A Strategy for the Targeting of Photosensitizers. Synthesis, Characterization, and Photobiological Property of Porphyrins Bearing **Glycodendrimeric Moieties**

Séverine Ballut,^{†,‡} Delphine Naud-Martin,^{†,‡} Bernard Loock,^{†,‡,§} and Philippe Maillard^{*,†,‡,§}

⁺UMR 176 CNRS/Institut Curie, Institut Curie, Bât 110, University Paris-Sud, F-91405 Orsay, France [‡]Institut Curie, Section de Recherches, Centre Universitaire, University Paris-Sud, F-91405 Orsay, France [§]GDR CNRS 3049 "Médicaments Photoactivables-Photochimiothérapie (PHOTOMED)", France

Supporting Information

This paper describes the conception, synthesis, and characterization of new tetrapyrrolic chromophores bearing glycodendrimeric moieties inducing a potential increase of tumor targeting by a cluster effect. Two families of monoglycodendrimeric photosensitizers bearing three glycosyl units were designed, prepared with an acceptable overall efficiency and characterized by NMR, UV-visible, and fluorescence spectroscopies. The polarity and log P were evaluated by HPLC and the stir-flask method, respectively. The in vitro photoefficiency against two human tumor cell lines was assessed. The presence of the glycodendrimeric group does not appear to increase the tumor in vitro targeting.

INTRODUCTION

The incorporation of carbohydrates on tetrapyrrolic macrocyclic cores usable in photodynamic therapy (PDT) continues to be pursued vigorously by a number of research teams, particularly during these last two years.¹⁻³ In recent years, several articles and reviews describing the utility of porphyrin-based compounds in photodynamic therapy were published.⁴⁻⁶ In our laboratory, efforts have been focused on the preparation and in vitro evaluation of the phototoxicity of a broad series of neutral glycoconjugated tetrapyrrolic macrocycles as potential photosensitizing agents for photodynamic therapy.⁷⁻⁹ In these systems, glycoconjugation modifies the amphiphilicity of macrocycles and can favor their interactions with the tumor cell membrane.¹⁰ Concerning this latter property, indications are that glycosylation provides the possibility for specific interactions of the conjugate with

membrane lectin-type receptors. These receptors are overexpressed in certain malignant cells.^{11,12} Thus glycoconjugation can be a potentially effective strategy for targeting photosensitizers toward tumor cells. In the last ten years, we have explored the effects of the number, the position, and the nature of O- or S-glycoconjugated moieties on the in vitro photoactivity. Generally, it has been shown that amphiphilic triglycoconjugated sensitizers are more phototoxic than either the parent tetrapyrrolic or the symmetrical tetraglycoconjugated derivatives.¹ Recently, we have shown that the presence of a diethylene glycol linking a monosaccharide as α -mannose or α -galactose to the macrocycle optimizes the in vitro¹⁴ and in vivo¹⁵ photoactivity.

Received: November 3, 2010 Published: March 01, 2011

Figure 1. Structures of dendrimeric and glycodendrimeric porphyrins.

The photodynamic efficiency of a photosensitizer was determined by its cellular uptake and accurate subcellular localization in tumor cells. The identification of transport mechanisms through the biological membrane was a crux. This transport could be steered by the action of a membrane receptor such as lectin or by an active mechanism. It would be advantageous to use one of these mechanisms for the optimization of tumor targeting of photosensitizers. In this context, the use of glycodendrimeric groups as recognition motifs of lectin is very exciting. It has been widely accepted that carbohydrate-protein interactions play a crucial role in a large number of biological processes, such as pathogenic infections, receptor-mediated endocytosis, inflammation, and metastasis.¹⁶⁻¹⁸ Carbohydrates receptors implied in carbohydrate-protein interactions are multisubunit and multivalent proteins with many important biological functions.¹⁹⁻²³ Since most proteins possess multiple carbohydrate-recognition domains and typically exist as oligomeric structures, this limitation is often overcome through multivalency.²⁴ Due to the weak nature, in the millimolar range, of interactions between single specific carbohydrate and receptor protein subunits, nature uses cluster carbohydrates in order to obtain biologically meaningful affinities for the receptors.

The cluster effect appears when multivalent carbohydrates interact with more than one receptor-binding site simultaneously and cooperatively, resulting in better cellular recognition. Several methods of carbohydrate clustering have been described, including the attachment of carbohydrates to natural scaffolds, synthetic polymers, synthetic glycopeptides, or simple oligomerization through organic linkers.^{25,26} Among them, dendritic structures or glycodendrimers are emerging as the ligand for carbohydrate-binding proteins.^{27,28} Due to rapid advances in this area, promising potential medicinal applications appeared during the past decade, including treatment of cancers (renal cell carcinoma, melanoma, breast cancer, eradication of metastasis). $^{29-32}$ Recently, Ballardini et al. described the synthesis and photophysical properties of two dendrimer macrocycles, incorporating tetrasubstituted porphyrin units as core and, in one case, four benzyloylated or deprotected β -D-glucopyranosyl and in an other case, twelve acetylated- β -D-glucopyranosyl or β -D-glucopyranosyl residues at the peripheries of the tetrapyrrolic macrocycle.33 These unprotected tetrasubstituted molecules are symmetric and highly water-soluble but no in vitro photoefficiency was described. In another approach, Matsuo et al. described the synthesis of glycosylated myoglobin by a reconstitutional method as an

artificial prosthetic group inserted into sperm whale apomyoglobin to afford a β -galactosylated myoglobin.³⁴

We had shown that an amphiphilic structure of the glycoconjugated photosensitizers induced a best photocytotoxicity in vitro.¹³ In the aim to increase this photoefficiency, we designed two new families of glycoconjugated photosensitizers 1 and 2– 15 bearing only one glycodendrimer moiety, with variable length for the spacer linking carbohydrate, various sugars, and two different amino acids (Figure 1). In two recent articles, we have described the specific interactions of two glycodendrimeric porphyrins with concanavalin A, a protein recognizing α -mannosyl groups.^{35,36}

RESULTS AND DISCUSSION

In this paper, we report the synthesis and characterization of two families of glycodendrimeric *meso*-tetraarylporphyrins **1**–**15** (Figure 1). The first one (compound 1) presents a relative steric hindrance in the surrounding of glycoside moieties reducing the mobility of sugars. In the second one (compounds **2**–**15**), the presence of $-CH_2CH_2CONH-(CH_2CH_2O)-$, $-CH_2CH_2-CONH-(CH_2CH_2O)_2-$, or $-CH_2CH_2CONH-(CH_2CH_2O)_3-$ linkers between amino acid (glycyl or L-phenylalanyl) and glycoside parts reduces steric constraints between sugars and induces some variable flexibility of the sugars. The presence of an amino acid could lead to a modification of the hydrophobic part of the photosensitizer, which could change its cellular penetration or its anchorage in the lipid membrane of the targeted cancer cell.

Synthesis. Precursor **19** of the glycodendrimeric photosensitizer **1**, shown in Scheme 1, was prepared by the method described by Polidori et al. in 23% total yield from *N*-Z-glycine.³⁷ Compound **19** was condensed by using a mixture of EDC-HOBt as coupling agents in dry methylene chloride, with *meso*-5-(4benzoic acid)-10,15,20-triphenylporphyrin to give porphyrin **1**-**OAc** in 49% yield. Porphyrin **1** was obtained quantitatively by Zemplen's transesterification.³⁸

Glycodendrimers 26-28 and 31-32 (Schemes 2 and 3) were synthesized from di-tert-butyl 4-[2-(tert-butoxycarbonyl)ethyl]-4-aminoheptane-dicarboxylate 20. This last compound was condensed with N-Z-glycine or N-Z-L-phenylalanine by a modified protocol described by Suda et al.,³⁹ using HOAt/WSCI-HCl as peptidic coupling agents, and giving quantitatively protected compounds **21-Gly** and **21-Phen**. Deprotection of compounds 21 by a mixture of trifluoroacetic acid/methylene chloride (1/2, v/v) gives compounds 22-Gly and 22-Phen with very good yields (92% and 97%, respectively). Condensation of peracetyl-glycosyl mono-, di-, or triethylene glycol amine⁴⁰⁻⁴³ with dendrons 22-Gly and 22-Phen, in dry dimethylformamide, in the presence of HATU and DIPEA as coupling agents, gives Z-glycyl and Z-L-phenylalanyl glycodendrimers 23-25 and 29-30 in 31-84% and 32-90% yield ranges, respectively. Catalytic reduction by H₂/Pd-C allows the cleavage of the benzyloxycarbonyl protecting group and the quantitative formation of aminoglycodendrimers 26-28 and 31-32.

Analogous nonglycosylated dendron **37** (Scheme 4) was prepared from diethylene glycol monochlorohydrin, which was protected by an acetyl group (94% yield). Protected compound **33** was transformed to azide derivative **34** (95% yield) by NaN₃ in DMSO and was then reduced by H_2 /Pd to amine **35** (88% yield). This last one reacted with glycyl dendrons **22-Gly** in the presence of HATU and DIPEA in dry dimethylformamide to give dendrimer **36** in 73% yield, which was deprotected by hydrogenation to give dendrimer **37** (87%).

meso-5-(4-Benzoic acid)-10,15,20-triphenylporphyrin was condensed by using a mixture of EDC—HOBt as coupling agents in dry methylene chloride, with amino glycodendrons 26-28, 31-32, and 37 to give glycodendrimeric porphyrins 2-OAc-15-OAc in the 40% yield range (Scheme 5). Deprotected glycodendrimeric porphyrins 2-15 (Scheme 5) were obtained quantitatively by Zemplen's transesterification.³⁸

Characterization. ¹H and ¹³C NMR spectroscopies, UV– visible, fluorescence, elemental analysis, ESI, and MALDI-TOF

Scheme 2. Preparation of Glycyl-Glycodendrimers

mass spectrometries characterized all precursor molecules and final photosensitizers. The polarity of final deprotected porphyrins was assessed by HPLC analysis.

¹H and ¹³C NMR. ¹H and ¹³C NMR (300 and 75.3 MHz), homonuclear correlation (COSY), and heteronuclear multiple coherence (HMQC) spectra were obtained for all precursor dendrons and glycodendrimeric porphyrins in CDCl₃ and pyridine- d_5 solutions. The NMR spectra of these molecules are mainly governed by the symmetry of the tetrapyrrolic macrocycle and by the nature of the sugar part. The overall appearance of the ¹H and ¹³C NMR spectra for protected glycoconjugated macrocyclic compounds 1-OAc-14-OAc was very similar to that for the *p*-glycoconjugated porphyrins previously studied.^{13,35} For illustration, the ¹H NMR spectrum of compound 2-OAc (Supportong information) is composed of five main groups of resonance: the pyrrolic protons appearing near 8.85 ppm as one singlet (6 H) and one doublet (2 H), the phenyl protons as complex signals between 8.31 and 7.75 ppm, the sugar protons between 5.18 and 3.66 ppm, and protective acetyl group protons between 2.16 and 1.97 ppm. This results show that the ring current of the tetrapyrrolic macrocycle does not affect the glycodendrimer moieties. The absence of the deshielding effects is consistent with a conformation of compounds in which the dendrimers are located in the same plan as the porphyrin ring. The NH pyrrolic proton resonance appears as a broad singlet at -2.8 ppm. The integrations were in agreement with the fixation of one glycodendrimeric part bearing three sugar groups. Moreover,

the anomeric proton resonance of the glycosyl group appears as a well-defined doublet with J = 8-9 Hz (characteristic of a β anomeric configuration) for glucosyl and galactosyl derivatives (1-OAc, 2-OAc, 2, 3-OAc, 3, 5-OAc, 5, 6-OAc, 6, 9-OAc, 9, 10-OAc, 10, 12-OAc, 12, 13-OAc, 13, 19, 23- β -GluOAc, 23- β -GalOAc, 24- β -GluOAc, 24- β -GalOAc, 26- β -GluOAc, 26- β -Ga-IOAc, 27- β -GluOAc, 27- β -GalOAc, 31- β -GluOAc, 29- β -GalOAc, and as a narrow doublet with $J \leq 2$ Hz or a singlet (α anomeric configuration), for the mannosylated analogues (4-OAc, 4, 7-OAc, 7, 8-OAc, 8, 11-OAc, 11, 14-OAc, 14, 23- α -ManOAc, 24- α -ManOAc, 25- α -ManOAc, 26- α -ManOAc, 27- α -ManOAc, 28- α -ManOAc, 29- α -ManOAc, 30- α -ManOAc, and 31- α -ManOAc).

Mass Spectroscopy. Compounds 1-15 were characterized by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF). For all glycodendrimeric porphyrins, one peak was observed in the positive ion MALDI-TOF corresponding to the protonated porphyrin macrocycle (MH⁺), with two small additional peaks (MNa)⁺ and (MK)⁺.

Electronic Spectra. All protected glycodendrimeric porphyrins (1-OAc-15-OAc) were dissolved in methylene chloride and all free ones (1-15) in a mixture of methanolpyridine (24/1, v/v). Electronic spectra of all protected compounds (1-OAc-15-OAc) are very similar to those of known free base *meso*-5,10,15,20-tetraphenylporphyrin with a Soret band near 420 nm and four less intense Q bands near 520, 550, 595, and 645 nm. The spectra of deprotected compounds (1-15) presented a small blue shift due to the

solvent, compared to their protected analogues, with a Soret band near 414 nm and four less intense Q bands near 513, 546, 589, and 645 nm. As expected, the presence of the glycodendron part on the *meso*-5-(4-benzoic acid)-10,15,20-triphenylporphyrin does not alter the UV—visible spectra of the chromophore systems. These spectral features show that the glycodendrimeric porphyrins were monomeric in methylene chloride and in a mixture of methanol—pyridine, at this concentration range.

Fluorescence Data. The corrected emission and excitation fluorescence spectra of compounds 1-15 (Supporting Information) in a mixture of MeOH/pyridine (24/1, v/v) are very similar to those of known free base *meso*-5,10,15,20-tetraphenylporphyrin with two emission bands at 650 and 715 nm but with a variable intensity ratio $I_{650/715nm}$ between 0.80 and 1.46.

HPLC and Polarity. The polarity of the final porphyrins 1-15 was checked by HPLC with a reverse phase column Waters X Terra MS C18. In the first approximation, the retention time (Rt) reflects the inverse of the polarity of the molecules. Compounds 2-15 may be categorized by increasing retention time (Table 1), in three families: Rt between 13.51 and 13.74 min for compounds 2-8 for which the glycodendrimeric group is linked to macrocycle by a glycine, 15.18 and 15.75 min for compounds 9-14 linked by a L-phenylalanine, and 18.49 min for nonglycoconjugated dendrimer 15. These

results show that only the amino acid group, leading to a modification of the hydrophobic part of the photosensitizer, regulates the polarity of the system. On the other hand, the partition coefficient (log *P*, Table 1) values of compounds 2–14, obtained experimentally by the stir-flask method,⁴⁴ are near and included between -0.54 and -0.98 but do not reflect retention time. A positive versus negative log *P* value reflects preferential solubility in 2-octanol versus PBS solution, respectively. These values are characteristic of weakly hydrophilic compounds for 2-14 and lipophilic for 15. The nature of the monosaccharide β -glucose, β -galactose, and α -mannose does not change noticeably the log *P* of the compounds.

Cellular Phototoxicity. Phototoxicity of the photosensitizers 1-15 was determined in HT 29 and Y79 cell lines by cell survival fraction measurements after incubation during 24 h and exposure to >540 nm light with a fluence of 2 J/cm². Toxicity in darkness was found to be negligible in all cases, with a survival fraction close to 100% (>10 μ M, 24 h incubation). Photoefficiency of compounds 1-15 is presented in Table 2.

Compounds 1 and 13 are not cytotoxic and phototoxic. Among the results obtained with the glycodendrimer porphyrins, compounds 2, 4, and 6 have the highest LD_{50} (2.5 to 2.7 μ M) for HT29 cells and compound 6 has an LD_{50} of 3 μ M, being the best for Y79 cells. Compared with the value

Scheme 5. Synthesis of Glycodendrimeric Porphyrins 2-15

of LD₅₀ of TPP(*p*-DEG-O- α -ManOH)₃ used as reference,¹³ porphyrins **2**-**14** are 6 times less phototoxic on HT29 and 10 times less phototoxic on Y79.

The analysis of the in vitro results obtained for both HT29 and Y79 cell lines does not bring to light a link between the nature of the sugar linked to the porphyrin and the type of membrane

Table 1. Observed Retention Time (Rt) in HPLC Analysis on Waters X Terra MS C18 5 μ m, 3.9 \times 150 mm Column and Log $P_{2\text{-octanol/PBS}}$ Measured at 20°C

compd	Rt (min)	$\log P \pm 0.3$
TPP 1	nd nd	nd 0.25
2	13.51	-0.54
3	13.56	-0.66
4	13.79	-0.66
5	13.55	-0.76
6	13.61	-0.87
7	13.73	-0.65
8	13.74	-0.94
9	15.20	-0.73
10	15.21	-0.67
11	15.75	-0.62
12	15.18	-0.98
13	15.19	-0.91
14	15.54	-0.31
15	18.49	1.6

Table 2. Dose of Porphyrin Derivatives (μ M) Necessary To Observe 50% of Cell Survival (LD50) after Incubation (24 h) and Exposure to >540 nm Light at a Fluence of 2 J/cm²

	$LD_{50}(\pm 1) \mu M$	
compd	HT29	Y79
1	>10	>10
2	2.7	3.7
3	3	5
4	2.7	3.7
5	5	>10
6	2.5	3
7	5	5.6
8	5	5.2
9	4.5	5
10	4	5
11	3.7	5.2
12	6	>10
13	>10	>10
14	4.4	6
15	4.9	5.8
TPP-(<i>p</i> -Deg-O-α-ManOH) ₃	0.43 ¹⁴	0.3514

receptor overexpressed in malignant cells although the carbohydrate lectin recognition has been demonstrated on a model of the cell membrane.^{35,36}

CONCLUSIONS

In this work, new glycodendrimeric porphyrins 1-15 bearing three glycosyls linked on a dendrimeric motif have been designed, synthesized, and characterized. We showed that it is possible to prepare two types of glycodendrimer porphyrins with an acceptable overall efficiency. In the first family, the macrocyclic chromophore is linked with a constrained galactodendrimer and in the other one, the chromophore is linked with miscellaneous flexible glycyl or L-phenylalanyl glycodendrons. The asymmetric structure of these new glycoconjugated porphyrins provides an amphiphilic character useful for drug administration (hydrophilicity) and transport through the organism. In spite of a specific affinity of mannodendrimeric photosensitizer 7 for lectin as Concanavalin A in a model of cellular membrane of retinoblastoma cell being demonstrated and the sugar groups of the glycoconjugated dendrimeric porphyrins favoring their nonspecific interaction with membranes, 35,36 the measured in vitro phototoxicities of derivatives 2–14 do not reflect these interactions.

