 4.95 (d, 2J = 11.4 Hz, 1 H, $CH_2(Bn)$), 5.05 (d, $J_{1',2'}$ = 5.7 Hz, 1 H, 1'-H), 7.00–7.50 (m, 25 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 67.9$ (C-1'), 68.8 (C-6'), 72.7 (C-5'), 72.9, 73.1, 73.6 (3 CH₂(Bn)), 74.9 (C-4' or C-3'), 75.0 (CH₂(Bn)), 75.7 (C-2'), 79.9 (C-3' or C-4'), 84.4, 88.3 (2Calkyne), 122.6 (Cq(Ph)), 123.9-132.1 (CH(Ar)), 137.9, 138.7, 138.8 (Cq(Bn)) ppm. MS (CI⁺, NH₃): $m/z = 642 [M + NH_4]^+$. $[a]_{\rm D}^{20} = +8.4 \ (c = 1.10, \, {\rm CHCl}_3).$

1-(6'-O-Acetyl-2',3',4'-tri-O-benzyl-a-D-galactopyranosyl)-2-phenylacetylene (29): This compound was synthesized according to procedure B from 1-O-acetyl-galactosyl 28 (389 mg, 0.73 mmol), (phenylethynyl)tributylstannane (510 µL, 1.46 mmol), molecular sieves (400 mg) and trimethylsilyl triflate (264 µL, 1.46 mmol) in CH₂Cl₂ (3 mL). After work up with Et₃N (0.50 mL) and purification, the galactosylphenylacetylene 29 was obtained (235 mg, 52%). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.47. ¹H NMR (300 MHz, CDCl₃): δ = 1.98 (s, 3 H, Me(OAc)), 3.90 (m, 1 H, 4'-H), 3.95 (dd, $J_{3',2'} = 9.5$, $J_{3',4'} = 2.7$ Hz, 1 H, 3'-H), 4.13–4.16 (m, 4 H, 2'-H, 5'-H, 6'-H), 4.62 (d, ²J = 11.5 Hz, 1 H, CH₂(Bn)), 4.76-4.80 (m, 3 H, $CH_2(Bn)$), 4.82 (d, ${}^{2}J$ = 11.8 Hz, 1 H, $CH_2(Bn)$), 4.95 (d, ${}^{2}J$ = 11.4 Hz, 1 H, CH₂(Bn)), 5.05 (d, $J_{1',2'}$ = 5.5 Hz, 1 H, 1'-H), 7.24-7.46 (m, 15 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 21.0 (Me(OAc)), 63.5 (C-6'), 67.8 (C-1'), 72.0 (C-2' or C-5'), 73.1, 73.5 (2 CH₂(Bn)), 74.6 (C-4'), 74.7 (CH₂(Bn)), 75.9 (C-2' or C-5'), 79.8 (C-3'), 84.2, 88.5 (2Calkyne), 122.6 (Cq(Ph)), 127.7-129.0, 132.1 (CH(Ar)), 138.7, 138.5, 138.3 (Cq(Bn)), 170.8 (CO) ppm. MS (CI⁺, NH₃): $m/z = 576 [M + NH_4]^+$.

Procedure C – **Benzylation:** Sodium hydride (2.4 equiv.) was added to a stirred solution of the diol derivative (1 equiv.) in anhydrous THF and a few drops of DMF under argon. After 15 min stirring, benzyl bromide (2.4 equiv.) was added dropwise to the slurry. The reaction mixture was stirred overnight at room temperature. After adding a saturated aqueous NaCl solution, the mixture was extracted with EtOAc. The combined EtOAc fractions were dried with Na₂SO₄ and concentrated in vacuo.

(3*R*,4*S*,5*R*,6*R*)-3,4,5,6,7-Pentabenzoxy-1-phenylhept-1-yne [32-(3*R*)]: This compound was synthesized according to general procedure C. From NaH (385 mg, 9.62 mmol), acetylenic diol 14-(5*R*) (2.10 g, 4.01 mmol) in a mixture THF (20 mL)/DMF (few drops) and benzyl bromide (1.15 mL, 9.62 mmol), 32-(3*R*) (2.14 g, 76%) was obtained after flash column chromatography on silica gel (petroleum ether/EtOAc, 95:5). Syrup; *R*_f (petroleum ether/EtOAc, 9:1) = 0.44. ¹H NMR (300 MHz, CDCl₃): δ = 3.70 (dd, *J*_{7a,7b} = 10.6, *J*_{7a,6} = 5.5 Hz, 1 H, 7a-H), 3.62 (dd, *J*_{7b,7a} = 10.6, *J*_{7b,6} = 3.0 Hz, 1 H, 7b-H), 4.13 (m, 1 H, 4-H), 4.11 (m, 2 H, 6-H, 5-H), 4.44 (d, ²*J* = 11.6 Hz, 1 H, CH₂(Bn)), 4.46 (s, 2 H, CH₂(Bn)), 4.574.74 (m, 5 H, CH₂(Bn), 3-H), 4.78 (d, ${}^{2}J$ = 11.2 Hz, 1 H, CH₂(Bn)), 4.88 (d, ${}^{2}J$ = 11.8 Hz, 1 H, CH₂(Bn)), 5.02 (d, ${}^{2}J$ = 11.2 Hz, 1 H, CH₂(Bn)), 7.14–7.41 (m, 30 H, H(Ar)) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 70.0 (C-3), 70.9 (C-7), 71.1, 72.7, 73.2, 73.3, 74.9 (5CH₂(Bn)), 78.8, 79.0 (C-6, C-5), 81.5 (C-4), 87.0, 87.8 (2C_{alkyne}), 122.8 (Cq(Ph)), 127.6–131.8 (CH(Ar)), 138.1–139.0 (Cq(Bn)) ppm. MS (CI⁺, NH₃): m/z = 720 [M + NH₄]⁺. IR: \tilde{v} = 2223 (C=C) cm⁻¹. [a]₂₀²⁰ = -53.5 (c = 0.95, CHCl₃).

(3S,4S,5R,6R)-3,4,5,6,7-Pentabenzoxy-1-phenylhept-1-yne [32-(3S)]: This compound was synthesized according to procedure C. From NaH (553 mg, 13.80 mmol), acetylenic diol 14-(5S) (3.01 g, 5.75 mmol) in a mixture THF (30 mL)/DMF (few drops) and benzyl bromide (1.65 mL, 13.80 mmol), 32-(3S) (3.12 g, 77%) was obtained after flash column chromatography on silica gel (petroleum ether/EtOAc, 95:5). Syrup; R_f (petroleum ether/EtOAc, 9:1) = 0.46. ¹H NMR (300 MHz, CDCl₃): δ = 3.65–3.75 (m, 2 H, H-7), 3.99– 4.08 (m, 3 H, 6-H, 5-H, 4-H), 4.45 (s, 2 H, CH₂(Bn)), 4.53 (d, ²J = 11.6 Hz, 1 H, CH₂(Bn)), 4.60–4.73 (m, 5 H, CH₂(Bn)), 4.82 (d, $J_{3,4} = 4.0$ Hz, 1 H, 3-H), 4.90 (d, ${}^{2}J = 11.6$ Hz, 1 H, CH₂(Bn)), 4.98 (d, ${}^{2}J$ = 11.4 Hz, 1 H, CH₂(Bn)), 7.21–7.44 (m, 30 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 70.7 (C-7), 71.3 (CH₂(Bn)), 71.9 (C-3), 72.6, 73.3, 74.0 (4 CH₂(Bn)), 79.0, 79.4, 80.4 (C-6, C-5, C-4), 86.4, 87.5 (2Calkyne), 123.1 (Cq(Ph)), 127.5-132.0 (CH(Ar)), 138.1–139.0 (Cq(Bn)) ppm. MS (CI⁺, NH₃): m/z = 720 $[M + NH_4]^+$. IR: $\tilde{v} = 2223$ (C=C) cm⁻¹. $[a]_D^{20} = +36.4$ (c = 0.91, CHCl₃). HRMS: calcd. for $C_{48}H_{47}O_5 [M + H]^+$ 703.3424; found 703.3419.

Procedure D – [4+2] Cycloaddition: Dimethyl 1,2,4,5-tetrazine-3,6dicarboxylate (12) (1.1 to 2.2 equiv.) was added to a solution of acetylene derivative (1 equiv.) in freshly distilled toluene and the resulting mixture was stirred under argon at reflux. The solvent was then evaporated under reduced pressure.

Dimethyl (1'R,2'S,3'R,4'R)-4-(1',2',3',4',5'-pentabenzoxypentyl)-5phenylpyridazine-3,6-dicarboxylate [33-(1'R)]: This compound was synthesized according to procedure D. From dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12) (906 mg, 4.56 mmol) and alkyne 32-(3R) (1.46 g, 2.08 mmol) in toluene (6 mL), 33-(1'R) (1.00 g, 55%) was obtained after purification by flash chromatography on silica gel (petroleum ether/EtOAc, 80:20). Syrup; R_f (petroleum ether/ EtOAc, 7:3) = 0.36. ¹H NMR (300 MHz, CD₃OD): δ = 3.37 (dd, $J_{5'a,5'b} = 10.2, J_{5'a,4'} = 6.7$ Hz, 1 H, 5'a-H), 3.49 (dd, $J_{5'b,5'a} = 10.2$, $J_{5'b,4'}$ = 3.8 Hz, 1 H, 5'b-H), 3.57 (m, 4 H, OMe, 3'-H), 3.66 (s, 3 H, OMe), 3.89 (m, 2 H, 2'-H, 4'-H), 4.06 (d, ${}^{2}J$ = 11.9 Hz, 1 H, CH₂(Bn)), 4.22 (d, ${}^{2}J$ = 11.5 Hz, 1 H, CH₂(Bn)), 4.32 (d, ${}^{2}J$ = 11.9 Hz, 1 H, CH₂(Bn)), 4.37-4.51 (m, 7 H, CH₂(Bn)), 5.10 (d, $J_{1',2'}$ = 5.4 Hz, 1 H, 1'-H), 6.79–7.35 (m, 30 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 53.3, 53.6 (2 OMe), 71.9 (C-5'), 72.4, 73.8, 74.2, 75.9 (5CH₂(Bn)), 79.0 (C-1', C-3'), 79.8, 81.4 (C-2',C-4'), 128.4-130.4 (CH(Ar)), 133.3-141.0 (Cq(Bn), Cq(Ph), C-3, C-6), 155.4, 156.7 (C-4, C-5), 166.0, 167.5 (2 CO) ppm. MS (CI+, NH₃): $m/z = 873 [M + H]^+$. IR: $\tilde{v} = 1744 (C=O) \text{ cm}^{-1}$. $[a]_{D}^{20} = -26.8$ $(c = 0.95, CHCl_3), C_{54}H_{52}N_2O_9 \cdot 0.25H_2O$ (877.50): calcd. C 73.91, H 6.03, N 3.19; found C 73.86, H 6.05, N 3.15.