EXPERIMENTAL SECTION

Synthesis and physical characterization of compounds 21-Gly, 22-Gly, 23-α-ManOAc, 24 α-ManOAc, 26-α-ManOAc, 27-α-ManOAc, 4-OAc, 7-OAc, 4, and 7 were described in ref 35.

5-{*p*-*N*-[Tris(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyloxy) methyl]- N^{α} -glycinamidophenyl}-10,15,20-triphenylporphyrin, 1-OAc: meso-5-(4-Benzoic acid)-10,15,20-tetraphenylporphyrin (75 mg, 11.4×10^{-2} mmol), compound **19** (267 mg, 22.8 × 10⁻² mmol), HOBt (23 mg, 17.1×10^{-2} mmol), EDC (33 mg, 17.1×10^{-2} mmol), and Et_3N $(75 \ \mu L)$ were dissolved in dry methylene chloride $(25 \ mL)$ under argon. The solution was stirred at room temperature for 1 h. The reaction was followed up by analytical thin layer chromatography (silica gel, methylene chloride/acetone, 5/1, v/v). The crude mixture was washed with water, diluted aqueous chlorhydric acid, water, aqueous sodium bicarbonate, and water and dried over sodium sulfate then filtered and concentrated under vacuum. Title compound 1-OAc was purified by preparative thin layer chromatography (silica gel, methylene chloride/acetone, 4/1, v/v, $R_f 0.75$). Pure product was obtained by crystallization from a mixture of methylene chloride/heptane as a red powder (110 mg, yield 49%). Anal. (C₉₃H₉₆N₆O₃₂), H₂O calcd: C 61.11, H 5.40, N 4.60. Found: C 61.22, H 5.11, N 4.48. UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ϵ , L·mmol⁻¹·cm⁻¹) 418 (423.6), 515 (18.2), 549.5 (9.7), 590 (7.7), 645 (6.4). ¹H NMR (CDCl₃): δ (ppm) 8.87 (d, 2H, J = 4.8 Hz, HC_{2.8} pyrrole), 8.85 (s, 4H, HC_{12,13,17,18} pyrrole), 8.79 (d, 2H, J = 4.8 Hz, HC_{3,7} pyrrole), 8.32 (d, 4H, J = 8.4 Hz, o-carboxyphenyl), 8.27 (d, 4H, J = 8.4 Hz, m-carboxyphenyl), 8.21 (d, 6H, J = 6.2 Hz, o-phenyl), 7.75 (m, 9H, m- and p-phenyl), 7.43 (t, 1H, J = 4.8 Hz, NHCH₂), 6.39 (s, 1H, NH-tris), 5.43 (d, 3H, J = 2.8 Hz, HC₄), 5.20 (dd, 3H, J = 7.7 and 10.5 Hz, HC₂), 5.08 (dd, 3H, J = 3.4 and 10.5 Hz, HC₃), 4.50 (d, 3H, J = 7.7 Hz, HC₁), 4.38 (dd, 1H, J = 5.4 and 16.9 Hz, CH_{2a} glycine), 4.29 (m, 3H, H_aC₆), 4.24 (d, 3H, CH_{2a}NH), 4.22 (m, 1H, CH_{2b} glycine), 4.16 (m, 3H, H_bC₆), 3.99 (t, 3H, J = 6.6 Hz, HC₅), 3.88 (d, 3H, J = 10.2 Hz, CH_{2b}-NH), 2.19 (s, 9H, CH₃CO), 2.14 (s, 9H, CH₃CO), 2.11 (s, 9H, CH₃CO), 2.0 (s, 9H, CH₃CO), -2.78 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 170.8 (COCH₃), 170.6 (COCH₃), 170.4 (COCH₃), 169.9 (COCH₃), 169.3 (glycine-CO), 167.8 (phenyl-CO), 146.2 (C1 carboxyphenyl), 142.4 (C1, phenyl), 135 (o-carboxyphenyl), 134.9 (o-phenyl), 131.6 (C pyrrole), 128.1 (p-carboxyphenyl and p-phenyl), 127.1 (m-carboxyphenyl), 125.9 (m-phenyl), 120.9 (meso C15), 120.7 (meso C_{10,20}), 118.9 (meso C₅), 101.8 (C₁), 71.3 (C₅), 70.9 (C₃), 69.5 (C₂), 68.7 (CH₂-tris), 67.4 (C₄), 61.5 (C₆), 59.7 (C-NH), 43 (CH₂NH), 21.2 (CH₃CO), 21.1 (CH₃CO), 21 (CH₃CO), 20.9 (CH₃CO).

Compound 21-Phen: *N*-*Z*-L-Phenylalanine (3.917 g, 13.1 mmol), 1-hydroxy-7-azabenzotriazole (HOAt, 1.774 g, 13.1 mmol), and WSCI-HCl (2.519 g, 13.1 mmol) were dissolved in dry methylene chloride (60 mL) and **20** (4.53 g, 10.9 mmol) in dry methylene chloride (2 mL) was added. The reaction solution was stirred at room temperature for 36 h under argon. The reaction was quenched by addition of 10% aqueous citric acid (25 mL). The aqueous layer was extracted with methylene chloride. The organic layer was washed with water, saturated aqueous sodium bicarbonate, and water, and then dried over sodium sulfate, filtered, and concentrated under vacuum. The title compound

was obtained as a white powder (yield 99%) and used without purification. MS calcd for $C_{39}H_{56}N_2O_9$ (MNa⁺) 719.4, found 719.3. Anal. (C₃₉H₅₆N₂O₉), H₂O calcd: C 65.52, H 8.18, N 3.92. Found: C 65.80, H 8.00, N 3.96. Melting point 94 °C. ¹H NMR (CDCl₃): δ (ppm) 7.34 (m, 5H, benzyloxycarbonyl), 7.22 (m, 5H, phenylalanine), 6.10 (broad t, 1H, NH-C), 5.32 (d, 1H, NH phenylalanine), 5.09 (s, 2H, CH₂ benzyloxycarbonyl), 4.28 (dd, 1H, HC phenylalanine), 3.03 (m, 2H, CH₂ phenylalanine), 2.05 [t, 6H, (CH₂)₃-C)], 1.84 (t, 6H, CH₂COO-*t*-Bu), 1.43 (s, 27H, CH₃ t-Bu). ¹³C NMR (CDCl₃): δ (ppm) 172.7 (CO dend), 169.9 (CO phenylalanine), 155.8 (CO benzyloxycarbonyl), 136.5 (C1 benzyloxycarbonyl), 136.2 (C1 phenylalanine), 129.3 (o-phenylalanine), 128.7 (p-phenylalanine), 128.5 (m-phenylalanine), 128.14 (o-benzyloxycarbonyl), 128.06 (p-benzyloxycarbonyl), 127 (mbenzyloxycarbonyl), 80.6 [C-(CH₃)₃], 67 (CH₂ benzyloxycarbonyl), 57.6 (C-NH), 56.6 (CH phenylalanine), 38.4 (CH₂ phenylalanine), 29.9 (CH₂CO), 29.5 [(CH₂)₃-C], 28 (CH₃ t-Bu).

Compound 22-Phen: 21-Phen (3.331 g, 4.78 mmol) was dissolved in methylene chloride (120 mL) and trifluoroacetic acid (60 mL) and stirred 1 h at room temperature. The solution was concentrated under vacuum. Crude product was diluted in methylene chloride, then extracted with aqueous sodium hydroxide (5%). The aqueous phase was washed with methylene chloride (twice) and acidified by chlorhydric acid. The white precipitate was filtered, washed with water, and dried under vacuum. Pure title compound was obtained as white crystals and used without other purification (yield 97%). Melting point 171 °C (pasty). MS calcd for $C_{27}H_{32}N_2O_9$ (ES⁺) 529.1, found 529.1, and calcd (ES⁻) 527.2, found 527.1. Anal. (C₂₇H₃₂N₂O₉) calcd: C 61.35, H 6.10, N 5.30. Found: C 61.75, H 6.34, N 5.28. ¹H NMR (MeOD- d_4): δ (ppm) 7.29 (m, 5H, benzyloxycarbonyl), 7.24 (m, 5H, phenylalanine), 5.04 (d, 2H, CH₂ benzyloxycarbonyl), 4.29 (t, 1H, J = 7.6 Hz, HC phenylalanine), 2.99 (dd, 1H, J = 7.4 and 13.5 Hz, CH_{2a} phenylalanine), 2.85 (dd, 1H, J = 7.9 and 13.4 Hz, CH_{2b} phenylalanine), 2.12 (m, 6H, CH₂COO), 1.91 [m, 6H, (CH₂)₃-C)]. ¹³C NMR (MeOD- d_4): δ (ppm) 177.1 (COOH), 173.4 (CO phenylalanine), 158.2 (CO benzyloxycarbonyl), 138.4 (C1 benzyloxycarbonyl), 138.2 (C1 phenylalanine), 130.5 (o-phenylalanine), 129.6 (p-phenylalanine), 129.5 (m-phenylalanine), 129 (o-benzyloxycarbonyl), 128.9 (p-benzyloxycarbonyl), 127.9 (mbenzyloxycarbonyl), 67.7 (CH₂ benzyloxycarbonyl), 58.7 (C-NH), 58.4 (CH phenylalanine), 39 (CH₂ phenylalanine), 30.6 [(CH₂)₃-C], 29.1 (CH_2COOH).

General Procedure for the Preparation of Compounds 23-25 and 29-30. All operations were identical with those described for the synthesis of compound $23-\beta$ -GluOAc. A representative example is described below.

Compound 23-β-GluOAc: 22-Gly³⁵ (0.100 g, 0.228 mmol) and 2-aminoethoxy-O-2', 3', 4', 6'-tetraacetyl- β -D-glucopyranose (0.267 g, 0.684 mmol) were dissolved in dry free amine DMF (20 mL) under argon. HATU (0.260 g, 0.684 mmol) and diisopropyl ethyl amine (1 mL) were added. The solution was stirred overnight at room temperature. Crude product was obtained after concentration under vacuum and diluted in methylene chloride. The organic phase was washed successively with water, aqueous HCl (10%), water, aqueous NaOH (5%), and water then dried over sodium sulfate, filtered, and concentrated. Pure title compound was obtained after crystallization from a mixture of methyl chloride/ether as yellow crystals and used without other purification (0.185 g, 52% yield). Anal. (C₆₈H₉₅N₅O₃₆), 3H₂O calcd: C 50.65, H 6.31, N 4.34. Found: C 50.35, H 6.22, N 4.52. ¹H NMR $(CDCl_3)$: δ (ppm) 7.35 (m, 5H, benzyloxycarbonyl), 6.73 (broad t, 3H, NH-CH₂), 5.21 (t, 3H, J = 9.4 Hz, HC₃), 5.11 (s, 2H, CH₂) benzyloxycarbonyl), 5.07 (t, 3H, J = 9.5 Hz, HC₄), 4.96 (t, 3H, HC₂), 4.53 (d, 3H, J = 7.9 Hz, HC₁), 4.25 (dd, 3H, J = 4.4 and 12.2 Hz, H_aC₆), 4.15 (m, 3H, H_bC₆), 3.74 (m, 11H, CH₂-O-glucosyl, CH₂ glycine and HC₅), 3.41 (m, 6H, CH₂-NH), 2.17 [m, 6H, (CH₂)₃-C], 2.08 (s, 9H, CH₃CO), 2.03 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 1.99 (s, 9H,

CH₃CO), 1.99 (m, 6H, CH₂CO). ¹³C NMR (CDCl₃): δ (ppm) 173.4 (CO dend), 170.7 (COCH₃), 170.1 (COCH₃), 169.6 (CO glycine), 169.5 (COCH₃), 169.3 (COCH₃), 156.9 (CO benzyloxycarbonyl), 136.3 (C₁ benzyloxycarbonyl), 128.4 (*o*-benzyloxycarbonyl), 128 (*p*-benzyloxycarbonyl), 127.8 (*m*-benzyloxycarbonyl), 100.7 (C₁), 72.5 (C₃), 71.7 (C₅), 71.1 (C₂), 68.4 (CH₂-O-glucosyl), 68.2 (C₄), 66.8 (CH₂ benzyloxycarbonyl), 61.7 (C₆), 58 (C-NH), 44.7 (CH₂ glycine), 39.2 (CH₂-NH), 30.7 (CH₂CO), 30.4 [(CH₂)₃-C], 20.6 (2CH₃CO), 20.45 (2CH₃CO).

Compound 23-β-GalOAc: The title compound was prepared as 23- β -GluOAc from 2-aminoethoxy-O-2',3',4',6'-tetraacetyl- β -D-galactopyranose and 22-Gly. Pure title compound was obtained after crystallization from a mixture of methylene chloride/ether as a beige powder (yield 34%). MS calcd for $C_{68}H_{96}N_5O_{36}~(\text{MH}^+)$ 1559.58, found 1559.10. Anal. (C₆₈H₉₅N₅O₃₆), 3H₂O calcd: C 50.65, H 6.31, N 4.34. Found: C 50.8, H 6.15, N 4.45. ¹H NMR (CDCl₃): δ (ppm) 7.35 (m, 5H, benzyloxycarbonyl), 6.49 (broad t, 3H, CH₂-NH), 5.39 (d, 3H, J = 2.5 Hz, HC₄), 5.16 (dd, 3H, J = 7.9 and 10.4 Hz, HC₂), 5.13 (s, 2H, CH₂ benzyloxycarbonyl), 5.04 (dd, 3H, J = 3.2 and 10.4 Hz, HC₃), 4.48 (d, 3H, J = 7.8 Hz, HC₁), 4.14 (m, 6H, J = 6.4 Hz, HC₆), 3.95 (m, 3H, J = 6.4 Hz, HC₅), 3.84 (m, 3H, CH_{2a}-O-galactosyl), 3.75 (d, 2H, J = 5 Hz, CH₂ glycine), 3.67 (m, 3H, CH_{2b}-O-galactosyl), 3.40 (d, 6H, J = 4.9 Hz, CH₂-NH), 2.16 [m, 6H, (CH₂)₃-C], 2.15 (s, 9H, CH₃CO), 2.13 (m, 6H, CH₂CO), 2.07 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.1 (CO dend), 170.5 (COCH₃), 170.2 (COCH₃), 170.1 (COCH₃), 169.75 (COCH₃), 168.7 (CO glycine), 156.9 (CO benzyloxycarbonyl), 136.3 (C₁ benzyloxycarbonyl), 128.5 (o-benzyloxycarbonyl), 128.2 (p-benzyloxycarbonyl), 127.9 (*m*-benzyloxycarbonyl), 101.3 (C₁), 70.71 (C₅), 70.69 (C₃), 68.9 (C₂), 68.7 (CH₂-O-galactosyl), 67 (CH₂ benzyloxycarbonyl), 66.95 (C₄), 61.3 (C₆), 58 (C-NH), 44.9 (CH₂ glycine), 39.4 (CH₂-NH), 31 (CH₂CO), 30.7 [(CH₂)₃-C], 20.8 (CH₃CO), 20.7 (CH₃CO), 20.6 (CH₃CO), 20.55 (CH₃CO).

Compound 24-\beta-GluOAc: The title compond was prepared as **23-\beta-GluOAc** from 2-aminoethoxyethoxy-O-2',3',4',6'-tetraacetyl- β -Dglucopyranose and 22-Gly. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as a beige powder (yield 31%). MS calcd for C₇₄H₁₀₇N₅O₃₉Na (MNa⁺) 1712.65, found 1713.0. Anal. (C74H107N5O39), 4H2O calcd: C 50.42, H 6.58, N 3.97. Found: C 50.31, H 6.17, N 4.04. ¹H NMR (CDCl₃): δ (ppm) 7.33 (m, 5H, benzyloxycarbonyl), 6.46 (broad t, 3H, NH-CH₂), 5.75 (broad s, 1H, NH glycine), 5.24 (t, 3H, J = 9.4 Hz, HC₃), 5.13 (s, 2H, CH₂ benzyloxycarbonyl), 5.09 (t, 3H, J = 9.4 Hz, HC₄), 4.99 (dd, 3H, J = 7.9 and 9.3 Hz, HC₂), 4.61 (d, 3H, J = 7.8 Hz, HC₁), 4.24 (dd, 3H, J = 4.4 and 12.3 Hz, H_aC_6), 4.11 (m, 3H, H_bC_6), 3.93 (m, 3H, CH_{2a} -O-glucosyl), 3.78 (m, 2H, CH₂ glycine), 3.70 (m, 6H, HC₅ and CH_{2b}-Oglucosyl), 3.60 (m, 6H, CH₂O), 3.49 (m, 6H, CH₂O), 3.4 (m, 3H, CH_{2a}-NH), 3.33 (m, 3H, CH_{2b}-NH), 2.21 [m, 6H, (CH₂)₃-C], 2.08 (s, 9H, CH₃CO), 2.05 (m, 6H, CH₂CO), 2.04 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 2.00 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.2 (CO dend), 170.7 (COCH₃), 170.4 (COCH₃), 169.6 (COCH₃), 169.4 (COCH₃), 168.7 (CO glycine), 157 (CO benzyloxycarbonyl), 136.3 (C1 benzyloxycarbonyl), 128.5 (o-benzyloxycarbonyl), 128.1 (p-benzyloxycarbonyl), 127.9 (m-benzyloxycarbonyl), 100.8 (C1), 72.6 (C3), 71.7 (C₅), 71.3 (C₂), 69.9 (CH₂O), 69.85 (CH₂O), 68.9 (CH₂-O-glucosyl), 68.4 (C₄), 66.9 (CH₂ benzyloxycarbonyl), 61.9 (C₆), 58.2 (C-NH), 44.8 (CH₂ glycine), 39.1 (CH₂-NH), 30.8 (CH₂CO), 30.6 [(CH₂)₃-C], 20.7 (2CH₃CO), 20.6 (2CH₃CO).

Compound 24- β **-GalOAc:** The title compound was prepared as **23-** β **-GluOAc** from 2-aminoethoxyethoxy-O-2',3',4',6'-tetraacetyl- β -D-galactopyranose and **22-Gly**. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as a beige powder (yield 47%). MS calcd for C₇₄H₁₀₈N₅O₃₉ (MH⁺) 1690.65 and (MNa⁺) 1712.65, found 1690.9 and 1712.8. Anal. (C₇₄H₁₀₇N₅O₃₉), 3H₂O calcd: C 50.94, H 6.51, N 4.01. Found: 50.78, H 6.28, N 4.42. ¹H NMR (CDCl₃): δ (ppm) 7.33 (m, 5H, benzyloxycarbonyl), 6.46 (broad t, 3H, CH2-NH), 5.72 (broad s, 1H, NH-C), 5.39 (dd, 3H, J = 3.3 Hz, HC₄), 5.19 (dd, 3H, J = 7.8 and 10.4 Hz, HC₂), 5.13 (s, 2H, CH₂ benzyloxycarbonyl), 5.06 (dd, 3H, J = 3.3 and 10.4 Hz, HC₃), 4.58 (d, 3H, I = 7.8 Hz, HC₁), 4.14 (m, 6H, HC₆), 3.94 (m, 6H, HC₅ and CH_{2a}-O-galactosyl), 3.79 (m, 2H, CH₂ glycine), 3.71 (m, 3H, CH_{2b}-O-galactosyl), 3.60 (m, 6H, CH₂O), 3.50 (m, 6H, CH₂O), 3.42 (m, 3H, CH_{2a}-NH), 3.33 (m, 3H, CH_{2b}-NH), 2.22 [m, 6H, (CH₂)₃-C], 2.15 (s, 9H, CH₃CO), 2.06 (m, 6H, CH₂CO), 2.06 (s, 9H, CH₃CO), 2.04 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.1 (CO dend), 170.4 (COCH₃), 170.2 (2 COCH₃), 169.8 (COCH₃), 168.6 (CO glycine), 157 (CO benzyloxycarbonyl), 136.2 (C1 benzyloxycarbonyl), 128.5 (o-benzyloxycarbonyl), 128.2 (p-benzyloxycarbonyl), 127.9 (m-benzyloxycarbonyl), 101.3 (C₁), 70.8 (C₃), 70.6 (C₅), 70 (CH₂O), 69.8 (CH₂O), 68.92 (CH₂-O-galactosyl), 68.88 (C₂), 66.9 (C₄), 66.8 (CH₂ benzyloxycarbonyl), 61.2 (C₆), 58.2 (C-NH), 44.8 (CH₂ glycine), 39.3 (CH₂-NH), 30.9 (CH₂CO), 30.7 [(CH₂)₃-C], 20.8 (CH₃CO), 20.7 (CH₃CO), 20.65 (CH₃CO), 20.6 (CH₃CO).

Compound 25- α -ManOAc: The title compound was prepared as 23-β-GluOAc from 2-aminoethoxyethoxyethoxy-O-2',3',4',6'-tetraacetyl-α-D-mannopyranose and 22-Gly. Pure title compound was obtained as paste and used without other purification (yield 84%). Anal. (C₈₀H₁₁₉N₅O₄₂), H₂O calcd: C 52.20, H 6.63, N 3.80. Found: C 51.95, H 6.85, N 4.03. ¹H NMR (CDCl₃): δ (ppm) 7.35 (m, 5H, benzyloxycarbonyl), 6.67 (broad t, 3H, NH), 6.25 (broad s, 1H, NH), 5.85 (broad t, 1H, J = 5.5 Hz, NH glycine), 5.30 (m, 6H, CH₂), 5.27 (m, 12H, CH_2), 4.88 (s, 3H, HC₁), 4.28 (dd, 3H, J = 4.6 and 12 Hz, H _aC₆), 4.10 $(d, 3H, J = 12 Hz, H_bC_6), 4.07 (m, 3H, HC_5), 3.81 (m, 6H, CH_2), 3.75$ (d, 2H, CH₂ glycine), 3.68 (m, 6H, CH₂), 3.65 (m, 24H, CH₂), 3.41 (m, 6H, CH₂), 2.20 (m, 12H, CH₂), 2.15 (s, 9H, CH₃CO), 2.10 (s, 9H, CH₃CO), 2.04 (s, 9H, CH₃CO), 2 (m, 12H, CH₂), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.6 (CO dend), 171.1 (COCH₃), 170.5 (COCH₃), 170.4 (COCH₃), 170.1 (COCH₃), 169.1 (CO glycine), 157.1 (CO), 136.8 (C₁ benzyloxycarbonyl), 128.9 (o-benzyloxycarbonyl), 128.5 (p-benzyloxycarbonyl), 128.4 (m-benzyloxycarbonyl), 98.1 (C₁), 71 (CH₂), 70.6 (CH₂), 70.3 (CH₂), 70.2 (CH₂), 69.5 (C_{2,3,4}), 68.8 (C₅), 67.7 (CH₂), 67.4 (CH₂ benzyloxycarbonyl), 66.5 (C_{2,3,4}), 62.8 (C₆), 58.7 (C-NH), 45.4 (CH₂ glycine), 39.7 (CH₂), 31.5 (CH₂), 31.1 (CH₂), 21.31 [(CH₂)₃-C], 21.27 [(CH₂)₃-C], 21.1 $[(CH_2)_3C].$

General Procedure for the Preparation of Compounds $26-28-\alpha$ -ManOAc and 31-32. All operations were identical with those described for the synthesis of compound $26-\beta$ -GluOAc. A representative example is described below.

Compound 26- β -GluOAc: 23- β -GluOAc (0.5 g, 1 equiv, 0.32) mmol) and palladium on activated carbon (Pd/C 10%, 270 mg) were dissolved in methanol (200 mL). The solution was stirred under hydrogen atmosphere (3 bar) at room temperature for 24 h. The suspension was filtered over Celite and concentrated under vacuum. Pure title compound was obtained as beige crystals and used without purification (yield 85%). MS calcd for C₆₀H₉₀N₅O₃₄ (MH⁺) 1424.54, found 1424.30. ¹H NMR (CDCl₃): δ (ppm) 5.21 (t, 3H, J = 9.4 Hz, HC_3), 5.08 (t, 3H, J = 9.4 Hz, HC_4), 4.97 (m, 3H, HC_2), 4.54 (m, 3H, HC₁), 4.25 (m, 3H, H_aC₆), 4.16 (m, 3H, H_bC₆), 3.71 (m, 9H, HC₅ and CH₂-O-glucosyl), 3.38 (m, 6H, CH₂-NH), 2.20 [m, 6H, (CH₂)₃-C], 2.09 (s, 9H, CH₃CO), 2.06 (s, 9H, CH₃CO), 2.04 (m, 6H, CH₂CO), 2.03 (s, 9H, CH₃CO), 2.01 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.7 (CO dend), 170.7 (COCH₃), 170.2 (COCH₃), 169.7 (COCH₃), 169.4 (COCH₃), 100.7 (C₁), 72.6 (C₃), 71.8 (C₅), 71.3 (C₂), 68.9 (CH₂-O-glucosyl), 68.3 (C₄), 61.9 (C₆), 58.4 (C-NH), 42.3 (CH₂ glycine), 39.3 (CH₂-NH), 30.6 [CH₂CO and (CH₂)₃-C], 20.7 (2CH₃CO), 20.6 (2CH₃CO).

Compound 26-\beta-GalOAc: The title compound was prepared as 26- β -GluOAc from 23- β -GalOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as yellow crystals (yield 70%). MS calcd for C₆₀H₉₀N₅O₃₄ (MH⁺) 1424.54, found 1424.90. Anal. (C₆₀H₈₉N₅O₃₄), 4H₂O calcd: C 48.16, H 6.53, N 4.68. Found: C 48.16, H 6.08, N 4.90. ¹H NMR (CDCl₃): δ $(ppm) 5.39 (d, 3H, J = 2.7 Hz, HC_4), 5.15 (m, 3H, J = 7.7 Hz, HC_2), 5.05$ $(m, 3H, J = 10.4 Hz, HC_3), 4.52 (d, 3H, J = 7.7 Hz, HC_1), 4.15 (m, 6H, M)$ HC₆), 3.97 (m, 3H, HC₅), 3.96 (m, 2H, CH₂ glycine), 3.85 (m, 3H, CH_{2a}-O-galactosyl), 3.68 (m, 3H, CH_{2b}-O-galactosyl), 3.40 (d, 6H, CH₂-NH), 2.17 (s, 9H, CH₃CO), 2.16 [m, 6H, (CH₂)₃-C], 2.08 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 2.00 (m, 6H, CH₂CO), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 170.5 (COCH₃), 170.2 (COCH₃), 170 (COCH₃), 169.8 (COCH₃), 168.6 (CO glycine), 101.2 (C1), 70.7 (C3 and C5), 68.8 (C2), 68.5 (CH2-O-galactosyl), 67 (C₄), 61.2 (C₆), 57.7 (C-NH), 45 (CH₂ glycine), 39.4 (CH₂-NH), 30.9 (CH₂CO), 30.5 [(CH₂)₃-C], 20.8 (CH₃CO), 20.7 (CH₃CO), 20.6 (CH₃CO), 20.5 (CH₃CO).

Compound 27- β **-GluOAc:** The title compound was prepared as 26-β-GluOAc from 24-β-GluOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as colorless crystals (yield 82%). MS calcd for C₆₆H₁₀₂N₅O₃₇ (MH⁺) 1556.62 and (MNa⁺) 1578.62, found 1556.8 and 1578.8. Anal. (C66H101N5O37), 10H2O calcd: C 45.63, H 6.97, N 4.32. Found: C 45.99, H 6.29, N 4.37. ¹H NMR (CDCl₃): δ (ppm) 5.23 (t, 3H, J = 9.6 Hz, HC_3 , 5.09 (t, 3H, $J = 9.4 Hz, HC_4$), 4.99 (t, 3H, HC_2), 4.61 (d, 3H, J= 7.8 Hz, HC₁), 4.27 (dd, 3H, J = 4.4 and 12.3 Hz, H_aC₆), 4.14 (m, 3H, H_bC₆), 3.96 (m, 3H, CH_{2a}-O-glucosyl), 3.72 (m, 3H, HC₅), 3.67 (m, 3H, CH_{2b}-O-glucosyl), 3.61 (m, 6H, CH₂O), 3.51 (m, 6H, CH₂O), 3.38 (m, 6H, CH₂-NH), 2.19 [m, 6H, (CH₂)₃-C], 2.09 (s, 9H, CH₃CO), 2.06 (m, 6H, CH₂CO), 2.05 (s, 9H, CH₃CO), 2.03 (s, 9H, CH₃CO), 2.01 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.2 (CO dend), 170.6 (COCH₃), 170.2 (COCH₃), 169.5 (COCH₃), 169.4 (COCH₃), 100.7 (C₁), 72.6 (C₃), 71.7 (C₅), 71.2 (C₂), 69.7 (2 CH₂O), 68.9 (CH₂-O-glucosyl), 68.3 (C₄), 61.8 (C₆), 57.8 (C-NH), 39.1 (CH₂-NH), 30.8 (CH₂-CO), 30.5 [(CH₂)₃-C], 20.6 (2 CH₃CO), 20.5 (2 CH₃CO).

Compound 27-\beta-GalOAc: The title compound was prepared as 26- β -GluOAc from 24- β -GalOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as a beige powder (yield 79%). MS calcd for $C_{66}H_{102}N_5O_{37}$ (MH⁺) 1556.62, found 1556.9. Anal. ($C_{66}H_{101}N_5O_{37}$), $6H_2O$ calcd: C 47.58, H 6.59, N 4.62. Found: C 47.79, H 6.21, N 4.32. ¹H NMR (CDCl₃): δ (ppm) 6.88 (broad s, 1H, NH-C), 5.39 (d, 3H, J = 2.8 Hz, HC₄), 5.18 $(m, 3H, HC_2), 5.05 (dd, 3H, J = 2.8 and 10.2 Hz, HC_3), 4.57 (d, 3H, J =$ 7.7 Hz, HC₁), 4.14 (m, 6H, HC₆), 3.96 (m, 6H, HC₅ and CH_{2b}-Ogalactosyl), 3.96 (m, 2H, CH₂ glycine), 3.71 (m, 3H, CH_{2a}-Ogalactosyl), 3.61 (m, 6H, CH₂O), 3.5 (m, 6H, CH₂O), 3.38 (m, 6H, CH₂-NH), 2.23 [m, 6H, (CH₂)₃-C], 2.15 (s, 9H, CH₃CO), 2.06 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 2.05 (m, 6H, CH₂CO), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.1 (CO dend), 170.4 (COCH₃), 170.2 (COCH₃), 170.1 (COCH₃), 169.7 (COCH₃), 168.5 (CO glycine), 101.3 (C₁), 70.74 (C₃), 70.68 (C₅), 69.8 (2CH₂O), 68.9 (CH₂-O-galactosyl), 68.85 (C₂), 67 (C₄), 61.2 (C₆), 57.9 (C-NH), 45 (CH₂ glycine), 39.1 (CH₂-NH), 30.7 (CH₂CO), 30.5 [(CH₂)₃-C], 20.8 (CH₃CO), 20.7 (2CH₃CO), 20.6 (CH₃CO).

Compound 28-α-ManOAc: The title compound was prepared as **26-β-GluOAc** from **25-α-ManOAc**. Pure title compound was obtained after drying under vacuum as a brown powder and used without other purification (yield 94%). Anal. not obtained. ¹H NMR (CDCl₃): δ (ppm) 5.29 (m, 9H, HC_{2,3,4}), 4.86 (s, 3H, HC₁), 4.26 (m, 3H), 4.10 (m, 6H, HC₅ and H_bC₆), 3.68 (m, 8H, CH₂-O-mannosyl and CH₂), 3.46 (m, 6H), 2.33 (m, 6H, CH₂), 2.16 (s, 9H, CH₃CO), 2.09 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 2.00 (m, 11H, CH₂ and CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 171.7 (COCH₃), 171.3 (COCH₃), 171.2

(COCH₃), 171 (COCH₃), 170.7 (COCH₃), 166.2 (CO glycine), 142.8 (C-SO₃H), 141.2 (*p*-phenyl), 129.8 (*m*-phenyl), 126.7 (*o*-phenyl), 98.5 (C₁), 71.5 (C_{2,3,4}), 71.3 (C_{2,3,4}), 70.8 (C_{2,3,4}), 68.1 (C₅), 66.9 (C-O-mannosyl), 63.3 (C6), 43.6 (CH₂-glycine), 40.9 (C-NH), 22.2 (CH₃-phenyl), 21.8 (CH₃), 21.6 (CH₃).

Compound 29-\beta-GluOAc: The title compound was prepared as **23-β-GluOAc** from **22-Phen** and 2-aminoethoxy-O-2',3',4',6'-tetraacetyl- β -D-glucopyranose tosylate. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as a yellow orange powder (yield 90%). MS calcd for C₇₅H₁₀₁N₅O₃₆Na (MNa⁺) 1670.62, found 1670.7. Anal. (C₇₅H₁₀₁N₅O₃₆), 4H₂O calcd: C 52.35, H 6.39, N 4.07. Found: C 52.18, H 6.01, N 4.09. ¹H NMR (CDCl₃): δ (ppm) 7.33 (m, 5H, benzyloxycarbonyl), 7.25 (m, 5H, phenylalanine), 6.37 (broad t, 3H, CH₂-NH), 5.18 (dd, 3H, J = 9.5 Hz, HC₃), 5.08 (d, 3H, HC₄), 5.07 (s, 2H, CH₂ benzyloxycarbonyl), 4.99 $(dd, 3H, J = 9.3 Hz, HC_2), 4.51 (d, 3H, J = 7.8 Hz, HC_1), 4.31 (m, 1H, 1H)$ HC phenylalanine), 4.25 (dd, 3H, J = 4.5 and 12.2 Hz, H_aC_6), 4.14 (dd, 3H, J = 2.0 and 12.3 Hz, H_bC_6), 3.82 (m, 3H, CH_{2a} -O-glucosyl), 3.70 $(m, 3H, HC_5)$, 3.69 $(m, 3H, CH_{2b}$ -O-glucosyl), 3.37 (d, 6H, J = 5.2 Hz)CH2-NH), 3.06 (m, 1H, CH2a-phenylalanine), 2.95 (m, 1H, CH2bphenylalanine), 2.15 [m, 6H, (CH₂)₃-C], 2.07 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 2.00 (s, 9H, CH₃CO), 1.98 (m, 6H, CH₂CO). ¹³C NMR (CDCl₃): δ (ppm) 173 (CO dend), 170.7 (COCH₃), 170.5 (CO phenylalanine), 170.1 (COCH₃), 169.5 (COCH₃), 169.4 (COCH₃), 155.9 (CO benzyloxycarbonyl), 136.6 (C1 benzyloxycarbonyl), 136.3 (C1 phenylalanine), 129.4 (o-phenylalanine), 128.6 (p-phenylalanine), 128.5 (m-phenylalanine), 128.1 (o-benzyloxycarbonyl), 127.9 (p-benzyloxycarbonyl), 126.9 (m-benzyloxycarbonyl), 100.8 (C₁), 72.6 (C₃), 71.8 (C₅), 71.2 (C₂), 68.8 (CH₂-O-glucosyl), 68.3 (C₄), 66.8 (CH₂ benzyloxycarbonyl), 61.8 (C₆), 58.1 (C-NH), 57 (CH phenylalanine), 39.3 (CH2-NH), 38.3 (CH2 phenylalanine), 30.7 (CH₂CO), 30.4 [(CH₂)₃-C]), 20.7 (2 CH₃CO), 20.6 (2 CH₃CO).