Dimethyl (1'*S*,2'*S*,3'*R*,4'*R*)-4-(1',2',3',4',5'-pentabenzoxypentyl)-5phenylpyridazine-3,6-dicarboxylate [33-(1'*S*)]: This compound was synthesized according to procedure D. From dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12) (1.36 g, 6.88 mmol) and alkyne 32-(3*S*) (2.20 g, 3.13 mmol) in toluene (9 mL), 33-(1'*S*) (1.80 g, 66%) was obtained after purification by flash chromatography on silica gel (petroleum ether/EtOAc, 75:25). Syrup; R_f (petroleum ether/ EtOAc, 7:3) = 0.41. ¹H NMR (300 MHz, CD₃OD): δ = 3.55–3.69 (m, 8 H, OMe, 5'-H), 3.78 (m, 1 H, 4'-H), 3.94 (d, $J_{3',4'}$ = 4.0 Hz, 1 H, 3'-H), 4.12 (d, ${}^{2}J$ = 10.7 Hz, 1 H, CH₂(Bn)), 4.20–4.40 (m, 8 H, CH₂(Bn)), 4.53 (d, ${}^{2}J$ = 10.8 Hz, 1 H, CH₂(Bn)), 4.62 (d, ${}^{2}J_{2',1'}$ = 9.4 Hz, 1 H, 2'-H), 5.06 (d, ${}^{1}J_{1',2'}$ = 9.4 Hz, 1 H, 1'-H), 6.81–7.33 (m, 30 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 53.3, 53.6 (2 OMe), 70.7 (C-5'), 73.0, 74.0, 74.3 (5CH₂(Bn)), 76.4 (C-1'), 79.4 (C-3', C-4'), 82.1 (C-2'), 128.5–131.8 (CH(Ar)), 133.5–142.4 (Cq(Bn), Cq(Ph), C-3, C-6), 155.3, 155.7 (C-4, C-5), 166.2, 167.7 (2 CO) ppm. MS (CI⁺, NH₃): m/z = 874 [M + H]⁺. IR: \tilde{v} = 1744 (C=O) cm⁻¹. [a]^{DD}₂₀ = -30.4 (c = 0.91, CHCl₃). HRMS: calcd. for C₅₄H₅₃N₂O₉ [M + H]⁺ 873.3751; found 873.3719.

(7R,8S,9R,10R)-7,8,9,10,11-Pentabenzoxyundec-5-yne [34-(7R)] and (7*S*,8*S*,9*R*,10*R*)-7,8,9,10,11-Pentabenzoxyundec-5-yne [34-(7*S*)]: These compounds were synthesized according to procedure C from NaH (259 mg, 6.47 mmol), a mixture of acetylenic diol 15-(7R) and 15-(7S) (1.35 g, 2.70 mmol) in a mixture of THF (17 mL)/DMF (few drops) and benzyl bromide (770 µL, 6.47 mmol). Chromatographic purification on silica gel (petroleum ether/EtOAc, 95:5) afforded a mixture of two inseparable isomers 34-(7R) and 34-(7S)(1.14 g, 62%). Only a small amount was purified by semipreparative HPLC (hexanes/EtOAc, 95:5, 2 mL/min) for analyses. 34-(7R): syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 95:5) = 0.27. ¹H NMR (300 MHz, CD₃OD): δ = 0.87 (t, ³J = 7.1 Hz, 3 H, 3×1-H), 1.34– 1.51 (m, 4 H, 2×2-H, 2×3-H), 2.23 (td, ${}^{3}J = 6.7$, ${}^{5}J = 1.9$ Hz, 2 H, 2×4-H), 3.65 (dd, $J_{11a,11b}$ = 10.7, $J_{11a,10}$ = 5.7 Hz, 1 H, 11a-H), 3.77 (dd, $J_{11b,11a} = 10.7$, $J_{11b,10} = 3.1$ Hz, 1 H, 11b-H), 3.86 (t, ${}^{3}J = 4.9$ Hz, 1 H, 8-H), 4.00 (m, 1 H, 10-H), 4.06 (t, ${}^{3}J = 4.9$ Hz, 1 H, 9-H), 4.39–4.47 (m, 5 H, H-7, $CH_2(Bn)$), 4.53 (d, $^2J = 11.7$ Hz, 1 H, CH₂(Bn)), 4.55 (d, ${}^{2}J$ = 11.4 Hz, 1 H, CH₂(Bn)), 4.62 (d, ${}^{2}J$ = 11.7 Hz, 1 H, $CH_2(Bn)$), 4.68 (d, 2J = 11.2 Hz, 1 H, $CH_2(Bn)$), 4.73 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.88 (d, ${}^{2}J$ = 11.2 Hz, 1 H, CH₂(Bn)), 7.15–7.33 (m, 25 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 14.0 (C-1), 19.2 (C-4), 23.0, 31.8 (C-2, C-3), 71.2 (C-7), 71.4, 71.7 (C-11, CH₂(Bn)), 73.3, 74.0, 74.2, 75.8 (4 CH₂(Bn)), 78.4 (Calkyne), 79.8, 79.9 (C-9, C-10), 82.9 (C-8), 89.7 (Calkyne), 128.6-129.3 (CH(Ar)), 139.4-140.0 (Cq(Ar)) ppm. MS (CI+, NH₃): $m/z = 700 \,[\text{M} + \text{NH}_4]^+$. IR: $\tilde{v} = 2225 \,(\text{C} \equiv \text{C}) \,\text{cm}^{-1}$. $[a]_{\text{D}}^{20} = -31.6 \,(c)$ = 0.75, CHCl₃), $C_{46}H_{50}O_5 \cdot 0.25H_2O$ (687.39): C 80.38, H 7.40; found C 80.47, H 7.34. 34-(7S): Syrup; R_f (petroleum ether/EtOAc, 95:5) = 0.29. ¹H NMR (400 MHz, CD₃OD): δ = 0.89 (t, ³J = 7.0 Hz, 3 H, 3×1-H), 1.42–1.51 (m, 4 H, 2×2-H, 2×3-H), 2.27 (td, ${}^{3}J = 6.5$, ${}^{5}J = 1.8$ Hz, 2 H, 2×4-H), 3.64 (dd, $J_{11a,11b} = 10.7$, $J_{11a,10} = 6.3$ Hz, 1 H, 11a-H), 3.73 (dd, $J_{11b,11a} = 10.7$, $J_{11b,10} =$ 3.5 Hz, 1 H, 11b-H), 3.87 (dd, $J_{8,9} = 6.1$, $J_{8,7} = 4.0$ Hz, 1 H, 8-H), $3.93 (dd, J_{9,8} = 6.1, J_{9,10} = 3.4 Hz, 1 H, 9-H), 4.03 (m, 1 H, 10-H),$ 4.40 (s, 2 H, CH₂(Bn)), 4.45 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.53 $(dt, J_{7,4} = 2.1, J_{7,8} = 4.0 \text{ Hz}, 1 \text{ H}, 7-\text{H}), 4.55-4.64 \text{ (m, 5 H},$ CH₂(Bn)), 4.76 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.85 (d, ${}^{2}J$ = 11.4 Hz, 1 H, CH₂(Bn)), 7.18–7.30 (m, 25 H, H(Ar)) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 13.9 (C-1), 19.2 (C-4), 22.9, 31.9 (C-2, C-3), 71.5 (C-11), 71.8 (CH₂(Bn)), 72.4 (C-7), 73.4, 74.1, 74.7, 74.9 (5CH₂(Bn)), 77.1 (C_{alkyne}), 80.1 (C-10), 80.3 (C-9), 81.8 (C-8), 89.3 (Calkyne), 128.4–129.3 (CH(Ar)), 139.4–140.0 (Cq(Ar)) ppm. MS (CI⁺, NH₃): $m/z = 700 [M + NH_4]^+$. IR: $\tilde{v} = 2225 (C \equiv C) \text{ cm}^{-1}$. $[a]_{\rm D}^{20} = +35.5 \ (c = 0.16, \, {\rm CHCl}_3).$

Dimethyl (1'R,2'S,3'R,4'R)-5-Butyl-4-(1',2',3',4',5'-pentabenzoxypentyl)pyridazine-3,6-dicarboxylate [35-(1'R)] and Dimethyl (1'S,2'S,3'R,4'R)-5-Butyl-4-(1',2',3',4',5'-pentabenzoxypentyl)pyridazine-3,6-dicarboxylate [35-(1'S)]: These compounds were synthesized according to procedure D from dimethyl 1,2,4,5-tetrazine-3,6dicarboxylate (12) (1.82 g, 9.18 mmol) and a mixture of alkyne 34-(7R) and 34-(7S) (2.85 g, 4.17 mmol, ratio 7R/7S, 52:48) in toluene (11 mL) to give a mixture of 35-(1'R) and 35-(1'S) (1.64 g, 46%, ratio, 68:32). The mixture was purified by semipreparative HPLC (hexanes/EtOAc, 85:15, 2 mL/min). 35-(1'R): white needles; m.p. 66 °C; $R_{\rm f}$ (petroleum ether/EtOAc, 75:25) = 0.32. ¹H NMR (300 MHz, CD₃OD): $\delta = 0.59$ (t, ${}^{3}J = 6.8$ Hz, 3 H, H_{δ}(Bu)), 0.86 (m, 3 H, $2H_{\gamma}(Bu)$, $H_{\beta}(Bu)$), 1.10 (m, 1 H, $H_{\beta}(Bu)$), 2.31 (m, 1 H, H_α(Bu)), 3.00 (m, 1 H, H_α(Bu)), 3.34 (m, 1 H, 2'-H), 3.56 (m, 1 H, 5'-H), 3.66 (s, 3 H, OMe), 3.74 (m, 1 H, 5'-H), 3.88 (m, 1 H, 4'-H), 3.95 (s, 3 H, OMe), 4.15-4.63 (m, 8 H, CH₂(Bn)), 4.71 (m, 1 H, 3'-H), 4.78–4.97 (m, 2 H, CH₂(Bn)), 5.20 (d, $J_{1',2'}$ = 8.4 Hz, 1 H, 1'-H), 6.81 (m, 2 H, H(Ar)), 7.13-7.44 (m, 23 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CD₃OD): $\delta = 14.2 C_{\delta}(Bu)$, 23.8 (C_y(Bu)), 29.0 (C_a(Bu)), 33.7 (C_b(Bu)), 53.5, 53.7 (2 OMe), 69.4 (C-5'), 71.9, 74.1 (4 CH₂(Bn)), 75.4 (C-3'), 77.2 (CH₂(Bn)), 79.1 (C-1'), 80.3 (C-4'), 83.5 (C-2'), 128.7-129.9 (CH(Ar)), 138.3-143.8 (Cq(Bn), C-3, C-6), 155.5, 156.3 (C-4, C-5), 166.3, 168.1 (2 CO) ppm. MS (CI+, NH₃): $m/z = 853 \text{ [M]}^+$. IR: $\tilde{v} = 1740 \text{ (C=O) cm}^{-1}$. $[a]_D^{20} = -52.5 \text{ (c}$ = 0.36, CHCl₃), C₅₂H₅₆N₂O₉·0.5H₂O (862.01): C 72.45, H 6.66, N 3.25; found C 72.61, H 6.48, N 3.04. 35-(1'S): Syrup; R_f (petroleum ether/EtOAc, 75:25) = 0.28. ¹H NMR (400 MHz, CD₃OD): δ = 0.67 (t, ${}^{3}J$ = 7.0 Hz, 3 H, H_{δ}(Bu)), 0.98 (m, 2 H, H_{γ}(Bu)), 1.14 (m, 1 H, H_{β}(Bu)), 1.27 (m, 1 H, H_{β}(Bu)), 2.58 (m, 1 H, H_{α}(Bu)), 2.92 (m, 1 H, H_a(Bu)), 3.54 (s, 3 H, OMe), 3.72 (dd, $J_{5'a,5'b} = 10.6, J_{5'a,4'}$ = 3.8 Hz, 1 H, 5'a-H), 3.83 (dd, $J_{5'b,5'a}$ = 10.6, $J_{5'b,4'}$ = 1.8 Hz, 1 H, 5'b-H), 4.00 (m, 4 H, OMe, 4'-H), 4.09 (d, ${}^{2}J$ = 11.2 Hz, 1 H, CH2(Bn)), 4.23 (m, 3 H, CH2(Bn), 3'-H), 4.51 (m, 4 H, CH2(Bn), 2'-H), 4.64 (m, 1 H, CH2(Bn)), 4.77 (m, 1 H, CH2(Bn)), 5.24 (d, $J_{1',2'} = 9.4$ Hz, 1 H, 1'-H), 6.78 (m, 2 H, H(Ar)), 7.08–7.32 (m, 23 H, H(Ar)) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 14.2 (C_{δ}(Bu)), 23.8 ($C_{\gamma}(Bu)$), 29.1 ($C_{\alpha}(Bu)$), 33.1 ($C_{\beta}(Bu)$), 53.4, 53.7 (2 OMe), 70.0 (C-5'), 72.7, 74.4, 74.7 (5CH₂(Bn)), 76.3 (C-1'), 79.1 (C-3'), 79.5 (C-4'), 82.3 (C-2'), 128.5-129.8 (CH(Ar)), 138.0-144.2 (Cq(Bn), C-3, C-6), 155.1, 155.3 (C-4, C-5), 166.7, 167.9 (2 CO) ppm. MS (CI⁺, NH₃): m/z = 853 [M]⁺. IR: $\tilde{v} = 1740$ (C=O) cm⁻¹. $[a]_D^{20}$ = +49.0 (c = 0.28, CHCl₃). C₅₂H₅₆N₂O₉•0.5H₂O (862.01): C 72.45, H 6.66, N 3.25; found C 72.57, H 6.51, N 3.09.

Dimethyl 5-Phenyl-4-(2',3',5'-tri-O-benzyl-a-D-ribofuranosyl)pyridazine-3,6-dicarboxylate (36): This compound was synthesized according to procedure D. From dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12) (652 mg, 3.30 mmol) and acetylene derivative 16α (757 mg, 1.50 mmol) in toluene (4 mL), 36 (493 mg, 49%) was obtained after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 8:2 to 1:1). Pale yellow solid; m.p. 140–141 °C; R_f (petroleum ether/EtOAc, 7:3) = 0.25. ¹H NMR (300 MHz, CDCl₃): δ = 3.43–3.58 (m, 2 H, 5'-H), 3.61 (s, 3 H, OMe), 3.69 (m, 1 H, 2'-H), 3.87 (m, 1 H, 4'-H), 3.92 (s, 3 H, OMe), 3.95 (m, 1 H, 3'-H), 4.14 (d, ${}^{2}J$ = 12.2 Hz, 1 H, CH₂(Bn)), 4.38– 4.53 (m, 4 H, $CH_2(Bn)$), 4.75 (d, 2J = 12.2 Hz, 1 H, $CH_2(Bn)$), 4.29 (d, $J_{1',2'}$ = 2.6 Hz, 1 H, 1'-H), 6.87–7.37 (m, 20 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 52.7, 52.9 (2 OMe), 60.4 (C-5'), 73.2, 73.4 (3 CH₂(Bn)), 78.3 (C-2' or C-4'), 79.0 (C-1'), 79.1 (C-4' or C-2'), 80.2 (C-3'), 127.4-128.9 (CH(Ar)), 132.9-138.0 (Cq(Bn), Cq(Ph), C-3, C-6), 153.2, 154.3 (C-4, C-5), 164.8, 165.8 (2 CO) ppm. MS (CI⁺, NH₃): $m/z = 675 [M + H]^+$. IR: $\tilde{v} = 1739$ (CO) cm⁻¹. $[a]_{D}^{20} = -58.9$ (c = 1.00, CHCl₃).

Dimethyl 4-(2',3',4',6'-Tetra-*O***-benzyl-α-D-galactopyranosyl)-5phenylpyridazine-3,6-dicarboxylate (37):** This compound was synthesized according to procedure D. From dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (**12**) (138 mg, 0.69 mmol) and acetylene derivative **27** (216 mg, 0.35 mmol) in toluene (4 mL), **37** (119 mg, 46%) was obtained after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 8:2 to 1:1). Yellow syrup; R_f (petroleum ether/EtOAc, 7:3) = 0.26. ¹H NMR (300 MHz, CDCl₃): δ = 3.03 (m, 1 H, 2'-H), 3.61 (m, 1 H, 3'-H), 3.65 (s, 3 H, OMe), 3.77 (dd, $J_{6'a,5'}$ = 2.4, $J_{6'a,6'b}$ = 12.2 Hz, 1 H,

6'a-H), 3.81–3.89 (m, 3 H, 6'b-H, CH₂(Bn)), 3.98 (s, 3 H, OMe), 4.03–4.10 (m, 3 H, 4'-H, CH₂(Bn)), 4.35–4.47 (m, 3 H, 5'-H, CH₂(Bn)), 4.50 (d, ${}^{2}J$ = 12.6 Hz, 1 H, CH₂(Bn)), 4.60 (d, ${}^{2}J$ = 12.6 Hz, 1 H, CH₂(Bn)), 5.12 (d, $J_{1',2'}$ = 1.6 Hz, 1 H, 1'-H), 5.94 (d, ${}^{3}J$ = 6.7 Hz, 1 H, H(Ar)), 6.69–7.34 (m, 24 H, H(Ar)) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 52.8 (2 OMe), 64.8 (C-6'), 66.7 (C-1'), 71.6, 71.9, 72.4 (4 CH₂(Bn)), 72.7 (C-3', C-4'), 74.0 (C-2'), 76.6 (C-5'), 127.3–129.0 (CH(Ar), Cq(Ph)), 132.4–138.7 (Cq(Bn), C-3, C-6), 152.7, 155.7 (C-4, C-5), 165.0, 166.2 (2 CO) ppm. MS (CI⁺, NH₃): m/z = 795 [M + H]⁺. IR: \tilde{v} = 1746 (CO) cm⁻¹. [a]_D²⁰ = -65.4 (*c* = 1.00, CHCl₃).

Dimethyl 4-(6'-O-Acetyl-2',3',4'-tri-O-benzyl-a-D-galactopyranosyl)-5-phenylpyridazine-3,6-dicarboxylate (38): This compound was synthesized according to procedure D. From dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12) (117 mg, 0.59 mmol) and acetylene derivative 29 (310 mg, 0.54 mmol) in toluene (3 mL), 38 (180 mg, 45%) was obtained after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 8:2 to 1:1). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 7:3) = 0.27. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.96$ (s, 3 H, Me(OAc)), 3.06 (m, 1 H, 2'-H), 3.57 (m, 1 H, 3'-H), 3.57 (s, 3 H, OMe), 3.86 (m, 1 H, 6'a-H), 3.86 (s, 3 H, OMe), 3.90-3.99 (m, 4 H, 4'-H, CH₂(Bn)), 4.18 (m, 1 H, 5'-H), 4.26 (d, ${}^{2}J = 12.7$ Hz, 1 H, CH₂(Bn)), 4.39 (m, 2 H, CH₂(Bn)), 5.10 (dd, $J_{6'b,6'a} = 12.8, J_{6'b,5'} = 10.5 \text{ Hz}, 1 \text{ H}, 6'b-\text{H},), 5.47 \text{ (br. s, 1 H, 1'-}$ H), 5.90 (d, ${}^{3}J$ = 7.3 Hz, 1 H, H(Ar)), 6.68 (d, ${}^{3}J$ = 6.9 Hz, 2 H, H(Ar)), 6.87 (m, 2 H, H(Ar)), 7.13-7.32 (m, 14 H, H(Ar)), 7.47 (m, 1 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 21.0 (Me(OAc)), 52.5, 52.8 (2 OMe), 59.3 (C-6'), 66.3 (C-1'), 71.3 (C-3'), 71.6, 71.9 (3 CH₂(Bn)), 72.5 (C-4'), 73.3 (C-2'), 74.8 (C-5'), 127.5-129.2 (CH(Ar), Cq(Ph)), 132.5, 135.4 (C-3, C-6), 137.4-137.9 (Cq(Bn)), 155.6, 152.9 (C-4, C-5), 166.3, 164.9 (2 CO-(CO₂Me)), 171.3 (CO(OAc)) ppm. MS (CI⁺, NH₃): m/z = 747 [M $+ \text{H}^{+}$. $[a]_{D}^{20} = -96.0 \ (c = 1.00, \text{CHCl}_{3}).$

Dimethyl 4-(2',3',4',6'-Tetra-O-benzyl-a-D-glucopyranosyl)-5-phenylpyridazine-3,6-dicarboxylate (39): This compound was synthesized according to procedure D. From dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (12) (139 mg, 0.70 mmol) and acetylene derivative 21 (200 mg, 0.32 mmol) in toluene (4 mL), 39 (127 mg, 50%) was obtained after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 8:2 to 1:1). Yellow solid; m.p. 158–160 °C; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.10. ¹H NMR (300 MHz, CDCl₃): δ = 3.24 (m, 1 H, 2'-H), 3.44 (m, 1 H, 6'a-H), 3.57 (s, 3 H, OMe), 3.62 (m, 2 H, 6'b-H, 3'-H), 3.78 (m, 1 H, 4'-H), 3.82 (s, 3 H, OMe), 4.04 (m, 4 H, 5'-H, CH₂(Bn)), 4.37-4.52 (m, 5 H, CH₂(Bn)), 5.17 (d, $J_{1',2'}$ = 1.7 Hz, 1 H, 1'-H), 5.78 (d, ³J = 7.1 Hz, 1 H, H(Ar)), 6.78 (m, 2 H, H(Ar)), 7.00–7.25 (m, 22 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 52.8 (2 OMe), 66.6 (C-6'), 70.5 (C-1'), 70.6, 70.8 (2 CH₂(Bn)), 72.6 (C-5'), 73.2, 73.7 (2 CH₂(Bn)), 74.2 (C-2'), 77.3 (C-4'), 79.8 (C-3'), 127.8-129.8 (CH(Ar), Cq(Ph)), 132.6-138.2 (Cq(Bn), C-3, C-6), 153.2, 155.3 (C-4, C-5), 166.1, 164.8 (2 CO) ppm. MS (CI⁺, NH₃): m/z = 795 $[M + H]^+$. $[a]_D^{20} = -76.1$ (c = 1.00, CHCl₃).

Procedure E – **Ring Contraction:** Zinc dust (20 equiv.) was added to a refluxing solution of pyridazine (1 equiv.) in glacial acetic acid. After being stirred for 30 min, the reaction mixture was cooled, filtered through a pad of Celite, and concentrated under reduced pressure. The crude oil was purified by flash chromatography on silica gel.

Dimethyl (1'R,2'S,3'R,4'R)-3-(1',2',3',4',5'-Pentabenzoxypentyl)-4-phenyl-1H-pyrrole-2,5-dicarboxylate [40-(1'R)]: This compound was synthesized according to procedure E. From pyridazine 33-(1'R) (1.29 g, 1.48 mmol) and zinc dust (1.94 g, 29.60 mmol) in ace-

tic acid (17 mL), 40-(1'R) (535 mg, 46%) was obtained after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 80:20). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 7:3) = 0.50. ¹H NMR (400 MHz, C₆D₆, 320 K): δ = 3.25 (s, 3 H, OMe), 3.34 (s, 3 H, OMe), 3.84-3.89 (m, 2 H, 3'-H, 5'a-H), 4.03 (dd, $J_{5'b,5'a} = 10.9, J_{5'b,4'} = 2.1$ Hz, 1 H, 5'b-H), 4.19–4.24 (m, 3 H, 2'-H, 4'-H, CH₂(Bn)), 4.35 (d, ${}^{2}J$ = 12.1 Hz, 1 H, CH₂(Bn)), 4.39 (d, ${}^{2}J = 12.1$ Hz, 1 H, CH₂(Bn)), 4.57–4.66 (m, 5 H, CH₂(Bn)), 4.72 $(d, {}^{2}J = 12.1 \text{ Hz}, 1 \text{ H}, \text{CH}_{2}(\text{Bn})), 4.82 (d, {}^{2}J = 11.3 \text{ Hz}, 1 \text{ H},$ CH₂(Bn)), 5.79 (d, $J_{1',2'}$ = 8.6 Hz, 1 H, 1'-H), 7.05–7.32 (m, 30 H, H(Ar)), 9.47 (br. s, 1 H, NH) ppm. 13 C NMR (100 MHz, C₆D₆, 320 K): δ = 51.7, 51.9 (2 OMe), 72.6 (CH₂(Bn)), 72.9 (C-5'), 73.4, 73.7, 74.1, 76.4 (4 CH₂(Bn)), 78.2 (C-1'), 81.2 (C-4'), 82.3 (C-3'), 82.5 (C-2'), 123.7, 123.8 (C-2, C-5), 133.0, 135.1 (C-3, C-4), 127.9-132.6 (CH(Ar), Cq(Ph)), 140.2-140.8 (Cq(Bn)), 161.2 (2 CO) ppm. IR: $\tilde{v} = 3282$ (NH), 1716 (C=O) cm⁻¹. $[a]_D^{20} = +13.6$ (c = 1.38, CHCl₃).