Compound 29-\beta-GalOAc: The title compound was prepared as 23-β-GluOAc from 22-Phen and 2-aminoethoxy-O-2',3',4',6'-tetraacetyl- β -D-galactopyranose. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as a beige powder (yield 46%). MS calcd for C₇₅H₁₀₁N₅O₃₆Na (MNa⁺) 1670.62, found 1670.7. Anal. (C75H101N5O36), 5H2O calcd: C 51.81, H 6.43, N 4.03. Found: C 51.80; H 6.04; N 4.58. ¹H NMR (CDCl₃): δ (ppm) 7.33 (m, 5H, benzyloxycarbonyl), 7.24 (m, 5H, phenylalanine), 6.23 (broad t, 3H, CH₂-NH), 5.39 (d, 3H, J = 2.8 Hz, HC₄), 5.19 (dd, 3H, J = 7.8 and 10.3 Hz, HC₂), 5.09 (s, 2H, CH₂ benzyloxycarbonyl), 5.04 (dd, 3H, J = 3.3 and 10.4 Hz, HC₃), 4.51 (d, 3H, J = 7.8 Hz, HC₁), 4.30 (m, 1H, HC phenylalanine), 4.16 (m, 6H, HC₆), 3.94 (m, 3H, HC₅), 3.83 (m, 3H, CH_{2a}-O-galactosyl), 3.67 (m, 3H, CH_{2b}-O-galactosyl), 3.39 (d, 6H, J = 5.6 Hz, CH₂-NH), 3.00 (s, 2H, CH₂-phenylalanine), 2.16 [m, 6H, (CH₂)₃-C], 2.12 (s, 9H, CH₃CO), 2.06 (s, 9H, CH₃CO), 2.04 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), 1.99 (m, 6H, CH₂CO). ¹³C NMR (CDCl₃): δ (ppm) 173 (CO dend), 170.5 (CO phenylalanine), 170.4 (COCH₃), 170.1 (COCH₃), 170 (COCH₃), 169.7 (COCH₃), 156.4 (CO benzyloxycarbonyl), 136.6 (C1 benzyloxycarbonyl), 136.3 (C1 phenylalanine), 129.4 (o-phenylalanine), 128.6 (p-phenylalanine), 128.5 (m-phenylalanine), 128,1 (o-benzyloxycarbonyl), 127.8 (p-benzyloxycarbonyl), 127 (m-benzyloxycarbonyl), 101.3 (C1), 70.7 (C5 and C3), 68.8 (C2), 68.7 (CH2-O-galactosyl), 67 (C4), 66.8 (CH2 benzyloxycarbonyl), 61.3 (C₆), 58 (C-NH), 57 (CH phenylalanine), 39.3 (CH₂-NH), 38.2 (CH₂ phenylalanine), 30.7 (CH₂CO), 30.4 [(CH₂)₃-C], 20.8 (CH₃CO), 20.6 (CH₃CO), 20.6 (CH₃CO), 20.5 $(CH_2CO).$

Compound 29-\alpha-ManOAc: The title compound was prepared as **23-\beta-GluOAc** from **22-Phen** and 2-aminoethoxy-O-2',3',4',6'-tetraace-tyl- α -D-mannopyranose. Pure title compound was obtained as a yellow powder and used without purification (yield 90%). MS calcd for

C₇₅H₁₀₁N₅O₃₆Na (MNa⁺) 1670.62, found 1670.7. Anal. (C₇₅H₁₀₁-N₅O₃₆), 3H₂O calcd: C 52.91, H 6.33, N 4.11. Found: C 53.15; H 6.19; N 4.33. ¹H NMR (CDCl₃): δ (ppm) 7.32 (m, 5H, benzyloxycarbonyl), 7.24 (m, 5H, phenylalanine), 6.65 (broad t, 3H, CH₂-NH), 5.37 (dd, 3H, J = 3.2 and 10 Hz, HC_3), $5.30 (m, 3H, HC_2)$, $5.27 (m, 3H, HC_4)$, 5.07 (s, 2H, CH₂ benzyloxycarbonyl), 4.83 (d, 3H, J = 1.1 Hz, HC₁), 4.31 (m, 1H, HC phenylalanine), 4.28 (dd, 3H, J = 5.7 and 12.3 Hz, H_aC_6 , 4.14 (dd, 3H, J = 2.0 and 12.2 Hz, H_bC_6), 4.03 (m, 3H, HC₅), 3.75 (m, 3H, CH_{2a}-O-mannosyl), 3.51 (m, 6H, CH₂NH), 3.34 (m, 3H, CH_{2b}-O-mannosyl), 3.03 (dd, 1H, J = 7 Hz, CH_{2a}-phenylalanine), 2.96 $(m, 1H, J = 6.8 \text{ Hz}, CH_{2b}$ -phenylalanine), 2.17 $[m, 6H, (CH_2)_3$ -C], 2.15 (s, 9H, CH₃CO), 2.10 (s, 9H, CH₃CO), 2.05 (m, 6H, CH₂CO), 2.03 (s, 9H, CH₃CO), 1.97 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.5 (CO dend), 170.9 (CO phenylalanine), 170.7 (COCH₃), 170.2 (COCH₃), 170.1 (COCH₃), 169.7 (COCH₃), 156.2 (CO benzyloxycarbonyl), 136.7 (C₁ benzyloxycarbonyl), 136.3 (C₁ phenylalanine), 129.3 (o-phenylalanine), 128.5 (p-phenylalanine), 128.5 (m-phenylalanine), 128.1 (o-benzyloxycarbonyl), 127.8 (p-benzyloxycarbonyl), 126.9 (m-benzyloxycarbonyl), 97.6 (C1), 69.4 (C3), 69.1 (C2), 68.6 (C₅), 67.1 (CH₂ benzyloxyarbonyl), 66.8 (CH₂-O-mannosyl), 66 (C₄), 62.4 (C₆), 58.5 (C-NH), 57 (CH phenylalanine), 38.8 (CH₂-NH), 38 (CH₂ phenylalanine), 31.2 (CH₂CO), 30.6 [(CH₂)₃-C], 20.8 (2 CH₃CO), 20.7 (2 CH₃CO).

Compound 30-\beta-GluOAc: The title compound was prepared as 23-B-GluOAc from 22-Phen and 2-aminoethoxyethoxy-O-2',3',4',6'tetraacetyl- β -D-glucopyranose. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as beige crystals (yield 32%). MS calcd for C₈₁H₁₁₃N₅O₃₉Na (MNa⁺) 1802.7, found 1802.8. Anal. (C₈₁H₁₁₃N₅O₃₉), 3H₂O calcd: C 53.03, H 6.54, N 3.82. Found: C 52.87, H 6.32, N 4.18. ¹H NMR (CDCl₃): δ (ppm) 7.33 (m, 5H, benzyloxycarbonyl), 7.25 (m, 5H, phenylalanine), 6.35 (broad t, 3H, CH₂-NH), 5.54 (m, 1H, NH-C), 5.48 (m, 1H, NH phenylalanine), 5.26 (t, 3H, J = 9.5 Hz, HC₃), 5.09 (m, 5H, HC₄ and CH_2 benzyloxycarbonyl), 5.0 (dd, 3H, J = 7.9 and 9.5 Hz, HC₂), 4.62 (d, 3H, J = 7.9 Hz, HC₁), 4.34 (m, 1H, HC phenylalanine), 4.24 (dd, 3H, J = 4.5 and 12.3 Hz, HaC6), 4.11 (m, 3H, HbC6), 3.94 (m, 3H, CH2a-Oglucosyl), 3.70 (m, 6H, CH_{2b}-O-glucosyl and HC₅), 3.61 (m, 6H, CH₂O), 3.49 (m, 6H, CH₂O), 3.4 (m, 3H, CH_{2a}-NH), 3.3 (m, 3H, CH_{2b}-NH), 3.02 (m, 2H, CH₂-phenylalanine), 2.07 (s, 9H, CH₃CO), 2.06 (m, 6H, [(CH₂)₃-C]), 2.04 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 2.01 (s, 9H, CH₃CO), 1.91 (m, 6H, CH₂CO). ¹³C NMR (CDCl₃): δ (ppm) 173.1 (CO dend), 170.7 (COCH₃), 170.4 (CO phenylalanine), 169.5 (2COCH₃), 169.4 (COCH₃), 156 (CO benzyloxycarbonyl), 136.5 (C1 phenylalanine), 136.2 (C1 benzyloxycarbonyl), 129.3 (o-phenylalanine), 128.7 (p-phenylalanine), 128.6 (m-phenylalanine), 128.2 (o-benzyloxycarbonyl), 127.7 (p-benzyloxycarbonyl), 127 (m-benzyloxycarbonyl), 100.8 (C1), 72.6 (C3), 71.7 (C5), 71.2 (C₂), 70.1 (CH₂O), 69.9 (CH₂O), 68.9 (CH₂-O-glucosyl), 68.4 (C₄), 66.8 (CH₂ benzyloxycarbonyl), 61.9 (C₆), 58.1 (C-NH), 56.8 (CH phenylalanine), 39.2 (CH₂-NH), 38.2 (CH₂ phenylalanine), 30.6 (CH₂CO), 30.5 [(CH₂)₃-C], 20.7 (2 CH₃CO), 20.6 (2 CH₃CO).

Compound 30-β-GalOAc: The title compound was prepared as **23-β-GluOAc** from **22-Phen** and 2-aminoethoxyethoxy-*O*-2',3',4',6'-tetraacetyl-β-D-galactopyranose. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as an orange powder (yield 61%). MS calcd for C₈₁H₁₁₃N₅O₃₉Na (MNa⁺) 1802.7, found 1802.8. Anal. (C₈₁H₁₁₃N₅O₃₉), 2H₂O calcd: C 53.55, H 6.49, N 3.85. Found: C 53.77, H 6.34, N 4.25. ¹H NMR (CDCl₃): δ (ppm) 7.33 (m, 5H, benzyloxycarbonyl), 7.25 (m, 5H, phenylalanine), 6.44 (broad t, 3H, CH₂-NH), 5.50 (m, 3H, NH phenylalanine), 5.38 (d, 3H, *J* = 3.0 Hz, HC₄), 5.21 (dd, 3H, *J* = 7.8 and 10.4 Hz, HC₂), 5.09 (m, 5H, CH₂ benzyloxycarbonyl and HC₃), 4.64 (d, 3H, *J* = 7.8 Hz, HC₁), 4.36 (m, 1H, HC phenylalanine), 4.11 (m, 6H, HC₆), 3.94 (m, 6H, HC₅ and CH_{2a}-O-galactosyl), 3.74 (m, 3H, CH_{2b}-O-galactosyl), 3.61 (m, 6H,

CH₂O), 3.48 (m, 9H, CH₂O and CH_{2a}-NH), 3.26 (m, 3H, CH_{2b}-NH), 3.03 (m, 2H, CH₂-phenylalanine), 2.14 (s, 9H, CH₃CO), 2.13 [m, 6H, (CH₂)₃-C], 2.05 (s, 9H, CH₃CO), 2.00 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), 1.94 (m, 6H, CH₂CO). ¹³C NMR (CDCl₃): δ (ppm) 172.9 (CO dend), 171 (CO phenylalanine), 170.4 (COCH₃), 170.3 (COCH₃), 170.2 (COCH₃), 169.6 (COCH₃), 156.5 (CO benzyloxycarbonyl), 136.6 (C₁ benzyloxycarbonyl), 136.3 (C₁ phenylalanine), 129.3 (*o*-phenylalanine), 128.7 (*p*-phenylalanine), 128.5 (*m*-phenylalanine), 128.3 (*o*-benzyloxycarbonyl), 127.7 (*p*-benzyloxycarbonyl), 127.1 (*m*-benzyloxycarbonyl), 101.3 (C₁), 70.9 (C₃), 70.6 (C₅), 70.3 (CH₂O), 70 (CH₂O), 68.9 (C₂), 68.7 (CH₂-O-galactosyl), 67.1 (C₄), 67 (CH₂ benzyloxycarbonyl), 61.4 (C₆), 58.7 (C-NH), 57.4 (CH phenylalanine), 39.2 (CH₂-NH), 38.3 (CH₂ phenylalanine), 30.6 (CH₂CO), 30.5 [(CH₂)₃-C], 20.8 (CH₃CO), 20.65 (CH₃CO), 20.63 (2 CH₃CO).

Compound 30-\alpha-ManOAc: The title compound was prepared as 23-β-GluOAc from 22-Phen and 2-aminoethoxyethoxy-O-2',3',4',6'tetraacetyl-α-D-mannopyranose. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as a beige powder (yield 56%). MS calcd for $C_{81}H_{114}N_5O_{39}$ (MH⁺) 1780.7 and calcd for C₈₁H₁₁₃N₅O₃₉Na (MNa⁺) 1802.7, found 1780.9 and 1802.8. Anal. (C81H113N5O39), 4H2O calcd: C 52.51, H 6.58, N 3.70. Found: C 52.42, H 6.21, N 4.11. ¹H NMR (CDCl₃): δ (ppm) 7.30 (m, 5H, benzyloxycarbonyl), 7.25 (m, 5H, phenylalanine), 6.45 (broad t, 3H, NH-CH₂), 5.29 (m, 9H, HC₂, HC₃ and HC₄), 5.06 (s, 2H, CH₂ benzyloxycarbonyl), 4.88 (s, 3H, HC1), 4.31 (m, 1H, HC phenylalanine), 4.25 (dd, 3H, J = 5 and 12.2 Hz, H_aC₆), 4.12 (dd, 3H, J =12 Hz, H_bC₆), 4.03 (m, 3H, HC₅), 3.77 (m, 3H, CH_{2a}-O-mannosyl), 3.67 (m, 3H, CH_{2b}-O-mannosyl), 3.61 (m, 6H, CH₂O), 3.5 (m, 6H, CH2O), 3.38 (m, 6H, CH2-NH), 3.03 (m, 2H, CH2-phenylalanine), 2.15 (s, 9H, CH₃CO), 2.09 (s, 9H, CH₃CO), 2.06 [m, 6H, (CH₂)₃-C], 2.04 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), 1.97 (m, 6H, CH₂CO). ^{13}C NMR (CDCl_3): δ (ppm) 173.3 (CO dend), 170.9 (CO phenylalanine), 170.8 (COCH₃), 170.2 (COCH₃), 170.1 (COCH₃), 169.8 (COCH₃), 156 (CO benzyloxycarbonyl), 136.6 (C₁ benzyloxycarbonyl), 136.3 (C1 phenylalanine), 129.4 (o-phenylalanine), 128.5 (p-phenylalanine), 128.5 (m-phenylalanine), 128.1 (o-benzyloxycarbonyl), 127.9 (p-benzyloxycarbonyl), 126.9 (m-benzyloxycarbonyl), 97.6 (C1), 69.95 (CH₂O), 69.8 (CH₂O), 69.6 (C₃), 68.9 (C₂), 68.4 (C₅), 66.9 (CH₂-O-mannosyl), 66.1 (C₄), 65.9 (CH₂ benzyloxycarbonyl), 62.4 (C₆), 58 (C-NH), 56.9 (CH phenylalanine), 39.3 (CH₂-NH), 38.5 (CH₂ phenylalanine), 30.5 [CH₂CO and (CH₂)₃-C], 20.9 (CH₃CO), 20.7 (CH₃CO), 20.7 (2 CH₃CO).

Compound 31-β-GluOAc: The title compound was prepared as 26-β-GluOAc from 29-β-GluOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as beige crystals (yield 70%). MS calcd for C₆₇H₉₆N₅O₃₄ (MH⁺) 1514.59, found 1514.7. Anal. (C₆₇H₉₅N₅O₃₄), 4H₂O calcd: C 50.72, H 6.54, N 4.41. Found: C 50.47, H 6.21, N 4.54. ¹H NMR (CDCl₃): δ (ppm) 7.3 (m, 5H, phenylalanine), 5.22 (dd, 3H, J = 9.4 Hz, HC₃), 5.07 (dd, 3H, *J* = 9.4 Hz, HC₄), 4.97 (dd, 3H, *J* = 9.4 Hz, HC₂), 4.54 (d, 3H, J = 7.8 Hz, HC₁), 4.27 (dd, 3H, J = 4.6 and 12.3 Hz, H_aC₆), 4.15 (dd, 3H, $J = 12.2 \text{ Hz}, \text{H}_{b}\text{C}_{6}$, 3.39 (d, 6H, $J = 4.2 \text{ Hz}, \text{CH}_{2}\text{-NH}$), 2.17 [m, 6H, (CH₂)₃-C], 2.08 (s, 9H, CH₃CO), 2.07 (m, 6H, CH₂CO), 2.06 (s, 9H, CH₃CO), 2.03 (s, 9H, CH₃CO), 2.00 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173.2 (CO dend), 172.3 (CO phenylalanine), 170.7 (COCH₃), 170.2 (COCH₃), 169.6 (COCH₃), 169.4 (COCH₃), 137 (C₁ phenylalanine), 129.5 (o-phenylalanine), 128.8 (p-phenylalanine), 128.4 (m-phenylalanine), 100.8 (C1), 72.6 (C3), 71.8 (C5), 71.3 (C2), 68.7 (CH₂-O-glucosyl), 68.3 (C₄), 61.8 (C₆), 58.4 (C-NH), 39.3 (CH₂-NH), 30.8 (CH₂CO), 30.5 [(CH₂)₃-C], 20.7 (2 CH₃CO), 20.6 (2 CH₃CO).