Dimethyl (1'S,2'S,3'R,4'R)-3-(1',2',3',4',5'-Pentabenzoxypentyl)-4phenyl-1H-pyrrole-2,5-dicarboxylate [40-(1'S)]: This compound was synthesized according to procedure E. Pyridazine 33-(1'S) (1.13 g, 1.29 mmol) and zinc (1.70 g, 25.90 mmol) in acetic acid (15 mL) afforded 40-(1'S) (661 mg, 60%) after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 80:20). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.19. ¹H NMR (400 MHz, C₆D₆, 328 K): δ = 3.27 (s, 3 H, OMe), 3.39 (s, 3 H, OMe), 3.83 (dd, $J_{5'a,5'b} = 10.6$, $J_{5'a,4'} = 5.3$ Hz, 1 H, 5'a-H), 3.92 (dd, $J_{5'b,5'a} = 10.6$, $J_{5'b,4'} = 1.5$ Hz, 1 H, 5'b-H), 4.22 (m, 1 H, 4'-H), 4.32-4.46 (m, 5 H, 3'-H, CH2(Bn)), 4.53-4.68 (m, 6 H, 2'-H, CH₂(Bn)), 4.77 (d, ${}^{2}J$ = 11.5 Hz, 1 H, CH₂(Bn)), 5.56 (d, $J_{1',2'}$ = 7.9 Hz, 1 H, 1'-H), 7.01-7.44 (m, 30 H, H(Ar)), 9.62 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, C_6D_6 , 328 K): $\delta = 51.0$, 51.3 (2 OMe), 71.6 (CH₂(Bn)), 71.9 (C-5'), 72.6, 73.5, 73.7, 73.8 (4 CH₂(Bn)), 74.3 (C-1'), 79.6 (C-4'), 80.5 (C-3'), 81.3 (C-2'), 122.3, 123.8 (C-2, C-5), 130.0, 134.6 (C-3, C-4), 127.2-131.7 (CH(Ar), Cq(Ph)), 139.5–140.5 (Cq(Bn)), 160.5–160.8 (2 CO) ppm. MS (CI⁺, NH₃): m/z (%) = 877 [M + NH₄]⁺. IR: \tilde{v} = 3444 (NH), 1707 (C=O) cm⁻¹. $[a]_{546}^{20} = +23.0$ (c = 0.27, CHCl₃). HRMS: calcd. for $C_{54}H_{54}NO_9 [M + H]^+$ 860.3799; found 860.3760.

Dimethyl (1'R,2'S,3'R,4'R)-4-Butyl-3-(1',2',3',4',5'-pentabenzoxypentyl)-1H-pyrrole-2,5-dicarboxylate [41-(1'R)]: This compound was synthesized according to procedure E. From pyridazine 35-(1'R) (1.06 g, 1.24 mmol) and zinc dust (1.62 g, 24.90 mmol) in acetic acid (14 mL), 41-(1'R) (713 mg, 68%) was obtained after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 80:20). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 7:3) = 0.54. ¹H NMR (400 MHz, C₆D₆, 328 K): $\delta = 0.89$ (t, ³J = 7.2 Hz, 3 H, $H_{\delta}(Bu)$), 1.41 (m, 2 H, $H_{\gamma}(Bu)$), 1.70 (m, 2 H, $H_{\beta}(Bu)$), 3.12 (m, 2 H, $H_{\alpha}(Bu)$), 3.37 (s, 3 H, OMe), 3.46 (s, 3 H, OMe), 3.84 (dd, $J_{5'a,5'b} = 10.5$, $J_{5'a,4'} = 5.6$ Hz, 1 H, 5'a-H), 4.01–4.06 (m, 2 H, 3'-H, 5'b-H), 4.16 (m, 1 H, 4'-H), 4.35–4.47 (m, 3 H, CH₂(Bn)), 4.55–4.68 (m, 5 H, CH₂(Bn), 2'-H), 4.77 (d, ${}^{2}J$ = 11.6 Hz, 1 H, CH₂(Bn)), 4.85–5.00 (m, 2 H, CH₂(Bn)), 5.82 (d, J_{1',2'} = 7.9 Hz, 1 H, 1'-H), 7.06-7.42 (m, 25 H, H(Ar)), 9.32 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, C₆D₆, 328 K): δ = 13.9 (C_{δ}(Bu)), 23.6 $(C_{\gamma}(Bu))$, 26.3 $(C_{\alpha}(Bu))$, 33.8 $(C_{\beta}(Bu))$, 50.9, 51.2 (2 OMe), 72.2 (C-5'), 72.3, 73.0, 73.3, 73.7, 75.8 (5CH2(Bn)), 77.5 (C-1'), 80.6 (C-4'), 81.2 (C-3'), 83.7 (C-2'), 122.8, 122.9 (C-2, C-5), 134.8 (C-3 or C-4), 127.3-128.5 (C-3 or C-4, CH(Ar)), 139.6-140.2 (Cq(Bn)), 160.6, 160.8 (2 CO) ppm. MS (CI⁺, NH₃): m/z (%) = 857 [M + NH₄]⁺. IR: $\tilde{v} = 3449$ (NH), 1710 (C=O) cm⁻¹. $[a]_{578}^{20} = +10.9$ (c = 0.41, CHCl₃).

Dimethyl (1'*S*,2'*S*,3'*R*,4'*R*)-4-Butyl-3-(1',2',3',4',5'-pentabenzoxy-pentyl)-1*H*-pyrrole-2,5-dicarboxylate [41-(1'*S*)]: This compound

was synthesized according to procedure E. Pyridazine 35-(1'S)(478 mg, 0.56 mmol) and zinc (733 mg, 11.21 mmol) in acetic acid (6 mL), afforded **41-(1'S)** (309 mg, 60%) after purification by flash column chromatography on silica gel (petroleum ether/EtOAc, 80:20). Syrup; R_f (petroleum ether/EtOAc, 7:3) = 0.45. ¹H NMR (400 MHz, C₆D₆, 328 K): $\delta = 0.89$ (t, ³J = 7.3 Hz, 3 H, H_{δ}(Bu)), 1.41 (m, 2 H, H_y(Bu)), 1.70 (m, 2 H, H_b(Bu)), 2.88–3.16 (m, 2 H, $H_{\alpha}(Bu)$), 3.39 (s, 3 H, OMe), 3.47 (s, 3 H, OMe), 3.93 (dd, $J_{5'a,5'b}$ = 10.7, $J_{5'a,4'}$ = 5.6 Hz, 1 H, 5'a-H), 4.05 (dd, $J_{5'b,5'a}$ = 10.7, $J_{5'b,4'}$ = 1.9 Hz, 1 H, 5'b-H), 4.29 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.40– 4.47 (m, 4 H, CH₂(Bn), 3'-H, 4'-H), 4.54–4.61 (m, 4 H, CH₂(Bn), 2'-H), 4.76–4.88 (m, 3 H, CH₂(Bn)), 5.03 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 5.82 (d, $J_{1',2'}$ = 9.1 Hz, 1 H, 1'-H), 6.99–7.43 (m, 25 H, H(Ar)), 9.37 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, C₆D₆, 328 K): δ = 14.0 (C_{δ}(Bu)), 23.6 (C_{γ}(Bu)), 25.9 (C_{α}(Bu)), 34.0 (C₆(Bu)), 50.9, 51.1 (2 OMe), 71.9, 72.1 (CH₂(Bn), C-5'), 72.7, 73.7, 73.8, 74.1 (4 CH₂(Bn)), 74.7 (C-1'), 79.9, 80.7 (C-3', C-4'), 82.0 (C-2'), 122.2, 123.9 (C-2, C-5), 129.0, 134.5 (C-3, C-4), 127.4-128.5 (CH(Ar)), 139.2–140.3 (Cq(Bn)), 160.7 (2 CO) ppm. MS (CI⁺, NH₃): $m/z = 857 [M + NH_4]^+$. IR: $\tilde{v} = 3451$ (NH), 1713, 1697 (C=O) cm⁻¹. $[a]_{365}^{20} = -23.3$ (c = 0.64, CHCl₃). $C_{52}H_{57}NO_9{\cdot}0.5H_2O$ (849.02): C 73.56, H 6.89, N 1.65; found C 73.73, H 6.76, N 1.29.

Dimethyl (1'R,2'S,3'R,4'R)-3-(2',3',5'-Tribenzoxy-1',4'-dihydroxypentyl)-4-phenyl-1H-pyrrole-2,5-dicarboxylate [42-(1'R)]: This compound was obtained as a byproduct (<10%) during the synthesis of 40-(1'R). Syrup; R_f (petroleum ether/EtOAc, 7:3) = 0.13. ¹H NMR (400 MHz, CDCl₃): δ = 3.31 (m, 1 H, 3'-H), 3.41 (d, $J_{5',4'}$ = 5.2 Hz, 2 H, 5'-H), 3.69 (s, 3 H, OMe), 3.85 (s, 3 H, OMe), 3.92 $(t, {}^{3}J = 6.4 \text{ Hz}, 1 \text{ H}, 2' \text{-H}), 4.07 \text{ (m, 1 H, 4' -H)}, 4.32\text{--}4.39 \text{ (m, 3 H, 1)}$ CH₂(Bn)), 4.50–4.52 (m, 3 H, CH₂(Bn)), 5.43 (d, $J_{1',2'}$ = 6.4 Hz, 1 H, 1'-H), 7.12–7.35 (m, 20 H, H(Ar)), 9.83 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.8, 52.1 (2 OMe), 70.2 (C-5'), 71.9, 72.1, 73.4 (3 CH₂(Bn)), 77.6 (C-1'), 77.8 (C-3'), 79.4 (C-2'), 81.1 (C-4'), 121.8, 122.8 (C-2, C-5), 132.7, 133.2 (C-3, C-4), 127.1-131.3 (CH(Ar), Cq(Ph)), 138.1-138.4 (Cq(Bn)), 160.5 (2 CO) ppm. MS (CI⁺, NH₃): $m/z = 679 [M + H - H_2O]^+$. IR: $\tilde{v} = 3436$ (NH), 3285 (OH), 1725, 1711 (C=O) cm⁻¹. $[a]_{365}^{20} = +15.3$ (c = 0.61, CHCl₃).