Compound 31-\beta-GalOAc: The title compound was prepared as **26-\beta-GluOAc** from **29-\beta-GalOAc**. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as beige crystals (yield 63%). MS calcd for C₆₇H₉₅N₅O₃₄Na (MNa⁺)

1536.59, found 1536.6. Anal. (C₆₇H₉₅N₅O₃₄), 4H₂O calcd: C 50.72, H 6.54, N 4.41. Found: C 50.60, H 6.65, N 4.20. ¹H NMR (CDCl₃): δ (ppm) 7.29 (m, 5H, phenylalanine), 5.39 (d, 3H, J = 2.6 Hz, HC₄), 5.16 (dd, 3H, J = 7.8 and 10.3 Hz, HC₂), 5.02 (dd, 3H, J = 2.5 and 10.2 Hz, HC₃), 4.51 (d, 3H, J = 7.8 Hz, HC₁), 4.28 (m, 1H, HC phenylalanine), 4.15 (m, 6H, HC₆), 3.94 (m, 3H, HC₅), 3.85 (m, 3H, CH_{2a}-Ogalactosyl), 3.67 (m, 3H, CH_{2b}-O-galactosyl), 3.41 (d, 6H, CH₂-NH), 3.15 (m, 2H, CH₂-phenylalanine), 2.14 (s, 9H, CH₃CO), 2.12 [m, 6H, (CH₂)₃-C], 2.07 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), 1.99 (m, 6H, CH₂CO). ¹³C NMR (CDCl₃): δ (ppm) 172.9 (CO dend), 172 (CO phenylalanine), 170.4 (COCH₃), 170.2 (COCH₃), 170 (COCH₃), 169.8 (COCH₃), 138 (C₁ phenylalanine), 129.9 (o-phenylalanine), 129.4 (p-phenylalanine), 128.7 (m-phenylalanine), 101.3 (C1), 70.8 (C5), 70.7 (C3), 68.9 (C2), 68.8 (CH2-Ogalactosyl), 67 (C₄), 61.3 (C₆), 58.8 (C-NH), 57.1 (CH phenylalanine), 39.3 (CH₂-NH), 38.4 (CH₂ phenylalanine), 30.8 (CH₂CO), 30.6 [(CH₂)₃-C], 20.8 (CH₃CO), 20.7 (CH₃CO), 20.6 (2 CH₃CO), 20.55 (2 CH₃CO).

Compound 31- α -ManOAc: The title compound was prepared as 26- β -GluOAc from 29- α -ManOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as yellow crystals (yield 97%). MS calcd for C₆₇H₉₆N₅O₃₄ (MH⁺) 1514.6, found 1514.7. Anal. (C₆₇H₉₅N₅O₃₄), 2H₂O calcd: C 51.90, H 6.44, N 4.52. Found: C 51.4, H 6.00, N 4.39. ¹H NMR (CDCl₃): δ (ppm) 7.29 (m, 5H, phenylalanine), 5.30 (m, 9H, HC₂, HC₃ and HC₄), 4.84 (d, 3H, J = 1.1 Hz, HC₁), 4.26 (dd, 3H, J = 5.4 and 12.3 Hz, H_aC₆), 4.13 (dd, 3H, J = 1.8 and 12 Hz, H_bC_6), 4.0 (m, 3H, HC₅), 3.76 (m, 3H, CH_{2a}-O-mannosyl), 3.67 (dd, 1H, *J* = 6.7 Hz, HC phenylalanine), 3.52 (m, 6H, CH_{2b}-O-mannosyl and CH_{2a}-NH), 3.38 (m, 3H, CH_{2b}-NH), 3.14 (m, 1H, CH_{2a}-phenylalanine), 3.07 (m, 1H, CH_{2b}-phenylalanine), 2.16 [m, 6H, (CH₂)₃-C], 2.15 (s, 9H, CH₃CO), 2.10 (s, 9H, CH₃CO), 2.04 (s, 9H, CH₃CO), 2.03 (m, 6H, CH₂CO), 1.98 (s, 9H, CH₃CO). $^{13}\text{C}\,\text{NMR}\,(\text{CDCl}_3):\delta$ (ppm) 173.5 (CO dend), 170.7 (COCH_3), 170.6 (CO phenylalanine), 170.2 (COCH₃), 170.1 (COCH₃), 169.7 (COCH₃), 136.9 (C₁ phenylalanine), 129.5 (o-phenylalanine), 128.7 (*p*-phenylalanine), 127.1 (*m*-phenylalanine), 97.5 (C₁), 69.3 (C₂), 69.2 (C₃), 68.6 (C₅), 66.9 (CH₂-O-mannosyl), 65.9 (C₄), 62.4 (C₆), 58.3 (C-NH), 53.7 (CH phenylalanine), 42 (CH₂ phenylalanine), 38.8 (CH₂-NH), 31.1 (CH₂CO), 30.5 [(CH₂)₃-C], 20.8 (2 CH₃CO), 20.6 $(2 \text{ CH}_3\text{CO}).$

Compound 32-\beta-GluOAc: The title compound was prepared as 26-β-GluOAc from 30-β-GluOAc. Pure title compound was obtained as beige crystals and used without purification (yield 97%). MS calcd for $C_{73}H_{108}N_5O_{37}$ (MH⁺) 1646.66, found 1646.8. Anal. ($C_{73}H_{107}N_5O_{37}$), 4H₂O calcd: C 51.01, H 6.74, N 4.07. Found: C 50.91, H 6.69, N 4.29. ¹H NMR (CDCl₃): δ (ppm) 7.25 (m, 5H, phenylalanine), 6.44 (broad t, 3H, NH-CH₂), 5.23 (t, 3H, J = 9.4 Hz, HC₃), 5.09 (t, 3H, J = 9.4 Hz, HC_4), 4.99 (t, 3H, J = 8 Hz, HC_2), 4.59 (d, 3H, J = 7.8 Hz, HC_1), 4.26 $(dd, 3H, J = 4.4 and 12.3 Hz, H_aC_6), 4.14 (dd, 3H, J = 1.6 and 12 Hz,$ H_bC₆), 3.96 (m, 3H, CH_{2a}-O-glucosyl), 3.70 (m, 6H, HC₅ and CH_{2b}-Oglucosyl), 3.61 (m, 7H, CH₂O and CH phenylalanine), 3.5 (m, 6H, CH₂O), 3.37 (m, 6H, CH₂-NH), 3.14 (m, 1H, CH_{2a} phenylalanine), 2.75 (m, 1H, CH_{2b} phenylalanine), 2.14 [m, 6H, (CH₂)₃-C], 2.08 (s, 9H, CH₃CO), 2.06 (m, 6H, CH₂CO), 2.04 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173 (CO dend), 170.7 (COCH₃), 170.2 (COCH₃), 169.8 (CO phenylalanine), 169.6 (COCH₃), 169.4 (COCH₃), 137 (C₁ phenylalanine), 129.4 (ophenylalanine), 128.7 (p-phenylalanine), 126.8 (m-phenylalanine), 100.8 (C1), 72.6 (C3), 71.8 (C5), 71.3 (C2), 69.8 (2 CH2O), 69 (CH2-Oglucosyl), 68.3 (C4), 61.8 (C6), 57.6 (C-NH), 57 (CH phenylalanine), 40.9 (CH₂ phenylalanine), 39.2 (CH₂-NH), 30.9 (CH₂CO), 30.6 [(CH₂)₃-C], 20.7 (2 CH₃CO), 20.6 (2 CH₃CO).

Compound 32- β -GalOAc: The title compound was prepared as 26- β -GluOAc from 30- β -GalOAc. Pure title compound was obtained

after crystallization from a mixture of methylene chloride/diethyl ether as beige crystals (yield 89%). MS calcd for C₇₃H₁₀₈N₅O₃₇ (MH⁺) 1646.66, calcd for C₇₃H₁₀₇N₅O₃₇Na (MNa⁺) 1668.6, found 1646.8 and 1668.8. Anal. (C₇₃H₁₀₇N₅O₃₇), 5H₂O calcd: C 50.48, H 6.79, N 4.03. Found: C 50.73, H 6.33, N 4.59. ¹H NMR (CDCl₃): δ (ppm) 7.27 (m, 5H, phenylalanine), 6.51 (broad t, 3H, NH-CH₂), 5.39 (d, 3H, J = 2.7 Hz, HC₄), 5.19 (dd, 3H, J = 7.8 and 10.2 Hz, HC₂), 5.06 (m, 3H, HC₃), 4.58 (d, 3H, HC₁), 4.26 (m, 1H, HC phenylalanine), 4.14 (m, 6H, HC₆), 3.96 (m, 6H, HC₅ and CH_{2a}-O-galactosyl), 3.71 (m, 3H, CH_{2b}-Ogalactosyl), 3.62 (m, 6H, CH2O), 3.52 (m, 6H, CH2O), 3.39 (m, 6H, CH₂-NH), 3.14 (m, 2H, CH₂-phenylalanine), 2.14 (s, 9H, CH₃CO), 2.13 [m, 6H, (CH₂)₃-C], 2.05 (s, 9H, CH₃CO), 2.04 (s, 9H, CH₃CO), 1.98 (s, 9H, CH_3CO), 1.98 (m, 6H, CH_2CO). $^{13}\mathrm{C}$ NMR (CDCl_3): δ (ppm) 173 (CO dend), 172.96 (CO phenylalanine), 170.2 (COCH₃), 170 (2COCH₃), 169.5 (COCH₃), 136.9 (C₁ phenylalanine), 129.3 (o-phenylalanine), 128.5 (p-phenylalanine), 126.7 (m-phenylalanine), 101.1 (C1), 70.6 (C3), 70.4 (C5), 69.7 (CH2O), 69.6 (CH2O), 68.7 (CH₂-O-galactosyl), 68.7 (C₂), 66.9 (C₄), 61.1 (C₆), 57.7 (C-NH), 56.4 (CH phenylalanine), 40.3 (CH₂ phenylalanine), 39 (CH₂-NH), 30.7 (CH₂CO), 30.3 [(CH₂)₃-C], 20.6 (CH₃CO), 20.5 (2 CH₃CO), 20.4 $(CH_3CO).$

Compound 32-α-ManOAc: The title compound was prepared as 26-β-GluOAc from 30-α-ManOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/diethyl ether as yellow crystals (yield 88%). MS calcd for C₇₃H₁₀₇N₅O₃₇ (MH⁺) 1646.66, found 1647.0. Anal. (C₇₃H₁₀₇N₅O₃₇), 6H₂O calcd: C 49.97, H 6.84, N 3.99. Found: C 49.71, H 6.50, N 4.11. $^1\mathrm{H}$ NMR (CDCl₃): δ (ppm) 7.3 (m, 5H, phenylalanine), 6.53 (broad t, 3H, NH-CH₂), 5.30 $(m, 9H, HC_2, HC_3 \text{ and } HC_4), 4.91 (d, 3H, J = 1.1 Hz, HC_1), 4.27 (dd, J)$ 3H, J = 5 and 12.2 Hz, H_aC_6), 4.11 (m, 3H, H_bC_6), 4.04 (m, 3H, HC_5), 3.78 (m, 3H, CH_{2a}-O-mannosyl), 3.68 (m, 3H, CH_{2b}-O-mannosyl), 3.63 (m, 6H, CH₂O), 3.51 (m, 6H, CH₂O), 3.39 (m, 6H, CH₂-NH), 3.16 (m, 2H, CH₂-phenylalanine), 2.16 [m, 6H, (CH₂)₃-C], 2.15 (s, 9H, CH₃CO), 2.10 (s, 9H, CH₃CO), 2.06 (m, 6H, CH₂CO), 2.05 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 173 (CO dend), 171.1 (CO phenylalanine), 170.8 (COCH₃), 170.2 (COCH₃), 170 (COCH₃), 169.8 (COCH₃), 138 (C₁ phenylalanine), 129.5 (o-phenylalanine), 128.7 (p-phenylalanine), 126.8 (m-phenylalanine), 97.6 (C₁), 70 (CH₂O), 69.9 (CH₂O), 69.6 (C₃), 68.9 (C₂), 68.4 (C₅), 67.1 (CH₂-O-mannosyl), 66.1 (C₄), 62.5 (C₆), 58 (C-NH), 57 (CH phenylalanine), 40.9 (CH₂ phenylalanine), 39.2 (CH₂-NH), 30.8 (CH₂CO), 30.5 [(CH₂)₃-C], 20.9 (CH₃CO), 20.7 (CH₃CO), 20.7 $(2 CH_3CO).$

2-(2-Chloroethoxy)ethyl ethanoate, 33: Diethylene glycol monochlorohydrin (2.50 g, 20 mmol) and acetic anhydride (2.1 mL, 22 mmol) were stirred at room temperature overnight. Progress of the reaction was followed by ¹H RMN spectroscopy. The crude mixture was dissolved in methylene chloride (30 mL), then washed with water, aqueous sodium bicarbonate solution, and water. The organic phase was dried over sodium sulfate, filtered, and concentrated under vacuum. The title compound **34** was used without purification (3.13 gr, yield 94%). ¹H NMR (CDCl₃): δ (ppm) 4.26 (t, 2H, *J* = 4.7 Hz, CH₂OAc), 3.79 (t, 2H, *J* = 6.3 Hz, CH₂O), 3.74 (t, 2H, *J* = 4.7 Hz, CH₂O), 3.65 (t, 2H, *J* = 5.9 Hz, CH₂Cl), 2.11 (s, 3H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 171.3 (COCH₃), 71.6 (CH₂O), 69.5 (CH₂O), 63.7 (CH₂OAc), 42.9 (CH₂Cl), 21.4 (CH₃).

2-(2-Azidoethoxy)ethyl ethanoate, 34: Compound 33 (3.130 g, 18.8 mmol) and sodium azide (4.9 g, 75 mmol) were stirred in dimethyl sulfoxide (25 mL) under argon at 100 °C for 1 h 30 min. The solution was diluted in methylene chloride (100 mL) and washed twice with saturated aqueous sodium chloride solution (100 mL). The organic phase was dried over sodium sulfate, filtered, and concentrated under vacuum. The title compound was used without purification (3.09 g, yield 95%). ¹H NMR (CDCl₃): δ (ppm) 4.26 (t, 2H, *J* = 4.7 Hz, CH₂OAc), 3.73 (t, 2H, *J* =

4.7 Hz, CH₂O), 3.70 (t, 2H, *J* = 5 Hz, CH₂O), 3.41 (t, 2H, *J* = 5 Hz, CH₂N₃), 2.11 (s, 3H, CH₃CO). ¹³C NMR (CDCl₃): δ (ppm) 171.4 (COCH₃), 70.4 (CH₂O), 69.5 (CH₂O), 63.8 (CH₂OAc), 51 (CH₂N₃), 21.4 (CH₃).

2-(2-Aminoethoxy)ethyl ethanoate, tosylate salt, 35: Azido compound 34 (3.09 g, 18 mmol) and *p*-toluenesulfonic acid (3.52 g, 18 mmol) were dissolved in ethyl acetate (100 mL). Palladium (10%) under carbon (0.6 g) was added. The mixture was stirred under hydrogen atmosphere (5 bar) overnight at room temperature. The suspension was filtered over Celite, which was washed with ethanol. The crude solution was concentrated under vacuum. The title compound was obtained as a colorless oil. Ether (100 mL) was added and the title compound was crystallized as a hygroscopic white powder (5.02 g, yield 88%). ¹H NMR (CDCl₃): δ (ppm) 7.77 (d, SH, *J* = 8.1 Hz, CH tosylate and NH₃⁺), 7.19 (d, 2H, *J* = 8 Hz, CH tosylate), 4.10 (t, 2H, *J* = 4.7 Hz, CH₂OAc), 3.62 (t, 2H, *J* = 5.1 Hz, CH₂O), 2.38 (s, 3H, CH₃), 2.02 (s, 3H, CH₃CO).

 $4-(Z-N-2-Aminoethanamido)-N^1, N^7-bis[2-(2-hydroxyethoxy)]$ ethyl]-4-{3-[2-(2-hydroxyethoxy)ethylamino]-3-oxopropyl} heptanediamide, 36: The title compound was prepared as $23-\beta$ -GluOAc from 35 (0.220 g, 0.5 mmol) and 22-Gly (0.479 g, 1.5 mmol). The crude title compound was dried under vacuum and used without purification (0.282 g, yield 73%). ¹H NMR (CDCl₃): δ (ppm) 7.37 (m, 5H, benzyloxycarbonyl), 7.24 (broad s, 1H, NH), 6.32 (broad t, 3H, NH), 5.62 (broad t, 1H, J = 5.4 Hz, NH), 5.15 (s, 2H, CH₂ benzyloxycarbonyl), 4.24 (t, 6H, J = 4.7 Hz, CH₂-OAc), 3.78 (d, 2H, J = 5.7 Hz, CH₂ glycine), 3.67 (t, 6H, J = 4.7 Hz, CH₂), 3.55 (t, 6H, J =5.1 Hz, CH₂-O), 3.42 (dt, 6H, J = 5.1 Hz, CH₂), 2.22 (t, 6H, J = 7.2 Hz, CH_2-O), 2.10 (s, 9H, CH_3CO), 2.04 (t, 6H, J = 7.5 Hz, CH_2). ¹³C NMR (CDCl₃): δ (ppm) 173.3 (CO dend), 171.1 (COCH₃), 168.7 (CO glycine), 156.7 (CO-benzyloxycarbonyl), 136 (C₁ Z-phenyl), 128.1 (obenzyloxycarbonyl), 127.8 (p-benzyloxycarbonyl), 127.5 (m-benzyloxycarbonyl), 69.3 (C-O), 68.5 (C-O), 66.7 (C-benzyloxycarbonyl), 63 (C-O-acetyl), 58.2 (C-NH), 44.6 (C glycine), 38.9 (C-NH), 30.7 [(CH₂)₃-C], 30.4 (C-CO), 20.6 (CH₃CO).