Dimethyl (1'R,2'S,3'R,4'R)-4-Butyl-3-(2',3',5'-tribenzoxy-1',4'-dihydroxypentyl)-1H-pyrrole-2,5-dicarboxylate [43-(1'R)]: This compound was obtained as a byproduct (<10%) during the synthesis of 41-(1'R). Solid; m.p. 83-85 °C; R_f (petroleum ether/EtOAc, 7:3) = 0.26. ¹H NMR (400 MHz, C₆D₆, 328 K): δ = 0.94 (t, ³J = 7.3 Hz, 3 H, $H_{\delta}(Bu)$), 1.40 (m, 2 H, $H_{\gamma}(Bu)$), 1.60–1.86 (m, 2 H, $H_{\beta}(Bu)$), 2.95 (m, 1 H, H_a(Bu)), 3.13 (m, 1 H, H_a(Bu)), 3.36 (s, 3 H, OMe), 3.43 (s, 3 H, OMe), 3.70 (dd, $J_{5'a,5'b} = 10.4$, $J_{5'a,4'} = 4.7$ Hz, 1 H, 5'a-H), 3.77 (dd, $J_{5'b,5'a} = 10.4$, $J_{5'b,4'} = 5.0$ Hz, 1 H, 5'b-H), 4.25 (m, 1 H, 3'-H), 4.36–4.48 (m, 5 H, CH₂(Bn), 2'-H, 4'-H), 4.53 (d, $^{2}J = 11.5$ Hz, 1 H, CH₂(Bn)), 4.64 (d, $^{2}J = 12.0$ Hz, 1 H, CH₂(Bn)), 4.74 (d, ${}^{2}J$ = 12.0 Hz, 1 H, CH₂(Bn)), 5.86 (d, $J_{1',2'}$ = 7.8 Hz, 1 H, 1'-H), 7.03–7.39 (m, 15 H, H(Ar)), 9.33 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, C_6D_6 , 328 K): $\delta = 14.1$ ($C_{\delta}(Bu)$), 23.3 ($C_{\gamma}(Bu)$), 25.4 (C_a(Bu)), 34.5 (C_β(Bu)), 50.9, 51.2 (2 OMe), 71.3 (C-5'), 72.7, 72.8, 73.8 (3 CH₂(Bn)), 77.1 (C-1'), 79.2 (C-3'), 82.7 (C-2'), 83.0 (C-4'), 122.1, 123.0 (C-2, C-5), 134.3 (C-3 or C-4), 127.4-128.6 (C-3 or C-4, CH(Ar)), 139.3–139.5 (Cq(Bn)), 160.4, 160.6 (2 CO) ppm. MS (CI⁺, NH₃): $m/z = 642 [M + H - H_2O]^+$. IR: $\tilde{v} = 3267 (NH + H_2O)^+$ OH), 1711, 1687 (C=O) cm⁻¹. $[a]_{365}^{20} = +28.0$ (c = 0.49, CHCl₃).

Dimethyl 4-Phenyl-3-(2',3',5'-tri-*O***-benzyl-α-D-ribofuranosyl)-1***H***pyrrole-2,5-dicarboxylate (44):** This compound was synthesized according to procedure E from pyridazine **36** (188 mg, 0.28 mmol) and zinc dust (362 mg, 5.58 mmol) in glacial acetic acid (3 mL). Chromatographic purification on silica gel (petroleum ether/ EtOAc, 8:2) gave compound **44** (184 mg, 56%). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 7:3) = 0.53. ¹H NMR (300 MHz, CDCl₃): δ = 3.31 (m, 2 H, 5'-H), 3.42 (m, 1 H, 4'-H), 3.65 (s, 3 H, OMe), 3.81 (s, 3 H, OMe), 4.22–4.31 (dd, $J_{3',2'}$ = 9.7, $J_{3',4'}$ = 4.1 Hz, 1 H, 3'-H), 4.22–4.31 (m, 3 H, CH₂(Bn)), 2'-H), 4.36–4.40 (m, 2 H, CH₂(Bn)), 4.47–4.55 (m, 2 H, CH₂(Bn)), 5.66 (d, $J_{1',2'}$ = 5.7 Hz, 1 H, 1'-H), 7.01 (m, 2 H, H(Ar)), 7.18–7.32 (m, 18 H, H(Ar)), 9.64 (br. s, 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 51.8, 51.9 (2 OMe), 70.0 (C-5'), 72.8, 73.1, 73.4 (3 CH₂(Bn)), 77.3 (C-2'), 77.9 (C-4'), 78.4 (C-1'), 79.5 (C-3'), 120.3, 122.3 (C-2, C-5), 128.9, 132.9, 134.9 (C-3, C-4, Cq(Ph)), 126.6–132.9 (CH(Ar)), 138.0–138.3 (Cq(Bn)), 160.4, 160.9 (2 CO) ppm. MS (CI⁺, NH₃): *mlz* (%) = 662 [M + H]⁺.

Dimethyl 3-(2',3',4',6'-Tetra-O-benzyl-a-D-galactopyranosyl)-4phenyl-1H-pyrrole-2,5-dicarboxylate (45): This compound was synthesized according to procedure E from pyridazine 37 (188 mg, 0.24 mmol) and zinc dust (196 mg, 3.00 mmol) in glacial acetic acid (2 mL). Chromatographic purification on silica gel (petroleum ether/EtOAc, 7:2) gave compound 45 (129 mg, 70%). Yellow syrup; (petroleum ether/EtOAc, 7:3) = 0.47. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.56$ (s, 3 H, OMe), 3.61 (s, 3 H, OMe), 3.61 (m, 2 H, 6'-H), 3.66 (m, 2 H, 2'-H, 3'-H), 3.80 (m, 1 H, 4'-H), 3.88 (m, 1 H, 5'-H), 4.06 (d, ${}^{2}J$ = 12.1 Hz, 1 H, CH₂(Bn)), 4.23 (d, ${}^{2}J$ = 12.1 Hz, 1 H, CH₂(Bn)), 4.32 (d, ${}^{2}J$ = 11.5 Hz, 1 H, CH₂(Bn)), 4.36 (d, ${}^{2}J$ = 11.5 Hz, 1 H, CH₂(Bn)), 4.40 (s, 2 H, CH₂(Bn)), 4.48 (s, 2 H, CH₂(Bn)), 5.40 (d, $J_{1',2'}$ = 1.3 Hz, 1 H, 1'-H), 6.83–7.27 (m, 25 H, H(Ar)), 9.50 (s, 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 51.0 (2 OMe), 65.6 (C-6'), 66.7 (C-1'), 71.8, 72.3, 72.7, 72.9 (4 CH₂(Bn)), 73.5 (C-4'), 74.8 (C-5'), 75.5, 77.2 (C-2', C-3'), 120.8, 121.9 (C-2, C-5), 126.4-130.5 (CH(Ar), Cq(Ph)), 133.0, 135.2 (C-3, C-4), 138.1-138.8 (Cq(Bn)), 161.0-162.0 (2 CO) ppm. MS (CI+, NH₃): $m/z = 782 [M + H]^+$. $[a]_D^{20} = -19.7 (c = 0.5, CHCl_3)$.

Dimethyl 3-(6'-O-Acetyl-2',3',4'tri-O-benzyl-a-D-galactopyranosyl)-4-phenyl-1H-pyrrole-2,5-dicarboxylate (46): This compound was synthesized according to procedure E from pyridazine 38 (146 mg, 0.19 mmol) and zinc dust (254 mg, 3.90 mmol) in glacial acetic acid (1.5 mL). Chromatographic purification on silica gel (petroleum ether/EtOAc, 6:4) gave compound 46 (81 mg, 57%). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.41. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.92$ (s, 3 H, Me(OAc)), 3.59 (s, 3 H, OMe), 3.61 (s, 3 H, OMe), 3.67 (m, 2 H, 2'-H, 4'-H or 3'-H), 3.79 (m, 2 H, 5'-H, 4'-H or 3'-H), 4.03 (d, ${}^{2}J$ = 12.1 Hz, 1 H, CH₂(Bn)), 4.17 (m, 2 H, CH₂(Bn), 6'a-H), 4.37 (d, ${}^{2}J$ = 11.7 Hz, 1 H, CH₂(Bn)), 4.43 (d, ${}^{2}J = 11.7$ Hz, 1 H, CH₂(Bn)), 4.51 (s, 2 H, CH₂(Bn)), 4.65 (dd, $J_{6'b,6'a}$ = 12.8, $J_{6'b,5'}$ = 8.8 Hz, 1 H, 6'b-H), 5.48 (d, $J_{1',2'}$ = 1.8 Hz, 1 H, 1'-H), 6.82 (m, 2 H, H(Ar)), 7.01-7.27 (m, 18 H, H(Ar)), 9.55 (s, 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 21.2 (Me(OAc)), 51.8 (2 OMe), 60.7 (C-6'), 66.2 (C-1'), 71.5, 72.8, 78.8 (3 CH₂(Bn)), 73.1 (C-4'), 73.2 (C-3'), 74.2 (C-2'), 76.5 (C-5'), 120.8, 121.8 (C-2, C-5), 126.4-130.4 (CH(Ar), Cq(Ph)), 132.8, 135.2 (C-3, C-4), 137.9, 138.4, 138.5 (Cq(Bn)), 160.4, 160.8 (2 CO- (CO_2Me)), 171.2 (CO(OAc)) ppm. MS (CI^+, NH_3) : m/z = 734 [M + H]+.

Dimethyl 3-(2',3',4',6'-Tetra-O-benzyl-α-D-glucopyranosyl)-4phenyl-1*H*-pyrrole-2,5-dicarboxylate (47): This compound was synthesized according to procedure E from pyridazine **39** (60 mg, 0.07 mmol) and zinc dust (100 mg, 1.51 mmol) in glacial acetic acid (1 mL). Chromatographic purification on silica gel (petroleum ether/EtOAc, 7:3) gave compound **47** (16 mg, 27%). Syrup; $R_{\rm f}$ (petroleum ether/EtOAc, 8:2) = 0.27. ¹H NMR (300 MHz, CDCl₃): δ

= 2.50 (dd, $J_{6'a,6'b}$ = 10.8, $J_{6'a,5'}$ = 2.1 Hz, 1 H, 6'a-H), 3.20 (dd, $J_{6'b,6'a}$ = 10.8, $J_{6'b,5'}$ = 2.1 Hz, 1 H, 6'b-H), 3.45 (m, 1 H, 5'-H), 3.56 (s, 3 H, OMe), 3.59 (s, 3 H, OMe), 3.70 (m, 1 H, 3'-H), 3.79 (m, 1 H, 4'-H), 3.90 (m, 1 H, 2'-H), 4.33–4.60 (m, 8 H, CH₂(Bn)), 5.56 (d, $J_{1',2'}$ = 3.0 Hz, 1 H, 1'-H), 6.91–7.16 (m, 25 H, H(Ar)), 9.61 (s, 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 52.9 (2 OMe), 60.0 (C-6'), 70.2 (C-1'), 71.3, 71.9 (2 CH₂(Bn)), 72.3 (C-5'), 72.8, 73.4 (2 CH₂(Bn)), 77.3 (C-2'), 78.2 (C-4'), 80.9 (C-3'), 120.1, 122.2 (C-2, C-5), 126.4–130.2 (CH(Ar), Cq(Ph)), 132.6, 135.7 (C-3, C-4), 137.7–138.6 (Cq(Bn)), 160.4, 160.9 (2 CO) ppm. MS (CI⁺, NH₃): m/z = 782 [M + H]⁺.

Procedure F – **Debenzylation of Pyrroles:** A solution of benzylated pyrrole in MeOH was hydrogenated at room temperature over Pd/ C (100% w/w) for 1 h under a slight overpressure of hydrogen. The mixture was then filtered trough a bed of Celite and the solvent was removed under reduced pressure.