4-(2-Aminoethanamido)- N^1 , N^7 -bis[2-(2-hydroxyethoxy) ethyl]-4-{3-[2-(2-hydroxyethoxy)ethylamino]-3-oxopropyl} heptanediamide, 37. The title compound was prepared as 26-β-GluOAc from 36 (0.282 g, 0.34 mmol). The title compound was used without purification (0.206 g, yield 87%). ¹H NMR (CDCl₃): δ (ppm) 7.65 (broad s, 1H, NH), 7.31 (broad s, 3H, NH), 4.20 (t, 6H, J = 4.3 Hz, CH₂-OAc), 3.64 (t, 6H, J = 4.3 Hz, CH₂), 3.52 (broad t, 6H, CH₂-O), 3.36 (broad s, 6H, CH₂), 2.20 (t, 6H, J = 7.2 Hz, CH₂-CO), 2.08 (s, 9H, CH₃CO), 1.99 (t, 6H, J = 7.5 Hz, CH₂).

General Procedure for the Preparation of Compounds 2-OAc-15-OAc. All operations were identical with those described for the synthesis of compound 2-OAc. A representative example is described below.

Porphyrin 2-OAc: Compound 26-β-GluOAc (200 mg, 0.14 mmol) was added after 5 min to a solution of meso-5-(4-benzoic acid)-10,15,20-tetraphenylporphyrin (46 mg, 7×10^{-5} mol) containing HOBt (14.6 mg, 0.105 mmol), EDC (20 mg, 0.105 mmol), and Et₃N $(45 \ \mu L)$ in dry methylene chloride $(20 \ mL)$ under argon. The solution was stirred overnight under argon at room temperature. The crude mixture was washed with aqueous chlorhydric acid (10%), water, aqueous sodium hydrogenocarbonate (10%), and water then dried over sodium sulfate, filtered, and concentrated under vacuum. Pure title compound was obtained by preparative thin layer chromatography (silica gel, methylene chloride/methanol, 100/5, v/v) and crystallization from a mixture of methylene chloride/n-heptane as a red powder, (47 mg, yield 33%). Anal. (C₁₀₅H₁₁₇N₉O₃₅), 6H₂O calcd: C 58.52, H 6.01, N 5.96. Found: C 58.36, H 5.90, N 5.74. UV-vis spectrum in CH₂Cl₂: λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 417.5 (403.7), 515.5 (16), 549 (6.9), 590 (4.7), 645 (3.4). ¹H NMR (CDCl₃): δ (ppm) 8.86 (s, 6H,

HC_{2,8,12,13,17,18} pyrrole), 8.81 (d, 2H, J = 4.5 Hz, HC_{3,7} pyrrole), 8.31 (m, 4H, m- and o-carboxyphenyl), 8.20 (m, 6H, o-phenyl), 7.91 (broad t, 1H, *J* = 5.2 Hz, NH-glycine), 7.75 (m, 9H, *m*- and *p*-phenyl), 7.44 (s, 1H, NH-C), 6.92 (broad t, 3H, NH-CH₂), 5.18 (t, 3H, J = 9.4 Hz, HC₃), 5.05 $(t, 3H, J = 9.5 Hz, HC_4), 4.98 (dd, 3H, J = 8 and 9.3 Hz, HC_2), 4.50 (d, 3H, J = 8 and 9.3 Hz, HC_2)$ 3H, J = 8 Hz, HC₁), 4.21 (dd, 2H, HC glycine), 4.21 (dd, 3H, J = 4.5 and 12.2 Hz, H_aC₆), 4.09 (m, 3H, H_bC₆), 3.85 (m, 3H, CH_{2a}-O-glucosyl), 3.66 (m, 6H, HC₅ and CH_{2b}-O-glucosyl), 3.44 (m, 6H, CH₂NH), 2.30 (m, 6H, CH₂CO), 2.16 [m, 6H, (CH₂)₃-C], 2.07 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 1.98 (s, 9H, CH₃CO), 1.97 (s, 9H, CH₃CO), -2.79 (s, 2H, NH). $^{13}\mathrm{C}$ NMR (CDCl_3): δ (ppm) 173.7 (CO dend), 170.7 (COCH₃), 170.1 (COCH₃), 169.7 (COCH₃), 169.4 (COCH₃), 168.2 (CO glycine), 167.8 (CO phenyl), 145.8 (C₁ carboxyphenyl), 141.9 (C₁ phenyl), 134.5 (o-carboxyphenyl), 134.5 (o-phenyl), 132.7 (p-carboxyphenyl), 131.2 (C pyrrole), 127.7 (p-phenyl), 126.7 (m-phenyl), 125.7 (m-carboxyphenyl), 120.4 (meso-C₁₅), 120.3 (meso-C_{10,20}), 118.5 (meso-C₅), 100.7 (C₁), 72.6 (C₃), 71.8 (C₅), 71.2 (C₂), 68.7 (CH₂-O-glucosyl), 68.2 (C₄), 61.8 (C₆), 58.3 (C-NH), 44.3 (CH₂ glycine), 39.4 (CH₂-NH), 30.9 [(CH₂)₃-C], 30.7 (COCH₂), 20.7 (2 CH₃CO), 20.5 $(2 \text{ CH}_3\text{CO}).$

Porphyrin 3-OAc: The title compound was prepared as 2-OAc from 26- β -GalOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/n-heptane as a red powder (yield 55%). Anal. (C₁₀₅H₁₁₇N₉O₃₅), 11H₂O calcd: C 55.72, H 6.19, N 5.57. Found: C 55.94, H 6.65, N 5.24. UV-vis spectrum in CH₂Cl₂: $\lambda_{\text{max.}}$ nm (ε , L·mmol⁻¹·cm⁻¹) 418 (477.9), 515.5 (19.8), 550 (9.4), 590 (6.8), 645.4 (5.4). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2.8.12.13.17.18} pyrrole), 8.80 (d, 2H, J = 4.8 Hz, HC_{3.7} pyrrole), 8.31 (s, 4H, *m*- and *o*-carboxyphenyl), 8.21 (d, 6H, J = 4.7 Hz, *o*-phenyl), 7.74 (m, 9H, *m*- and *p*-phenyl), 6.71 (broad t, 3H, *J* = 5.4 Hz, NH-CH₂), 5.38 (d, 3H, J = 2.9 Hz, HC₄), 5.18 (dd, 3H, J = 7.8 and 10.4 Hz, HC₂), 5.06 (dd, 3H, J = 3.3 and 10.4 Hz, HC₃), 4.52 (d, 3H, J = 7.8 Hz, HC₁), 4.22 (d, 2H, CH_2 glycine), 4.12 (m, 6H, J = 6.6 and 11.2 Hz, HC_6), 3.96 (m, 3H, $J = 6.6 \text{ Hz}, \text{HC}_5$, 3.88 (m, 3H, CH_{2a}-O-galactosyl), 3.70 (m, 3H, CH_{2b}-O-galactosyl), 3.45 (d, 6H, CH2NH), 2.33 (m, 6H, CH2CO), 2.14 [m, 6H, (CH₂)₃-C], 2.12 (s, 9H, CH₃CO), 2.09 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 1.96 (s, 9H, CH₃CO), -2.79 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.3 (CO dend), 170.5 (COCH₃), 170.1 (COCH₃), 170 (COCH₃), 169.8 (COCH₃), 168.7 (CO glycine), 168 (CO phenyl), 146 (C₁ carboxyphenyl), 142 (C₁ phenyl), 134.6 (ocarboxyphenyl), 134.5 (o-phenyl), 132.8 (p-carboxyphenyl), 131.3 (C pyrrole), 127.7 (p-phenyl), 126.7 (m-phenyl), 125.7 (m-carboxyphenyl), 120.6 (meso- C_{15}), 120.3 (meso- $C_{10,20}$), 118.4 (meso- C_5), 101.3 (C_1), 70.7 (C₃ and C₅), 68.9 (C₂), 68.7 (CH₂-O-galactosyl), 66.9 (C₄), 61.3 (C₆), 58.3 (C-NH), 44.5 (CH₂ glycine), 39.5 (CH₂-NH), 31.1 [(CH₂)₃-C], 30.8 (COCH₂), 20.9 (CH₃CO), 20.7 (CH₃CO), 20.6 (CH₃CO), 20.5 (CH₃CO).

Porphyrin 5-OAc: The title compound was prepared as 2-OAc from 27- β -GluOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/n-heptane as a red powder (yield 41%). UV-vis spectrum in CH₂Cl₂: λ_{max} nm (ϵ , L·mmol⁻ $^{1} \cdot \text{cm}^{-1}$ 417.5 (419.7), 514.5 (16.9), 549 (7.4), 590 (5.1), 645.5 (3.7). ¹H NMR (CDCl₃): δ (ppm) 8.86 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.79 (d, 2H, J = 4.4 Hz, HC_{3.7} pyrrole), 8.31 (m, 4H, m- and ocarboxyphenyl), 8.19 (m, 6H, o-phenyl), 7.75 (m, 9H, m- and p-phenyl), 7.49 (broad s, 1H, NH-C), 6.71 (broad t, 3H, NH-CH₂), 5.28 (t, 3H, J = 9.6 Hz, HC₃), 5.08 (t, 3H, J = 9.5 Hz, HC₄), 5.0 (dd, 3H, J = 7.9 and 9.5 Hz, HC₂), 4.67 (d, 3H, J = 7.5 Hz, HC₁), 4.24 (m, 2H, CH₂ glycine), 4.21 (m, 3H, H_aC_6), 4.09 (m, 3H, H_bC_6), 3.93 (m, 3H, CH_{2a} -Oglucosyl), 3.76 (m, 3H, CH_{2b}-O-glucosyl), 3.60 (m, 9H, HC₅ and CH2O), 3.53 (m, 9H, CH2O and CH2a-NH), 3.35 (m, 3H, CH2b-NH), 2.36 [m, 6H, (CH₂)₃-C], 2.16 (m, 6H, CH₂CO), 2.06 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 2.01 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), -2.8 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.4

(CO-dend), 170.6 (COCH₃), 170.4 (COCH₃), 169.6 (COCH₃), 169.3 (COCH₃), 169 (CO glycine), 168.1 (CO phenyl), 146 (C₁ carboxyphenyl), 141.8 (C₁ phenyl), 134.6 (*o*-carboxyphenyl), 134.4 (*o*-phenyl), 132.5 (*p*-carboxyphenyl), 131 (C pyrrole), 127.7 (*p*-phenyl), 126.6 (*m*-phenyl), 125.7 (*m*-carboxyphenyl), 120.5 (*meso*-C₁₅), 120.3 (*meso*-C_{10,20}), 118.3 (*meso*-C₅), 100.7 (C₁), 72.7 (C₃), 71.6 (C₅), 71.2 (C₂), 70.1 (CH₂O), 70 (CH₂O), 68.8 (CH₂-Oglucosyl), 68.4 (C₄), 61.8 (C₆), 58.5 (C-NH), 44.5 (CH₂ glycine), 39.3 (CH₂-NH), 30.6 [(CH₂)₃-C and COCH₂], 20.7 (2 CH₃CO), 20.6 (CH₃CO), 20.5 (CH₃CO).

Porphyrin 6-OAc: The title compound was prepared as 2-OAc from 27- β -GalOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/n-heptane as a red powder (yield 59%). UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ϵ , L·mmol⁻ $^{1} \cdot \text{cm}^{-1}$) 417.5 (413.6), 515 (16.5), 549.5 (7.2), 590 (4.9), 644.5 (3.5). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.81 (d, 2H, *J* = 4.7 Hz, HC_{3,7} pyrrole), 8.39 (m, 2H, *m*-carboxyphenyl), 8.32 (d, 2H, o-carboxyphenyl), 8.18 (m, 6H, o-phenyl), 7.73 (m, 9H, m- and *p*-phenyl), 7.41 (broad s, 1H, NH-C), 6.88 (broad t, 3H, NH-CH₂), 5.39 $(d, 3H, J = 2.8 Hz, HC_4), 5.22 (dd, 3H, J = 7.5 and 10.4 Hz, HC_2), 5.14$ (dd, 3H, *J* = 2.8 and 10.4 Hz, HC₃), 4.69 (d, 3H, *J* = 7.5 Hz, HC₁), 4.32 (m, 2H, CH₂ glycine), 4.13 (m, 6H, HC₆), 3.94 (m, 6H, HC₅ and CH_{2a}-O-galactosyl), 3.73 (m, 3H, CH_{2b}-O-galactosyl), 3.6 (m, 6H, CH₂O), 3.48 (m, 9H, CH₂O and CH_{2a}NH), 3.4 (m, 3H, CH_{2b}NH), 2.36 [m, 6H, (CH₂)₃-C], 2.16 (m, 6H, CH₂CO), 2.14 (s, 9H, CH₃CO), 2.06 (s, 9H, CH₃CO), 2.01 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), -2.78 (s, 2H, NH). $^{13}\mathrm{C}$ NMR (CDCl_3): δ (ppm) 173.2 (CO dend), 170.4 (COCH₃), 170.25 (COCH₃), 170.22 (COCH₃), 169.7 (COCH₃), 169.1 (CO glycine), 168.1 (CO phenyl), 146.1 (C₁ carboxyphenyl), 141.8 (C1 phenyl), 134.6 (o-carboxyphenyl), 134.4 (o-phenyl), 132.3 (pcarboxyphenyl), 131.2 (C pyrrole), 127.7 (p-phenyl), 126.6 (m-phenyl), 125.7 (*m*-carboxyphenyl), 120.5 (*meso*-C₁₅), 120.2 (*meso*-C_{10.20}), 118.2 $(meso-C_5)$, 101.2 (C_1) , 70.8 (C_3) , 70.5 (C_5) , 70.2 (CH_2O) , 69.9 (CH₂O), 68.8 (C₂), 68.7 (CH₂-O-galactosyl), 67 (C₄), 61.3 (C₆), 58.5 (C-NH), 44.5 (CH₂ glycine), 39.3 (CH₂-NH), 30.7 [(CH₂)₃-C and COCH₂], 20.8 (2 CH₃CO), 20.6 (2 CH₃CO).

Porphyrin 8-OAc: The title compound was prepared as 2-OAc from 28-α-ManOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/*n*-heptane as a red powder (yield 42%). UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ε , L·mmol⁻¹· cm⁻¹) 417.5 (381.6), 515.5 (14.9), 549 (6.5), 590 (4.4), 645 (3.1). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.81 (d, 2H, J = 4.7 Hz, HC_{3.7} pyrrole), 8.32 (s, 4H, *m*- and *o*-carboxyphenyl), 8.21 (m, 6H, o-phenyl), 8.06 (broad, 1H, NH glycine), 7.74 (m, 9H, mand p-phenyl), 7.42 (broad s, 1H, NH), 7.32 (t, 3H, J = 5.3 Hz, NH-CH₂), 5.35 (t, 3H, J = 3.1 and 10.1 Hz, HC₃), 5.30 (t, 3H, J = 10 Hz, HC_4), 5.26 (m, 3H, HC_2), 4.87 (d, 3H, J = 1.2 Hz, HC_1), 4.27 (dd, 3H, J = 5.1 and 12.4 Hz, H_aC₆), 4.25 (d, 2H, HC glycine), 4.10 (dd, 3H, J =2.2 and 12.3 Hz, H_bC_6), 4.05 (m, 3H, HC_5), 3.80 (m, 3H, CH_{2a} -Omannosyl), 3.63 (m, 24H, CH₂), 3.46 (m, 6H, CH₂NH), 2.34 (m, 6H, CH₂CO), 2.15 [m, 6H, (CH₂)₃-C], 2.14 (s, 9H, CH₃CO), 2.08 (s, 9H, CH₃CO), 2.03 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), -2.78 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.8 (CO dend), 170.8 (COCH₃), 170.03 (COCH₃), 170.02 (COCH₃), 169.6 (COCH₃), 169.1 (CO glycine), 168.1 (CO phenyl), 145.7 (C₁ carboxyphenyl), 141,9 (C₁ phenyl), 134.5 (o-carboxyphenyl), 134.4 (o-phenyl), 132.8 (p-carboxyphenyl), 131 (C and C_{2,8,12,13,17,18} pyrrole), 127.7 (p-phenyl), 126.6 (m-phenyl), 125.7 (o-carboxyphenyl), 120.4 (meso-C₁₅), 120.2 (meso-C_{10,20}), 118.5 (meso-C₅), 97.6 (C₁), 70.5 (CH₂-O), 70.1 (CH₂-O), 69.8 (CH₂-O), 69.7 (CH₂-O), 69.4 (C2), 69.1 (C3), 68.3 (C5), 67.2 (CH2-O-glucosyl), 65.9 (C4), 62.3 (C₆), 58.1 (C-NH), 44.3 (CH₂ glycine), 39.3 (CH₂-NH), 30.8 [(CH₂)₃-C], 30.6 (COCH₂), 20.8 (CH₃CO), 20.7 (CH₃CO), 20.6 (CH₃CO).

Porphyrin 9-OAc: The title compound was prepared as 2-OAc from 31- β -GluOAc. Pure title compound was obtained after

crystallization from a mixture of methylene chloride/*n*-heptane as a red powder (yield 35%). Anal. (C112H123N9O35), 7H2O calcd: C 59.97, H 6.05, N 5.53. Found: C 59.20, H 5.52, N 5.06. UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ϵ , L·mmol⁻¹·cm⁻¹) 418 (471.2), 515.5 (19.2), 550 (9.2), 590 (6.6), 645.5 (5.2). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.79 (d, 2H, J = 4.3 Hz, HC_{3.7} pyrrole), 8.30 (d, 4H, J = 8 Hz, m- and o-carboxyphenyl), 8.20 (d, 6H, J = 5.7 Hz, ophenyl), 7.77 (m, 9H, m- and p-phenyl), 7.41 (m, 5H, phenylalanine), 6.44 (broad t, 3H, NH-CH₂), 5.19 (dd, 3H, J = 9.4 Hz, HC₃), 5.06 (dd, 3H, J = 9.6 Hz, HC₄), 5.0 (dd, 3H, J = 9.4 Hz, HC₂), 4.94 (d, 1H, J = 7.0 Hz, HC phenylalanine), 4.52 (d, 3H, J = 7.8 Hz, HC₁), 4.20 (dd, 3H, J = 4.6 and 12.2 Hz, H_aC_6), 4.11 (dd, 3H, J = 10.8 Hz, H_bC_6), 3.85 (m, 3H, CH_{2a}-O-glucosyl), 3.7 (m, 3H, HC₅), 3.68 (m, 3H, CH_{2b}-O-glucosyl), 3.43 (d, 6H, J = 4.4 Hz, CH₂NH), 3.32 (d, 2H, J = 6.7 Hz, CH₂ phenylalanine), 2.16 [m, 6H, (CH₂)₃-C], 2.05 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 2.01 (m, 6H, CH₂CO), 1.98 (s, 9H, CH₃CO), 1.96 (s, 9 H, CH₃CO), -2.79 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.2 (CO dend), 170.7 (COCH₃), 170.6 (CO phenylalanine), 170.1 (COCH₃), 169.6 (COCH₃), 169.4 (COCH₃), 167.6 (CO phenyl), 145.9 (C1 carboxyphenyl), 142 (C1 phenyl), 136.8 (C1 phenylalanine), 134.7 (o-carboxyphenyl), 134.5 (o-phenyl), 133 (p-carboxyphenyl), 132.2 (p-phenyl), 131.5 (C pyrrole), 129.6 (o-phenylalanine), 128.8 (p-phenylalanine), 127.8 (m-phenylalanine), 126.7 (m-phenyl), 125.6 (m-carboxyphenyl), 120.5 (meso-C₁₅), 120.4 (meso-C_{10,20}), 118.4 (meso-C₅), 100.8 (C₁), 72.6 (C₃), 71.8 (C₅), 71.3 (C₂), 68.8 (CH₂-Oglucosyl), 68.3 (C₄), 61.8 (C₆), 58.4 (C-NH), 56 (CH phenylalanine), 39.4 (CH₂-NH), 38.2 (CH₂ phenylalanine), 30.9 [(CH₂)₃-C], 30.6 (COCH₂), 20.74 (CH₃CO), 20.71 (CH₃CO), 20.5 (2 CH₃CO).

Porphyrin 10-OAc: The title compound was prepared as 2-OAc from 31- β -GalOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/n-heptane as a red powder (yield 62%). Anal. (C₁₁₂H₁₂₃N₉O₃₅), 3H₂O calcd: C 60.89, H 5.89, N 5.71. Found: C 60.91, H 5.69, N 5.25. UV-vis spectrum in CH₂Cl₂: $\lambda_{\text{max,}}$ nm (ε , L·mmol⁻¹·cm⁻¹) 418 (491.2), 515.5 (19.9), 550 (9.7), 590 (6.9), 645.5 (5.4). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2.8.12.13.17.18} pyrrole), 8.80 (d, 2H, J = 4.5 Hz, HC_{3.7} pyrrole), 8.31 (s, 4H, m- and o-carboxyphenyl), 8.20 (m, 6H, o-phenyl), 7.76 (m, 9H, mand p-phenyl), 7.45 (m, 5H, phenylalanine), 6.44 (broad t, 3H, J = 5.1 Hz, NH-CH₂), 5.36 (d, 3H, J = 2.7 Hz, HC₄), 5.20 (dd, 3H, J = 7.8 and 10.4 Hz, HC₂), 5.03 (dd, 3H, J = 3.3 and 10.4 Hz, HC₃), 4.94 (d, 1H, J = 6.7 Hz, HC phenylalanine), 4.51 (d, 3H, J = 7.8 Hz, HC₁), 4.15 (m, $3H, J = 6.6 \text{ and } 12.2 \text{ Hz}, H_aC_6$, $4.09 (m, 3H, J = 6.6 \text{ and } 12.2 \text{ Hz}, H_bC_6)$, 3.92 (m, 3H, J = 6.6 Hz, HC₅), 3.88 (m, 3H, CH_{2a}-O-galactosyl), 3.71 (m, 3H, CH_{2b}-O-galactosyl), 3.45 (d, 6H, J = 5 Hz, CH₂NH), 3.31 (m, 2H, CH₂ phenylalanine), 2.17 [m, 6H, (CH₂)₃-C], 2.17 (s, 9H, CH₃CO), 2.06 (s, 9H, CH₃CO), 2.05 (s, 9H, CH₃CO), 2.01 (m, 6H, CH₂CO), 1.99 (s, 9H, CH₃CO), -2.79 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.2 (CO dend), 170.6 (CO phenylalanine), 170.4 (COCH₃), 170.1 (2 COCH₃), 169.8 (COCH₃), 167.5 (CO phenyl), 146 (C₁ carboxyphenyl), 142 (C1 phenyl), 136.8 (C1 phenylalanine), 134.7 (o-carboxyphenyl), 134.5 (o-phenyl), 132.8 (p-carboxyphenyl), 132.3 (pphenyl), 131 (C pyrrole), 129.6 (o-phenylalanine), 128.8 (p-phenylalanine), 127.8 (m-phenylalanine), 126.7 (m-phenyl), 125.6 (m-carboxyphenyl), 120.5 (meso-C₁₅), 120.3 (meso-C_{10,20}), 118.3 (meso-C₅), 101.3 (C₁), 70.7 (C₃ and C₅), 68.8 (C₂), 68.8 (CH₂-O-galactosyl), 67 (C₄), 61.3 (C₆), 58.4 (C-NH), 56.1 (CH phenylalanine), 39.4 (CH₂-NH), 38.2 (CH₂ phenylalanine), 30.8 [(CH₂)₃-C], 30.6 (COCH₂), 20.9 (CH₃CO), 20.65 (CH₃CO), 20.55 (2 CH₃CO).

Porphyrin 11-OAc: The title compound was prepared as 2-OAc from 31-α-ManOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/*n*-heptane as a red powder (yield 79%). Anal. (C₁₁₂H₁₂₃N₉O₃₅), 10H₂O calcd: C 57.6, H 6.17, N 5.40. Found: C 57.77, H 5.78, N 5.21. UV–vis spectrum in CH₂Cl₂: $\lambda_{max,r}$ nm (ε , L·mmol⁻¹·cm⁻¹) 417.5 (390), 515 (15.1), 549.5 (7.1), 589.5 (4.5), 644.5 (3.2). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.75 (d, 2H, J = 4.8 Hz, HC_{3,7} pyrrole), 8.29 (d, 4H, J = 8.1 Hz, m- and o-carboxyphenyl), 8.22 (m, 6H, o-phenyl), 7.77 (m, 9H, m- and p-phenyl), 7.42 (m, 5H, phenylalanine), 6.98 (broad t, 3H, NH-CH₂), 5.45 (dd, 3H, J = 3.4 and 10 Hz, HC₃), 5.34 (dd, 3H, J = 1.5 and 3.3 Hz, HC₂), 5.27 (m, 3H, J = 10 Hz, HC₄), 4.87 (d, 3H, J = 0.8Hz, HC₁), 4.82 (m, 1H, HC phenylalanine), 4.25 (dd, 3H, J = 5.4 and 12.2 Hz, H_aC_6), 4.14 (m, 3H, H_bC_6), 4.07 (m, 3H, HC_5), 3.8 (m, 3H, CH_{2a}-O-mannosyl), 3.55 (m, 6H, CH_{2b}-O-mannosyl and CH_{2a}NH), 3.43 (m, 3H, CH_{2b}NH), 3.24 (m, 2H, CH₂ phenylalanine), 2.22 (m, 6H, CH₂CO), 2.12 [m, 6H, (CH₂)₃-C], 2.12 (s, 9H, CH₃CO), 2.09 (s, 9H, CH₃CO), 2.00 (s, 9H, CH₃CO), 1.99 (s, 9H, CH₃CO), -2.79 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.7 (CO dend), 171 (CO phenylalanine), 170.8 (COCH₃), 170.3 (COCH₃), 170.2 (COCH₃), 169.7 (COCH₃), 168.2 (CO phenyl), 146 (C₁ carboxyphenyl), 141.9 (C₁ phenyl), 136.9 (C₁ phenylalanine), 134.6 (*o*-carboxyphenyl), 134.5 (o-phenyl), 132.7 (p-carboxyphenyl), 132.2 (p-phenyl), 131.2 (C pyrrole), 129.3 (o-phenylalanine), 128.7 (p-phenylalanine), 127.7 (m-phenylalanine), 126.7 (m-phenyl), 125.7 (m-carboxyphenyl), 120.5 (meso-C₁₅), 120.2 (meso-C_{10,20}), 118.4 (meso-C₅), 97.7 (C₁), 69.5 (C₂), 69.2 (C₃), 68.6 (C₅), 67.1 (CH₂-O-mannosyl), 66 (C₄), 62.4 (C₆), 58.8 (C-NH), 56.6 (CH phenylalanine), 38.9 (CH₂-NH), 37.9 (CH₂ phenylalanine), 31.4 [(CH₂)₃-C], 30.7 (COCH₂), 20.9 (CH₃CO), 20.74 (CH₃CO), 20.67 (CH₃CO), 20.63 (CH₃CO).

Porphyrin 12-OAc: The title compound was prepared as 2-OAc from 32-β-GluOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/*n*-heptane as a red powder (yield 39%). UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ε , L·mmol⁻¹· cm⁻¹) 417.5 (392.6), 515 (15.5), 550 (6.8), 589.5 (4.6), 645 (3.3). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.78 (d, 2H, J = 4.3 Hz, HC_{3.7} pyrrole), 8.29 (m, 4H, *m*- and *o*-carboxyphenyl), 8.21 (d, 6H, o-phenyl), 7.75 (m, 9H, m- and p-phenyl), 7.41 (m, 5H, phenylalanine), 6.57 (broad t, 3H, NH-CH₂), 5.31 (t, 3H, J = 9.5 Hz, HC₃), 5.08 (m, 3H, HC₄), 5.0 (m, 3H, HC₂), 4.97 (m, 1H, HC phenylalanine), 4.69 (d, 3H, J = 7.7 Hz, HC₁), 4.19 (dd, 3H, J = 4.4 and 12.2 Hz, H_aC_6 , 4.05 (m, 3H, J = 12.2 Hz, H_bC_6), 3.93 (m, 3H, CH_{2a}-O-glucosyl), 3.73 (m, 3H, CH_{2b}-O-glucosyl), 3.64 (m, 9H, HC₅ and CH₂O), 3.50 (m, 9H, CH₂O and CH_{2a}-NH), 3.33 (m, 5H, CH_{2b}-NH and CH₂ phenylalanine), 2.16 [m, 6H, (CH₂)₃-C], 2.06 (m, 6H, CH₂CO), 2.05 (s, 9H, CH₃CO), 2.01 (s, 18H, CH₃CO), 1.99 (s, 9H, CH₃CO), -2.8 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.2 (CO dend), 171 (CO phenylalanine), 170.7 (COCH₃), 170.6 (COCH₃), 169.6 (COCH₃), 169.3 (COCH₃), 167.7 (CO phenyl), 146 (C₁ carboxyphenyl), 141.9 (C1 phenyl), 136.6 (C1 phenylalanine), 134.7 (o-carboxyphenyl), 134.5 (o-phenyl), 133 (p-carboxyphenyl), 131.3 (C pyrrole), 129.5 (o-phenylalanine), 128.9 (p-phenylalanine), 127.8 (m-phenylalanine), 126.7 (m-phenyl and p-phenyl), 125.7 (mcarboxyphenyl), 120.7 (meso-C₁₅), 120.4 (meso-C_{10.20}), 118.1 (meso-C₅), 100.8 (C₁), 72.7 (C₃), 71.7 (C₅), 71.3 (C₂), 70.3 (CH₂O), 70.1 (CH₂O), 68.8 (CH₂-O-glucosyl), 68.4 (C₄), 61.8 (C₆), 58.5 (C-NH), 56 (CH phenylalanine), 39.3 (CH₂-NH), 38.2 (CH₂ phenylalanine), 30.3 [(CH₂)₃-C and COCH₂], 20.7 (2 CH₃CO), 20.63 (CH₃CO), 20.61 (CH₃CO).

Porphyrin 13-OAc: The title compound was prepared as 2-OAc from 32-β-GalOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/*n*-heptane as a red powder (yield 54%). Anal. (C₁₁₈H₁₃₅N₉O₃₈), 16H₂O calcd: C 55.03, H 6.54, N 4.89. Found: C 55.07, H 5.49, N 4.9. UV—vis spectrum in CH₂Cl₂: λ_{max} , nm (ε , L·mmol⁻¹·cm⁻¹) 418 (402), 515 (15.9), 550.5 (6.9), 590 (4.7), 645 (3.4). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.76 (m, 2H, HC_{3,7} pyrrole), 8.29 (m, 4H, *m*- and *o*-carboxyphenyl), 8.22 (m, 6H, *o*-phenyl), 7.76 (m, 9H, *m*- and *p*-phenyl), 7.42 (m, 5H, phenylalanine), 6.70 (broad t, 3H, NH-CH₂), 5.38 (d, 3H, HC₄), 5.22 (m, 6H, HC₂ and HC₃), 4.96 (m, 1H, HC

phenylalanine), 4.77 (d, 3H, J = 7.4 Hz, HC₁), 4.10 (m, 6H, HC₆), 3.94 (m, 6H, HC₅ and CH_{2a}-O-galactosyl), 3.80 (m, 3H, CH_{2b}-O-galactosyl), 3.52 (m, 9H, CH2, NH and CH2O), 3.31 (m, 5H, CH2 phenylalanine and CH_{2b}NH), 2.13 (s, 9H, CH₃CO), 2.07 (s, 9H, CH₃CO), 2.07 [m, 6H, (CH₂)₃-C], 2.02 (s, 9H, CH₃CO), 2.00 (m, 6H, CH₂CO), 1.96 (s, 9H, CH₃CO), -2.79 (s, 2H, NH). ¹³C NMR $(CDCl_3): \delta$ (ppm) 173.1 (CO dend), 171 (CO phenylalanine), 170.7 (COCH₃), 170.3 (2 COCH₃), 169.7 (COCH₃), 168 (CO phenyl), 146 (C1 carboxyphenyl), 141.9 (C1 phenyl), 136.6 (C1 phenylalanine), 134.6 (o-carboxyphenyl), 134.4 (o-phenyl), 132.2 (p-carboxyphenyl), 132 (p-phenyl), 131.4 (C pyrrole), 129.4 (o-phenylalanine), 128.9 (pphenylalanine), 127.7 (m-phenylalanine), 126.6 (m-phenyl), 125.6 (mcarboxyphenyl), 121 (meso-C15), 120.4 (meso-C10,20), 118 (meso-C5), 101.3 (C1), 71 (C3), 70.6 (C5), 70.1 (2 CH2O), 68.9 (C2), 68.6 (CH2-Ogalactosyl), 67.2 (C₄), 61.5 (C₆), 58.6 (C-NH), 56.9 (CH phenylalanine), 39.3 (CH₂-NH), 38.1 (CH₂ phenylalanine), 30.5 [(CH₂)₃-C], 30.2 (COCH₂), 20.9 (CH₃CO), 20.64 (CH₃CO), 20.63 (2 CH₃CO).

Porphyrin 14-OAc: The title compound was prepared as 2-OAc from 32-α-ManOAc. Pure title compound was obtained after crystallization from a mixture of methylene chloride/n-heptane as a red powder (yield 30%). UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ϵ , L·mmol⁻¹· cm⁻¹) 417.5 (358), 515 (14.3), 550 (6.2), 590.5 (4.3), 643 (3.1). ¹H NMR (CDCl₃): δ (ppm) 8.85 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.79 (d, 2H, J = 4.7 Hz, HC_{3.7} pyrrole), 8.28 (d, 2H, J = 8.0 Hz, *o*-carboxyphenyl), 8.21 (m, 8H, o-phenyl and m-carboxyphenyl), 7.75 (m, 9H, m- and pphenyl), 7.37 (m, 5H, phenylalanine), 7.30 (broad s, 1H, NH phenylalanine), 6.68 (broad t, 3H, NH-CH₂), 5.36 (m, 3H, HC₃), 5.28 (m, 6H, HC₄ and HC₂), 4.91 (m, 4H, HC₁ and CH phenylalanine), 4.26 (dd, 3H, J = 5 and 12.2 Hz, H_aC₆), 4.11 (dd, 3H, J = 2 and 12.3 Hz, H_bC₆), 4.05 (m, 3H, HC₅), 3.77 (m, 3H, CH_{2a}-O-mannosyl), 3.64 (m, 9H, CH_{2b}-O-mannosyl and CH₂O), 3.56 (m, 6H, CH₂O), 3.45 (m, 6H, CH₂-NH), 3.29 (m, 2H, CH₂ phenylalanine), 2.20 [m, 6H, (CH₂)₃-C], 2.13 (s, 9H, CH₃CO), 2.08 (m, 6H, CH₂CO), 2.07 (s, 9H, CH₃CO), 2.02 (s, 9H, CH₃CO), 1.98 (s, 9H, CH₃CO), −2.78 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.4 (CO dend), 170.7 (COCH₃), 170.6 (CO phenylalanine), 170.2 (COCH₃), 170 (COCH₃), 169.7 (COCH₃), 167.5 (CO phenyl), 145.8 (C₁ carboxyphenyl), 142 (C₁ phenyl), 136.8 (C₁ phenylalanine), 134.53 (o-carboxyphenyl), 134.47 (o-phenyl), 133.1 (pcarboxyphenyl), 131.1 (C pyrrole), 129.5 (o-phenylalanine), 128.7 (pphenylalanine), 127.7 (*p*-phenyl and *m*-phenylalanine), 126.66 (*m*-phenyl), 125.6 (m-carboxyphenyl), 120.6 (meso-C₁₅), 120.3 (meso-C_{10,20}), 118.5 (meso-C₅), 97.5 (C₁), 70 (CH₂O), 69.8 (CH₂O), 69.6 (C₃), 69 (C₂), 68.3 (C₅), 67 (CH₂-O-mannosyl), 66.1 (C₄), 62.4 (C₆), 58.3 (C-NH), 56.1 (CH phenylalanine), 39.4 (CH₂-NH), 38.3 (CH₂ phenylalanine), 30.9 [(CH₂)₃-C], 30.6 (COCH₂), 20.9 (CH₃CO), 20.69 (CH₃CO), 20.67 (2 CH₃CO).