Dimethyl (1'*R***,2'***S***,3'***R***,4'***R***)-3-(1',2',3',4',5'-Pentahydroxypentyl)-4phenyl-1***H***-pyrrole-2,5-dicarboxylate [48-(1'***R***)]: This compound was synthesized according to procedure F. From pyrrole 40-(1'***R***) (454 mg, 0.54 mmol) and Pd/C (450 mg) in MeOH (5 mL), 48-(1'***R***) (188 mg, 89%) was obtained. White solid; m.p. 94 °C;** *R***_f (dichloromethane/MeOH, 85:15) = 0.49. ¹H NMR (400 MHz, CD₃OD): \delta = 3.46 (dd, J_{5'a,5'b} = 11.7, J_{5'a,4'} = 6.0 Hz, 1 H, 5'a-H), 3.52–3.59 (m, 2 H, 5'b-H, 3'-H), 3.65 (s, 4 H, OMe, 4'-H), 3.92 (s, 3 H, OMe), 4.13 (t, ³***J* **= 6.9 Hz, 1 H, 2'-H), 5.06 (d, J_{1',2'} = 6.9 Hz, 1 H, 1'-H), 7.32–7.38 (m, 5 H, H(Ph)) ppm. ¹³C NMR (100 MHz, CD₃OD): \delta = 51.9, 52.4 (2 OMe), 63.8 (C-5'), 72.4 (C-3'), 75.2 (C-2'), 79.6 (C-1'), 86.2 (C-4'), 123.5, 124.3 (C-2, C-5), 134.0 135.3 (C-3, C-4), 128.2–132.2 (CH(Ph), Cq(Ph)), 162.3 (2 CO) ppm. MS (CI⁺, NH₃):** *m/z* **(%) = 392 [M + H – H₂O]⁺. IR: \tilde{v} = 3427 (NH + OH), 1709 (C=O) cm⁻¹. [a]₂^D = –12.3 (***c* **= 1.50, MeOH)**

Dimethyl (1'S,2'S,3'R,4'R)-3-(1',2',3',4',5'-Pentahydroxypentyl)-4phenyl-1H-pyrrole-2,5-dicarboxylate [48-(1'S)]: This compound was synthesized according to procedure F. From pyrrole 40-(1'S) (300 mg, 0.35 mmol) and Pd/C (300 mg) in MeOH (3 mL), 48-(1'S) (140 mg, 98%) was obtained. White solid; m.p. 86 °C; $R_{\rm f}$ (dichloromethane/MeOH, 85:15) = 0.60. ¹H NMR (400 MHz, CD₃OD): δ = 3.57 (dd, $J_{5'a,5'b}$ = 11.2, $J_{5'a,4'}$ = 5.8 Hz, 1 H, 5'a-H), 3.64 (s, 3 H, OMe), 3.68 (dd, $J_{5'b,5'a}$ = 11.2, $J_{5'b,4'}$ = 3.4 Hz, 1 H, 5'b-H), 3.74-3.82 (m, 2 H, 3'-H, 4'-H), 3.95 (s, 3 H, OMe), 4.03 (dd, J_{2',1'} = 8.9, $J_{2',3'}$ = 5.0 Hz, 1 H, 2'-H), 4.86 (d, $J_{1',2'}$ = 8.9 Hz, 1 H, 1'-H), 7.26–7.38 (m, 5 H, H(Ph)) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, CD₃OD): δ = 51.9, 52.8 (2 OMe), 64.2 (C-5'), 69.6 (C-1'), 73.9 (C-4'), 75.0 (C-2'), 75.8 (C-3'), 123.2, 123.4 (C-2, C-5), 132.7, 133.7, 135.1 (C-3, C-4, Cq(Ph)), 128.2-132.0 (CH(Ph)), 162.3, 163.7 (2 CO) ppm. MS (CI^+, NH_3) : $m/z = 410 [M + H]^+$. IR: $\tilde{v} = 3353 (NH + OH)$, 1685 (C=O) cm⁻¹. $[a]_{436}^{20} = -12.3$ (c = 2.14, MeOH).

Dimethyl (1'*R*,2'*S*,3'*R*,4'*R*)-4-Butyl-3-(1',2',3',4',5'-pentahydroxypentyl)-1*H*-pyrrole-2,5-dicarboxylate [49-(1'*R*)]: This compound was synthesized according to procedure F. From pyrrole 41-(1'*R*) (735 mg, 0.88 mmol) and Pd/C (740 mg) in MeOH (7 mL), 49-(1'*R*) (290 mg, 85%) was obtained. Syrup; *R*_f (dichloromethane/ MeOH, 85:15) = 0.52. ¹H NMR (400 MHz, CD₃OD): δ = 0.94 (t, ³*J* = 7.3 Hz, 3 H, H_δ(Bu)), 1.36–1.45 (m, 2 H, H_γ(Bu)), 1.47–1.56 (m, 2 H, H_β(Bu)), 2.74 (m, 1 H, H_α(Bu)), 2.87 (m, 1 H, H_α(Bu)), 3.64–3.69 (m, 2 H, 2'-H, 5'a-H), 3.74–3.83 (m, 3 H, 3'-H, 4'-H, 5'b-H), 3.87 (s, 3 H, OMe), 3.92 (s, 3 H, OMe), 5.26 (d, *J*_{1',2'} = 2.8 Hz, 1 H, 1'-H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 14.2 (C_δ(Bu)), 23.7 (C_γ(Bu)), 25.4 (C_α(Bu)), 34.5 (C_β(Bu)), 52.0, 52.9 (2 OMe), 64.3 (C-5'), 68.4 (C-1'), 73.3 (C-3'), 74.2 (C-4'), 77.7 (C-2'), 123.0, 123.2 (C-2, C-5), 132.4, 132.5 (C-3, C-4), 162.3, 164.0 (2 CO) ppm. IR: \tilde{v} = 3416 (NH + OH), 1692 (C=O) cm⁻¹. [a]₁²⁰ = +8.2 (c = 1.50, MeOH). HRMS: calcd. for $C_{17}H_{28}NO_9 [M + H]^+$ 390.1743; found 390.1764.

Dimethyl (1'S,2'S,3'R,4'R)-4-Butyl-3-(1',2',3',4',5'-pentahydroxypentyl)-1H-pyrrole-2,5-dicarboxylate [49-(1'S)]: This compound was synthesized according to procedure F. From pyrrole 41-(1'S) (309 mg, 0.37 mmol) and Pd/C (310 mg) in MeOH (3 mL), **49-(1'S)** (136 mg, 95%) was obtained. Syrup; $R_{\rm f}$ (dichloromethane/ MeOH, 86:14) = 0.47. ¹H NMR (300 MHz, CD₃OD): δ = 0.95 (t, 3 H, H_{δ}(Bu), ³*J* = 7.2), 1.34–1.62 (m, 4 H, H_{β}(Bu), H_{γ}(Bu)), 2.77– 2.95 (m, 2 H, H_{α}(Bu)), 3.66 (dd, $J_{5'a,5'b}$ = 11.2, $J_{5'a,4'}$ = 6.1 Hz, 1 H, 5'a-H), 3.78-3.84 (m, 2 H, 3'-H, 5'b-H), 3.87 (s, 3 H, OMe), 3.91–3.96 (m, 4 H, 4'-H, OMe), 4.02 (dd, $J_{2',1'} = 8.1$, $J_{2',3'} = 5.5$ Hz, 1 H, 2'-H), 5.15 (d, $J_{1',2'}$ = 8.1 Hz, 1 H, 1'-H) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 14.3 (C_{δ}(Bu)), 23.9 (C_{γ}(Bu)), 25.6 (C_α(Bu)), 34.7 (C_β(Bu)), 52.0, 52.7 (2 OMe), 64.1 (C-5'), 69.5 (C-1'), 73.8 (C-4'), 75.3 (C-3'), 76.0 (C-2'), 123.0, 123.1 (C-2, C-5), 132.3, 134.4 (C-3, C-4), 162.5, 163.9 (2 CO) ppm. IR: $\tilde{v} = 3350$ (NH + OH), 1686 (C=O) cm⁻¹. $[a]_{436}^{20} = -31.0$ (c = 1.35, MeOH).

Procedure G – **Lactonization:** Na₂CO₃ (1 equiv.) was added to a solution of pyrrole (1 equiv.) in MeOH. The mixture was stirred for 1 h at room temperature and filtered trough a pad of Celite. After concentration, the crude was purified by preparative TLC (CH₂Cl₂/MeOH, 88:12).

Methyl (4R,5S,1'R,2'R)-4-Hydroxy-7-oxo-3-phenyl-5-(1',2',3'-trihydroxypropyl)-1,4,5,7-tetrahydropyrano[3,4-b]pyrrole-2-carboxylate [50-(4R)]: This compound was synthesized according to procedure G. From pyrrole 48-(1'R) (90 mg, 0.22 mmol) in MeOH (3 mL), **50-(4***R***)** (41 mg, 49%) was obtained. White solid; m.p. 125 °C; $R_{\rm f}$ (dichloromethane/MeOH, 85:15) = 0.39. ¹H NMR (400 MHz, CD₃OD): δ = 3.72 (dd, $J_{3'a,3'b}$ = 11.5, $J_{3'a,2'}$ = 6.5 Hz, 1 H, 3'a-H), 3.77 (s, 3 H, OMe), 3.81 (dd, $J_{3'b,3'a} = 11.5$, $J_{3'b,2'} = 3.9$ Hz, 1 H, 3'b-H), 3.95 (m, 1 H, 2'-H), 4.17 (dd, $J_{1',5} = 7.7, J_{1',2'} = 4.7$ Hz, 1 H, 1'-H), 4.59 (dd, $J_{5,1'} = 7.7$, $J_{5,4} = 1.9$ Hz, 1 H, 5-H), 4.79 (d, $J_{4.5} = 1.9$ Hz, 1 H, 4-H), 7.31–7.53 (m, 5 H, H(Ph)) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 52.1 (OMe), 60.9 (C-4), 64.0 (C-3'), 72.1 (C-1'), 73.8 (C-2'), 84.3 (C-5), 122.1, 125.8 (C-2, C-5), 129.8, 131.9, 133.9 (C-3, C-4, Cq(Ph)), 128.5-131.3 (CH(Ph)), 160.7, 162.4 (2 CO) ppm. IR: $\tilde{v} = 3420$ (NH + OH), 1720 (C=O) cm⁻¹. $[a]_D^{20} =$ -31.3 (c = 2.05, MeOH). HRMS: calcd. for C₁₈H₂₀NO₈ [M + H]⁺ 378.1189; found 378.1174.

Methyl (4*S*,5*S*,1′*R*,2′*R*)-4-Hydroxy-7-oxo-3-phenyl-5-(1′,2′,3′-trihydroxypropyl)-1,4,5,7-tetrahydropyrano[3,4-*b*]pyrrole-2-carboxylate [50-(4*S*)]: This compound was synthesized according to procedure G. From pyrrole 48-(1′*S*) (400 mg, 0.98 mmol) in MeOH (5 mL), 50-(4*S*) (178 mg, 48%) was obtained after purification by preparative TLC. White needles; m.p. 142 °C; $R_{\rm f}$ (dichloromethane/MeOH, 85:15) = 0.46. ¹H NMR (400 MHz, CD₃OD): δ = 3.63–3.75 (m, 7 H, 1′-H, 2′-H, 3′-H, OMe), 4.83 (dd, $J_{5,1'}$ = 7.5, $J_{5,4}$ = 1.6 Hz, 1 H, 5-H), 4.99 (d, $J_{4,5}$ = 1.6 Hz, 1 H, 4-H), 7.32–7.53 (m, 5 H, H(Ph)) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 52.1 (OMe), 61.2 (C-4), 64.1 (C-3′), 73.2 (C-1′), 73.9 (C-2′), 89.1 (C-5), 121.8, 125.5 (C-2, C-5), 129.9, 132.1, 134.0 (C-3, C-4, Cq(Ph)), 128.2–131.3 (CH(Ph)), 159.9, 162.4 (2 CO) ppm. IR: \tilde{v} = 3439 (NH + OH), 1727, 1700 (2 C=O) cm⁻¹. [a]²_D = +53.2 (c = 1.68, MeOH). HRMS: calcd. for C₁₈H₁₉NO₈Na [M + Na]⁺ 400.1008; found 400.1009.

Methyl (4*R*,5*S*,1'*R*,2'*R*)-3-Butyl-4-hydroxy-7-oxo-5-(1',2',3'-trihydroxypropyl)-1,4,5,7-tetrahydropyrano[3,4-*b*]pyrrole-2-carboxylate [51-(4*R*)]: This compound was synthesized according to procedure G. From pyrrole 49-(1'*R*) (197 mg, 0.51 mmol) in MeOH (2 mL), 51-(4*R*) (69 mg, 38%) was obtained after purification by preparative TLC. Syrup; R_f (dichloromethane/MeOH, 88:12) = 0.28. ¹H NMR (400 MHz, CD₃OD): δ = 0.94 (t, ³*J* = 7.3 Hz, 3 H, H_δ(Bu)),

1.40 (m, 2 H, $H_{\gamma}(Bu)$), 1.50–1.67 (m, 2 H, $H_{\beta}(Bu)$), 2.85 (m, 2 H, $H_{\alpha}(Bu)$), 3.74 (dd, $J_{3'a,3'b} = 11.5$, $J_{3'a,2'} = 6.6$ Hz, 1 H, 3'a-H), 3.83 (dd, $J_{3'b,3'a} = 11.5$, $J_{3'b,2'} = 4.0$ Hz, 1 H, 3'b-H), 3.87 (s, 3 H, OMe), 4.00 (m, 1 H, 2'-H), 4.19 (dd, $J_{1',5} = 7.9$, $J_{1',2'} = 4.6$ Hz, 1 H, 1'-H), 4.56 (dd, $J_{5,1'} = 7.9$, $J_{5,4} = 2.1$ Hz, 1 H, 5-H), 5.00 (d, $J_{4,5} = 2.1$ Hz, 1 H, 4-H) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta = 14.2$ (C_{δ}(Bu)), 23.7 (C_{γ}(Bu)), 25.3 (C_{α}(Bu)), 34.3 (C_{β}(Bu)), 52.1 (OMe), 60.7 (C-4), 63.9 (C-3'), 72.1 (C-1'), 73.8 (C-2'), 84.1 (C-5), 121.5, 126.2 (C-2, C-5), 130.8, 131.8 (C-3, C-4), 160.7, 162.5 (2 CO) ppm. IR: $\tilde{\nu} = 3491$ (NH + OH), 1715 (C=O) cm⁻¹. $[a]_{20}^{20} = +21.2$ (c = 1.65, MeOH). HRMS: calcd. for C₁₆H₂₄NO₈ [M + H]⁺ 358.1502; found 358.1490.

Methyl (4S,5S,1'R,2'R)-3-Butyl-4-hydroxy-7-oxo-5-(1',2',3'-trihydroxypropyl)-1,4,5,7-tetrahydropyrano[3,4-b]pyrrole-2-carboxylate [51-(4S)]: This compound was synthesized according to procedure G. From pyrrole 49-(1'S) (110 mg, 0.28 mmol) in MeOH (2 mL), 51-(4S) (73 mg, 72%) was obtained after purification by preparative TLC. Syrup; $R_{\rm f}$ (dichloromethane/MeOH, 86:14) = 0.37. ¹H NMR (400 MHz, CD₃OD): $\delta = 0.95$ (t, ${}^{3}J = 7.3$ Hz, 3 H, H_{δ}(Bu)), 1.40 (m, 2 H, H₂(Bu)), 1.56–1.62 (m, 2 H, H₆(Bu)), 2.86 (t, ${}^{3}J$ = 7.8 Hz, 2 H, H_a(Bu)), 3.68-3.88 (m, 7 H, 1'-H, 2'-H, 3'-H, OMe), 4.79 (dd, $J_{5,1'}$ = 6.6, $J_{5,4}$ = 3.0 Hz, 1 H, 5-H), 5.20 (d, $J_{4,5}$ = 3.0 Hz, 1 H, 4-H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 14.2 (C_{δ}(Bu)), 23.7 (C_v(Bu)), 25.4 (C_a(Bu)), 34.2 (C_b(Bu)), 52.0 (OMe), 61.6 (C-4), 64.2 (C-3'), 73.2 (C-1'), 73.7 (C-2'), 88.8 (C-5), 121.1, 126.2 (C-2, C-5), 130.3, 131.7 (C-3, C-4), 160.2, 162.7 (2 CO) ppm. IR: v = 3357 (NH + OH), 1714 (C=O) cm⁻¹. $[a]_D^{20} = +16.0$ (c = 1.00, MeOH). HRMS: calcd. for $C_{16}H_{23}NO_8Na [M + Na]^+ 380.1321;$ found 380.1325.

General Procedure H – Debenzylation Followed by Saponification of the Ester Groups: A solution of benzylated pyrrole in MeOH in the presence of Pd/C (100% w/w) under H₂ was allowed to stir for 1 h at room temperature. The suspension was filtered through a pad of Celite and the filtrate was evaporated. Aqueous NaOH (0.5 mL, 2 M) was immediately added to the crude debenzylated pyrrole intermediate dissolved in THF (2 mL). After total hydrolysis as monitored by TLC, acidic resin (Dowex 50W*8) was added to neutralize the mixture. Filtration through a pad of Celite and concentration under vacuum gave the diacid. No suitable purification methods were found (silica gel, neutral alumina, reversed phase).

(1'*R*,2'*S*,3'*R*,4'*R*)-3-(1',2',3',4',5'-Pentahydroxypentyl)-4-phenyl-1*H*-pyrrole-2,5-dicarboxylic Acid [52-(1'*R*)]: This compound was synthesized according to the general procedure H. From pyrrole diester 40-(1'*R*) (92 mg, 0.105 mmol) in MeOH (3 mL), 52-(1'*R*) (60 mg) was obtained. Syrup. ¹H NMR (300 MHz, CD₃OD): δ = 3.32 (dd, $J_{5'a,5'b}$ = 11.9, $J_{5'a,4'}$ = 4.5 Hz, 1 H, 5'a-H), 3.42 (dd, $J_{5'b,5'a}$ = 11.9, $J_{5'b,4'}$ = 3.4 Hz, 1 H, 5'b-H), 3.55–3.64 (m, 2 H, 3'-H, 4'-H), 4.21 (dd, $J_{2',1'}$ = 7.5, $J_{2',3'}$ = 6.3 Hz, 1 H, 2'-H), 5.09 (d, $J_{1',2'}$ = 7.5 Hz, 1 H, 1'-H), 7.09–7.29 (m, 5 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 63.7 (C-5'), 72.5, 86.1 (C-3', C-4'), 75.8 (C-2'), 80.0 (C-1'), 123.1, 130.0, 138.0 (4 C_{pyrrole}), 127.0–132.7 (CH(Ph), Cq(Ph)), 169.1 (2 CO) ppm. IR: \tilde{v} = 3350 (NH + OH) cm⁻¹.

(1'*S*,2'*S*,3'*R*,4'*R*)-3-(1',2',3',4',5'-Pentahydroxypentyl)-4-phenyl-1*H*-pyrrole-2,5-dicarboxylic Acid [52-(1'*S*)]: This compound was synthesized according to the general procedure H. From pyrrole diester 40-(1'*S*) (155 mg, 0.178 mmol) in MeOH (3 mL), 52-(1'*S*) (70 mg) was obtained. Syrup. ¹H NMR (300 MHz, CD₃OD): δ = 3.51 (dd, $J_{5'a,5'b}$ = 11.1, $J_{5'a,4'}$ = 5.8 Hz, 1 H, 5'a-H), 3.67 (dd, $J_{5'b,5'a}$ = 11.1, $J_{5'b,4'}$ = 3.8 Hz, 1 H, 5'b-H), 3.71–3.80 (m, 2 H, 3'-H, 4'-H), 3.97 (dd, $J_{2',1'}$ = 8.2, $J_{2',3'}$ = 5.1 Hz, 1 H, 2'-H), 4.80 (d,
$$\begin{split} J_{1',2'} &= 8.2 \text{ Hz}, 1 \text{ H}, 1'\text{-H}), 7.28\text{--}7.40 \text{ (m, 5 H, H(Ar)) ppm.} ^{13}\text{C} \\ \text{NMR} \text{ (75 MHz, CD}_3\text{OD}): \delta &= 64.0 \text{ (C-5')}, 69.5 \text{ (C-1')}, 73.8\text{--}75.3 \\ \text{(C-3', C-4')}, 75.7 \text{ (C-2')}, 123.4, 123.9, 133.4, 135.2 \text{ (4 } \text{C}_{\text{pyrrole}}), \\ 128.1\text{--}132.1 \text{ (CH(Ar), Cq(Ph))}, 163.3, 164.9 \text{ (2 CO) ppm. IR: } \tilde{v} = 3350 \text{ (NH + OH) cm}^{-1}. \end{split}$$

(1'*R*,2'*S*,3'*R*,4'*R*)-3-Butyl-4-(1',2',3',4',5'-pentahydroxypentyl)-1*H*-pyrrole-2,5-dicarboxylic Acid [53-(1'*R*)]: This compound was synthesized according to the general procedure H. From pyrrole diester 41-(1'*R*) (50 mg, 0.060 mmol) in MeOH (3 mL), 53-(1'*R*) (18 mg) was obtained. Syrup. ¹H NMR (300 MHz, CD₃OD): δ = 0.94 (t, ³*J* = 7.3 Hz, 3 H, H_δ(Bu)), 1.27–1.63 (m, 4 H, H_γ(Bu), H_β(Bu)), 2.72–2.96 (m, 2 H, H_α(Bu)), 3.69–3.89 (m, 3 H, 4'-H, 5'-H), 4.12 (m, 1 H, 3'-H), 4.31 (m, 1 H, 2'-H), 5.14 (d, *J*_{1',2'} = 7.7 Hz, 1 H, 1'-H) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 14.3 (C_δ(Bu)), 23.9 (C_γ(Bu)), 25.6 (C_α(Bu)), 35.2 (C_β(Bu)), 63.7 (C-5'), 72.5 (C-3'), 76.2 (C-2'), 79.3 (C-1'), 87.0 (C-4'), 120.8, 127.4, 134.7 (4 C_{pyrrole}), 163.4, 163.7 (2 CO) ppm. IR: \tilde{v} = 3421 (NH + OH), 1678 (C=O) cm⁻¹.

(1'*S*,2'*S*,3'*R*,4'*R*)-3-Butyl-4-(1',2',3',4',5'-pentahydroxypentyl)-1*H*pyrrole-2,5-dicarboxylic Acid [53-(1'*S*)]: This compound was synthesized according to the general procedure H. From pyrrole diester 41-(1'*S*) (40 mg, 0.048 mmol) in MeOH (3 mL), 53-(1'*S*) (11 mg) was obtained. Syrup. ¹H NMR (400 MHz, CD₃OD): $\delta =$ 0.93 (t, ³*J* = 7.2 Hz, 3 H, H_δ(Bu)), 1.39 (m, 2 H, H_γ(Bu)), 1.55 (m, 2 H, H_β(Bu)), 2.74 (m, 1 H, H_α(Bu)), 2.91 (m, 1 H, H_α(Bu)), 3.68 (dd, *J*_{5'a,5'b} = 11.1, *J*_{5'a,4'} = 6.0 Hz, 1 H, 5'a-H), 3.77 (m, 2 H, 3'-H, 5'b-H), 3.91 (m, 1 H, 4'-H), 3.98 (t, ³*J* = 6.3 Hz, 1 H, 2'-H), 4.89 (d, *J*_{1',2'} = 6.9 Hz, 1 H, 1'-H) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta =$ 14.4 (C_δ(Bu)), 23.9 (C_γ(Bu)), 25.4 (C_α(Bu)), 34.8 (C_β(Bu)), 64.1 (C-5'), 70.1 (C-1'), 74.2 (C-4'), 75.2 (C-3'), 77.9 (C-2'), 120.6, 128.4, 133.8 (4 C_{pyrrole}), 164.5 (2 CO) ppm. IR: $\tilde{v} =$ 3421 (NH + OH), 1678 (C=O) cm⁻¹.

(2*R*,3*R*,3a*R*,8b*R*)-7-Methoxycarbonyl-3-hydroxy-2-(hydroxymethyl)-5-oxo-8-phenyl-2,3,3a,5,6,8b-hexahydrofuro[2',3':5,6]pyrano-[3,4-*b*]pyrole 54: This compound was synthesized according to procedure F. From pyrole 44 (86 mg, 0.13 mmol) and Pd/C (110 mg) in methanol (2.5 mL), 54 (39 mg, 78%) was obtained. Syrup; *R*_f (EtOAc) = 0.41. ¹H NMR (400 MHz, CD₃OD): δ = 3.65 (m, 1 H, 5'a-H), 3.76 (s, 3 H, OMe), 3.79 (m, 1 H, 5'b-H), 3.91 (m, 1 H, 4'-H), 4.39 (m, 1 H, 3'-H), 4.92 (m, 1 H, 1'-H), 4.99 (m, 1 H, 2'-H), 7.39–7.17 (m, 5 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 52.2 (OMe), 62.7 (C-5'), 69.2 (C-1'), 73.8 (C-3'), 84.1 (C-4'), 84.9 (C-2'), 121.6, 125.7 (C-2, C-5), 127.6, 130.8, 133.5 (C-3, C-4, Cq(Ph)), 127.6–131.6 (CH(Ar)), 159.2, 162.1 (2 CO) ppm. MS (EI): *m*/*z* = 359 [M]⁺.

(2R,3R,4S,4aR,9bR)-8-Methoxycarbonyl-3,4-dihydroxy-2-(hydroxymethyl)-6-oxo-9-phenyl-2,3,4,4a,7,9b-hexahydro-2H-pyrano-[2',3':5,6]pyrano[3,4-b]pyrrole (55): This compound was synthesized according to procedure F. From pyrrole 45 (52 mg, 0.07 mmol) and Pd/C (50 mg) in methanol (2 mL), 55 (19 mg, 73%) was obtained. White solid; m.p. 145–146 °C; $R_{\rm f}$ (EtOAc) = 0.49. ¹H NMR (300 MHz, CDCl₃): δ = 3.47 (m, 1 H, 6'a-H), 3.59 (dd, $J_{6'b,5'}$ = 5.1, $J_{6'b,6'a} = 11.5$ Hz, 1 H, 6'b-H), 3.70 (m, 1 H, 5'-H), 3.77 (s, 3 H, OMe), 3.98 (dd, $J_{3',4'} = 3.4$, $J_{3',2'} = 6.1$ Hz, 1 H, 3'-H), 4.05 (t, $J_{4',3'} = 3.4$ Hz, 1 H, 4'-H), 4.60 (dd, $J_{1',2'} = 3.6$, $J_{2',3'} = 6.1$ Hz, 1 H, 2'-H), 5.19 (d, $J_{1',2'}$ = 3.6 Hz, 1 H, 1'-H), 7.20–7.40 (m, 5 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 50.8 (OMe), 58.6 (C-6'), 61.6 (C-1'), 66.9 (C-4'), 69.4 (C-3'), 75.6 (C-5'), 81.7 (C-2'), 120.7–132.2 (CH(Ar), 4 C_{pyrrole}), 158.3, 160.8 (2 CO) ppm. MS (CI^+, NH_3) : $m/z = 407 [M + NH_4]^+$. $[a]_D^{20} = +42.0 (c = 0.23)$, MeOH).

Methyl (2*R*,3*S*,4*S*,4*a*,9*bR*)-3,4-Dihydroxy-2-(hydroxymethyl)-6oxo-9-phenyl-2,3,4,4a,7,9b-hexahydro-2*H*-pyrano[2',3':5,6]pyrano-[3,4-*b*]pyrrole-8-carboxylate (56): This compound was synthesized according to procedure F. From pyrrole 47 (50 mg, 0.06 mmol) and Pd/C (20%, 50 mg) in methanol (2 mL), 56 (5 mg, 20%) was obtained. Syrup; R_f (EtOAc) = 0.35. ¹H NMR (300 MHz, CDCl₃): δ = 2.71 (dd, $J_{6'a,6'b}$ = 11.5, $J_{6'a,5}$ = 2.5 Hz, 1 H, 6'a-H), 3.03 (m, 1 H, 5'-H), 3.36 (m, 1 H, 6'b-H), 3.48 (t, $J_{4',5'}$ = $J_{4',3'}$ = 8.9 Hz, 1 H, 4'-H), 3.74 (s, 3 H, OMe), 3.76 (m, 1 H, 3'-H), 4.42 (dd, $J_{2',3'}$ = 8.4, $J_{2',1'}$ = 6.0 Hz, 1 H, 2'-H), 5.61 (d, $J_{1',2'}$ = 6.0 Hz, 1 H, 1'-H), 7.26–7.40 (m, 5 H, H(Ar)) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 50.8 (OMe), 59.6 (C-6'), 66.6 (C-1'), 68.8 (C-4'), 73.2 (C-3'), 74.8 (C-5'), 81.7 (C-2'), 120.7–132.2 (CH(Ar), 4 C_{pyrrole}), 157.8, 160.7 (2 CO) ppm.

Acknowledgments

This work was supported by the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche with a doctoral fellowship to S. N.

- [1] H. B. Mereyala, M. Joe, Curr. Med. Chem. 2001, 1, 293–300.
- [2] H. M. R. Hoffmann, J. Rabe, Angew. Chem. Int. Ed. Engl. 1985, 24, 94–110.
- [3] C. V. Ramana, B. Srinivas, V. G. Puranik, M. K. Gurjar, J. Org. Chem. 2005, 70, 8216–8219.
- [4] W. Cardona, W. Quinones, S. Robledo, I. D. Velez, J. Murga, J. Garcia-Fortanet, M. Carda, D. Cardona, F. Echeverri, *Tetrahedron* 2006, 62, 4086–4092.
- [5] A. Alkofahi, W.-W. Ma, A. T. McKenzie, S. R. Byrn, J. L. McLaughlin, J. Nat. Prod. 1989, 52, 1371–1373.
- [6] T. K. M. Shing, V. W.-F. Tai, J. Org. Chem. 1999, 64, 2140– 2144.
- [7] X.-P. Fang, J. E. Anderson, C.-J. Chang, P. E. Fanwick, J. L. McLaughlin, J. Chem. Soc., Perkin Trans. 1 1990, 1655–1661.
- [8] A. A. E. El-Zayat, N. R. Ferrigni, T. G. McCloud, A. T. Mc-Kenzie, S. R. Byrn, J. M. Cassady, C.-j. Chang, J. L. McLaughlin, *Tetrahedron Lett.* 1985, 26, 955–956.
- [9] P. Kongsaeree, S. Prabpai, N. Sriubolmas, C. Vongvein, S. Wiyakrutta, J. Nat. Prod. 2003, 66, 709–711.
- [10] S. Kiren, L. J. Williams, Org. Lett. 2005, 7, 2905-2908.
- [11] M. D. Antoun, N. T. Mendoza, Y. R. Rios, G. R. Proctor, D. B. M. Wickramaratne, J. M. Pezzuto, A. D. Kinghorn, J. Nat. Prod. 1993, 56, 1423–1425.
- [12] S. Kamisuki, S. Takahashi, Y. Mizushina, K. Sakaguchi, T. Nakata, F. Sugawara, *Bioorg. Med. Chem.* 2004, 12, 5355–5359.
- [13] L. Sequeira, R. J. Hemingway, S. M. Kupchan, Science 1968, 161, 789–790.
- [14] U. Rinner, T. Hudlicky, H. Gordon, G. R. Pettit, Angew. Chem. Int. Ed. 2004, 43, 5342–5346.
- [15] S. Piacente, C. Pizza, N. De Tommasi, N. Mahmood, J. Nat. Prod. 1996, 59, 565–569.
- [16] D. L. Boger, R. S. Coleman, J. S. Panek, D. Yohannes, J. Org. Chem. 1984, 49, 4405–4409.

- [17] G. T. Manh, R. Hazard, J.-P. Pradère, A. Tallec, E. Raoult, D. Dubreuil, *Tetrahedron Lett.* 2000, 41, 647–650.
- [18] G. T. Manh, R. Hazard, A. Tallec, J. P. Pradere, D. Dubreuil, M. Thiam, L. Toupet, *Electrochim. Acta* 2002, 47, 2833–2841.
- [19] D. Dubreuil, M. Pipelier, H. Bakkali, J.-P. Pradère, P. Le Pape (CNRS), patent: FR 0606842, 2006.
- [20] D. Dubreuil, M. Pipelier, H. Bakkali, C. Thobie, J.-P. Pradère, E. Léonel, J.-Y. Nedelec, S. Sengmany (CNRS) patent: FR 0606841, 2006.
- [21] S. Naud, M. Pipelier, C. Chaumette, G. Viault, F. Huet, S. Legoupy, D. Dubreuil, *Synlett* 2007, 403–406.
- [22] R. Barker, H. G. J. Fletcher, J. Org. Chem. 1961, 26, 4605-4609.
- [23] D. F. Purdy, L. B. Zintek, V. Nair, *Nucleosides Nucleotides* 1994, 13, 109–126.
- [24] J. G. Buchanan, A. R. Edgar, M. J. Power, J. Chem. Soc., Perkin Trans. 1 1974, 1943–1949.
- [25] $C_{34}H_{31}O_4$: reflection intensities were collected on a Nonius-Bruker Kappa CCD diffractometer using Mo- $KL_{2,3}$ radiation. $C_{34}H_{31}O_4$ (M = 503.6): monoclinic, space group $P2_1$, $D_c =$ 1.267 g cm⁻³, a = 20.366(4), b = 4.6292(8), c = 14.686(2) Å, $\beta =$ 107.63(2)°, V = 1319.5(4), Z = 2, $\lambda = 0.71069$ Å, $\mu =$ 0.082 mm⁻¹, T = 120 K, $R(F^2) = 0.071$ for 4378 observed reflections [$I > 2\sigma(I)$] and $R_w(F^2) = 0.149$ for all 5561 reflections. CCDC-293348 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [26] M. Yokoyama, H. Toyoshima, M. Shimizu, H. Togo, J. Chem. Soc., Perkin Trans. 1 1997, 29–33.
- [27] J. Marco-Contelles, E. de Opazo, N. Arroyo, *Tetrahedron* 2001, 57, 4729–4739.
- [28] D. Zhai, W. Zhai, R. M. Williams, J. Am. Chem. Soc. 1988, 110, 2501–2505.
- [29] J. Désiré, A. Veyrières, Carbohydr. Res. 1995, 268, 177-186.
- [30] A. Dondoni, G. Mariotti, A. Marra, J. Org. Chem. 2002, 67, 4475–4486.
- [31] U. Joshi, S. Josse, M. Pipelier, F. Chevallier, J.-P. Pradère, R. Hazard, S. Legoupy, F. Huet, D. Dubreuil, *Tetrahedron Lett.* 2004, 45, 1031–1033.
- [32] D. L. Boger, R. S. Coleman, J. S. Panek, F. X. Huber, J. Sauer, J. Org. Chem. 1985, 50, 5377–5379.
- [33] D. L. Boger, J. S. Panek, M. Patel, Org. Synth. 1992, 70, 79-92.
- [34] T. Kämpchen, W. Massa, W. Overheu, R. Schmidt, G. Seitz, *Chem. Ber.* 1982, 115, 683–694.
- [35] These compounds were not purified because small amounts of the pyrroles **48** and **49** cyclize on silica gel.
- [36] $C_{18}H_{19}NO_8 2H_2O$: The data set was collected on a Nonius-Bruker Kappa CCD diffractometer using Mo- $KL_{2,3}$ radiation. $C_{18}H_{23}NO_{10}$ (M = 413.4): orthorhombic, space group $P2_12_12_1$, $D_c = 1.468$ g cm⁻³, a = 7.3437(2), b = 11.2939(5), c = 22.5409(10) Å, V = 1869.52(13), Z = 4, $\lambda = 0.71069$ Å, $\mu = 0.121$ mm⁻¹, T = 120 K, $R(F^2) = 0.075$ for 3408 observed reflections $[I > 2\sigma(I)]$ and $R_w(F^2) = 0.1179$ for all 3971 reflections. CCDC-290600 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: February 6, 2007 Published Online: May 25, 2007