Porphyrin 15-OAc: The title compound was prepared as 2-OAc from 37. Pure title compound was obtained after crystallization from a mixture of methylene chloride/n-heptane as a red powder (yield 86%). Anal. (C75H81N9O14), 3 H2O calcd: C 64.97, H 6.32, N 9.09. Found: C 65.29, H 6.16, N 8.88. UV-vis spectrum in CH₂Cl₂: λ_{max} , nm (ε_{1} L·mmol⁻¹·cm⁻¹) 417.5 (436.9), 515 (17), 549.5 (7.4), 590 (5), 645 (3.5). ¹H NMR (CDCl₃): δ (ppm) 8.83 (s, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.79 (d, 2H, J = 4.8 Hz, HC_{3.7} pyrrole), 8.30 (s, 3H, m- and ocarboxyphenyl), 8.20 (broad s, 1H, NH glycine), 8.16 (dd, 6H, J = 7.5and 1.8 Hz, o-phenyl), 7.70 (m, 9H, m- and p-phenyl), 7.53 (broad, 1H, NH glycine), 7.10 (t, 3H, J = 5.1 Hz, NH), 4.23 (d, 2H, J = 5.1 Hz, CH₂ glycine), 4.20 (m, 6H, CH₂OAc), 3.62 (m, 6H, CH₂), 3.55 (m, 6H, CH₂), 3.43 (m, 6H, CH₂-NH), 2.36 (m, 6H, CH₂), 2.15 (m, 6H, CH₂), 2.03 (s, 9H, CH₃CO), -2.79 (s, 2H, NH). ¹³C NMR (CDCl₃): δ (ppm) 173.8 (CO dend), 170.8 (COCH₃), 169.3 (CO glycine), 168.3 (CO phenyl), 146 (C₁ carboxyphenyl), 141.8 (C₁ phenyl), 134.6 (o-phenyl and o-carboxyphenyl and CO-phenyl), 131 (C pyrrole), 128 (p-phenyl), 126.4 (m-phenyl), 125.8 (m-carboxyphenyl), 120.3 (meso-C_{10,15,20}), 118.5 (mesoC₅), 69.5 (CH₂), 68.9 (CH₂), 63.4 (CH₂OAc), 58,1 (C-NH), 44.6 (CH₂ glycine), 39.4 (CH₂-NH), 30.9 (CH₂), 20.9 (CH₃CO).

General Procedure for the Preparation of Compounds 1-15. All operations were identical with those described for the synthesis of compound 1. A representative example is described below.

5-{p-N-[Tris(O- β -D-galactopyranosyloxy)methyl]- N^{α} -glycineamidophenyl}-10,15,20-triphenylporphyrin, 1: The peracetylated porphyrin 1-OAc was dissolved (75 mg, 0.04 mmol) in dry methanol (10 mL) and dry methylene chloride (5 mL) then a solution of sodium methanolate in methanol (100 μ L, 1 M) was added. The solution was stirred during 4 h at room temperature. IWT TMD-8 ion-exchange resin (400 mg) was added and the suspension was slowly stirred 30 min then filtered. The resin was washed with methanol and pyridine. The solution was concentrated under vacuum. The title compound 1 was obtained as a red powder and used without other purification (55 mg, yield 95%). MALTI-TOF calcd for C₆₉H₇₂N₆O₂₀ (MH⁺) 1305.48, found 1305.49, calcd for (MNa⁺) 1327.47, found 1327.51, calcd for (MK⁺) 1343.44, found 1343.48. Anal. ($C_{69}H_{72}N_6O_{20}$) calcd: C 63.49, H 5.56, N 6.44. Found: C 63.85, H 5.23, N 6.05. UV-vis spectrum in MeOH/pyridine $(24/1, v/v): \lambda_{max}$ nm $(\varepsilon, L \cdot mmol^{-1} \cdot cm^{-1})$ 414 (378.5), 513 (17), 547 (8.8), 588.5 (6.7), 644.5 (5.5). ¹H NMR (pyridine- d_5) δ (ppm) 9.68 (t, 1H, NHCH₂), 9.02 (m, 8H, pyrrole), 8.31 (d, 2H, o'-phenyl), 8.23 (d, 8H, Cortho phenyl), 7.75 (2 t and 1 d, 19H, mand *p*-phenyl), 7.00–6.25 (broad, 12H, OH), 4.94 (d, 9H, *J* = 7.5 Hz, HC₁ and CH₂O-Gal), 4.73 (d, 2H, CH₂NH), 4.62 (d, 3H, J = 4.6 Hz, HC₂), 4.53 (m, 6H, HC₄ and CH₂O-galactosyl), 4.43 (d, 6H, J = 4.6 Hz, H_aC₆ and H_bC_6 , 4.15 (dd, 3H, J = 1.3 and 9 Hz, HC₃), 4.05 (t, 3H, J = 7.8 Hz, HC₅), -2.44 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 170.9 (CONH), 168.7 (CONH), 145.8 (C1 carboxyphenyl), 142.9 (C1 phenyl), 136.1, 135 (o-phenyl and o-carboxyphenyl), 132.2 (C pyrrole), 128.7 (p-phenyl), 127.7 (m-phenyl), 127.2 (m-carboxyphenyl), 121.4 (meso-C₁₅), 121.3 $(meso-C_{10,20})$, 120.2 $(meso-C_5)$, 106.9 (C_1) , 77.5 (C_5) , 75.5 (C_3) , 73.3 (C₂), 71 (C₄), 70.3 (CH₂O-galactosyl), 62.9 (C₆), 61.8 (C_{quat} tris), 45.2 $(CH_2NH).$

Porphyrin 2: The title compound was deprotected as in compound 1 from peracetylated porphyrin 2-OAc. Product 2 was obtained as a red powder and used without other purification (yield 89%). HPLC Rt = 13.51 min. MALDI-TOF MS calcd for $C_{81}H_{94}N_9O_{23}\ (MH^+)$ 1560.64. Found: 1560.70. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ε , L·mmol⁻¹·cm⁻¹) 414 (286.1), 512.5 (11.9), 546.5 (5.3), 589 (3.6), 644 (2.6). ¹H NMR (pyridine- d_5): δ (ppm) 10.01 (m, 1H, NH glycine), 9.06 (d, 2H, J = 4.6 Hz, HC_{3.7} pyrrole), 9.03 (m, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.76 (d, 2H, J = 7.4 Hz, *m*-carboxyphenyl), 8.62 (broad s, 3H, NH-CH₂), 8.40 (d, 2H, J = 7.7 Hz, o-carboxyphenyl), 8.36 (m, 6H, *o*-phenyl), 7.79 (m, 9H, *m*- and *p*-phenyl), 4.88 (d, 3H, *J* = 7.3 Hz, HC1), 4.69 (m, 2H, CH2 glycine), 4.57 (m, 3H, HaC6), 4.34 (m, 3H, H_bC₆), 4.23 (m, 9H, HC₃, HC₄ and CH_{2a}-O-glucosyl), 4.04 (m, 3H, HC₂), 3.97 (m, 6H, HC₅ and CH_{2b}-O-glucosyl), 3.76 (m, 6H, CH₂NH), 2.69 (m 6H, CH₂CO), 2.56 (m, 6H, [(CH₂)₃-C]), -2.44 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.9 (CO-den), 169.6 (CO glycine), 168.6 (CO phenyl), 145.2 (C1 carboxyphenyl), 142.1 (C1 phenyl), 134.8 (o-carboxyphenyl and o-phenyl), 134.1 (p-carboxyphenyl), 131.5 (C pyrrole), 128.1 (*p*-phenyl), 127.2 (*m*-phenyl), 126.7 (*m*-carboxyphenyl), 120.8 (*meso*-C₁₅), 120.6 (meso-C_{10,20}), 119.5 (meso-C₅), 104.7 (C₁), 78.2 (C₃ and C₅), 75 (C₂), 71.4 (C₄), 69.4 (CH₂-O-glucosyl), 62.5 (C₆), 58.7 (C-NH), 44.6 (CH₂ glycine), 40.1 (CH₂-NH), 31.3 [(CH₂)₃-C], 30.8 (COCH₂).

Porphyrin 3: The title compound was deprotected as in compound 1 from peracetylated porphyrin 3-OAc. Pure product was obtained as a red powder and used without other purification (yield 92%). HPLC Rt = 13.56 min. MALDI-TOF MS calcd for $C_{81}H_{94}N_9O_{23}$ (MH⁺) 1560.64, found 1560.57. UV–vis spectrum in MeOH/pyridine (24/1, v/v): λ_{maxy} nm (ε , L·mmol⁻¹·cm⁻¹) 414 (306.1), 512.5 (12.6), 547 (5.6), 588.5 (3.7), 645 (2.6). ¹H NMR (pyridine- d_5): δ (ppm) 9.97 (broad s, 1H, NH glycine), 9.08 (d, 2H, J = 4.3 Hz, HC_{3,7} pyrrole), 9.03 (s, 4H, HC_{12,13,17,18} pyrrole), 8.76 (d, 2H, HC_{2,8} pyrrole), 8.57 (m, 2H, *m*-carboxyphenyl), 8.37 (m, 8H, *o*-carboxyphenyl and *o*-phenyl), 7.80 (m, 9H, *m*- and *p*-phenyl), 7.12 (t, 3H, OH), 6.84 (t, 3H, OH), 6.62 (t, 3H, OH), 6.46 (t, 3H, OH), 4.8 (d, 3H, *J* = 7.4 Hz, HC₁), 4.64 (m, 2H, CH₂ glycine), 4.46 (m, 12H, HC_{2,4,6}), 4.18 (m, 6H, CH_{2a}-O-galactosyl and HC₃), 4.07 (m, 3H, HC₅), 3.99 (m, 3H, CH_{2b}-O-galactosyl), 3.72 (m, 6H, CH₂-NH), 2.62 [broad s, 6H, (CH₂)₃-C], 2.52 (broad s, 6H, CH₂-CO), -2.43 (s, 2H, NH). ¹³C NMR (pyridine-*d*₅): δ (ppm) 173.9 (CO-den), 169.7 (CO glycine), 168.6 (CO carboxyphenyl), 145.3 (C₁ carboxyphenyl), 142.3 (C₁ phenyl), 134.8 (*o*-phenyl and *o*-carboxyphenyl), 134.2 (*p*-carboxyphenyl), 131.7 (C pyrrole), 128.2 (*p*-phenyl), 127.7 (*m*-phenyl), 126.8 (*m*-carboxyphenyl), 120.9 (*meso*-C₁₅), 120.8 (*meso*-C_{10,20}), 119.7 (*meso*-C₅), 105.3 (C₁), 77 (C₅), 75.2 (C₃), 72.6 (C₂), 70.3 (C₄), 69.5 (CH₂-OH), 31.5 [(CH₂)₃-C], 31 (CH₂CO).

Porphyrin 4:³⁵ The title compound was deprotected as in compound 1 from peracetylated porphyrin 4-OAc. Product 4 was obtained as a red powder and used without other purification (yield 92%). HPLC Rt = 13.79 min. MALDI-TOF MS calcd for $C_{81}H_{94}N_9O_{23}$ (MH⁺) 1560.64, found 1560.68. UV–vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (274.4), 514.5 (12.2), 548 (5.3), 588.5 (3.6), 645.5 (2.4). ¹H NMR (pyridine- d_5): δ (ppm) 10 (broad s, 1H, NH glycine), 9.05 (m, 8H, HC pyrrole), 8.78 (s, 2H, mcarboxyphenyl), 8.73 (m, 1H, NH-CH₂), 8.42 (s, 2H, o-carboxyphenyl), 8.37 (m, 6H, o-phenyl), 7.81 (m, 9H, m- and p-phenyl), 6.97 (t, 3H, OH), 6.77 (t, 3H, OH), 6.70 (t, 3H, OH), 6.56 (t, 3H, OH), 5.41 (s, 3H, HC1), 4.58 (d, 2H, CH2 glycine), 4.58 (m, 12H, HC2.3,4.6a), 4.39 (m, 6H, HC_{5.6b}), 4.12 (m, 3H, HC_{2a}-O-mannosyl), 3.80 (m, 3H, HC_{2b}-Omannosyl), 3.74 (m, 6H, CH-NH), 2.71 (m, 6H, CH₂-CO), 2.60 [m, 6H, (CH₂)₃-C], -2.41 (s, 2H, NH). ¹³C NMR (pyridine-*d*₅): δ (ppm) 174 (CO-den), 169.9 (CO glycine), 168.6 (CO carboxyphenyl), 145.4 (C₁ carboxyphenyl), 142.4 (C₁ phenyl), 135 (o-phenyl and ocarboxyphenyl), 134.3 (p-carboxyphenyl), 131.7 (C pyrrole), 128.3 (pphenyl), 127.3 (m-phenyl), 126.9 (m-carboxyphenyl), 120.9 (meso- $C_{10,15,20}$), 119.8 (meso- C_5), 101.8 (C_1), 75.5 (C_5), 72.8 ($C_{2,3,4}$), 72 (C_{2,3,4}), 69.1 (C_{2,3,4}), 67.1 (CH₂-O-mannosyl), 63.1 (C₆), 59 (C-NH), 44.9 (CH₂ glycine), 39.9 (C-NH), 31.7 [(CH₂)₃-C], 31.2 (COCH₂).

Porphyrin 5: The title compound was deprotected as in compound 1 from peracetylated porphyrin 5-OAc. Product 5 was obtained as a red powder and used without other purification (yield 94%). HPLC Rt = 13.55 min. MALDI-TOF MS calcd for $C_{87}H_{106}N_9O_{26}$ (MH⁺) 1692.72, found 1692.72. UV–vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ε , L·mmol⁻¹·cm⁻¹) 414 (298.5), 513 (12.4), 546 (5.5), 589 (3.7), 644.5 (2.7). ¹H NMR (pyridine- d_5): δ (ppm) 9.95 (broad s, 1H, NH glycine), 9.05 (d, 2H, J = 4.7 Hz, HC_{3.7} pyrrole), 9.03 (m, 6H, HC_{2,8,12,13,17,18} pyrrole), 8.76 (d, 2H, J = 7.7 Hz, mcarboxyphenyl), 8.61 (broad t, 3H, NH-CH₂), 8.38 (m, 8H, o-phenyl and o-carboxyphenyl), 7.8 (m, 9H, m- and p-phenyl), 7.37 (t, 3H, OH), 7.16 (m, 6H, 2OH), 6.48 (t, 3H, OH), 4.91 (d, 3H, J = 7.3 Hz, HC₁), 4.63 (m, 2H, CH₂ glycine), 4.49 (m, 3H, H_aC₆), 4.32 (m, 3H, H_bC₆), 4.19 (m, 9H, HC₃, HC₄ and CH_{2a}-O-glucosyl), 4.02 (m, 3H, HC₂), 3.88 (m, 6H, HC₅ and CH_{2b}-O-glucosyl), 3.64 (m, 18H, CH₂NH and 2CH₂O), 2.65 (m, 6H, CH₂CO), 2.58 [m, 6H, (CH₂)₃-C], -2.44 (s, 2H, NH). $^{13}\mathrm{C}$ NMR (pyridine- d_{5}): δ (ppm) 173.8 (CO-den), 168.6 (CO glycine), 168.4 (CO phenyl), 145.2 (C₁ carboxyphenyl), 142.2 (C₁ phenyl), 134.7 (o-phenyl and o-carboxyphenyl), 134.3 (p-carboxyphenyl), 131.4 (C pyrrole), 128.2 (p-phenyl), 127.2 (m-phenyl), 126.7 (mcarboxyphenyl), 120.9 (meso-C₁₅), 120.8 (meso-C_{10,20}), 119.6 (meso-C₅), 104.5 (C₁), 78.3 (C₃ and C₅), 74.9 (C₂), 71.3 (C₄), 70.3 (CH₂O), 70 (CH₂O), 69.8 (CH₂-O-glucosyl), 62.4 (C₆), 58.6 (C-NH), 44.7 (CH₂ glycine), 39.6 (CH₂-NH), 31.4 [(CH₂)₃-C], 30.8 (COCH₂).

Porphyrin 6: The title compound was deprotected as in compound 1 from peracetylated porphyrin **6-OAc**. Product **6** was obtained as a red powder and used without other purification (yield 94%). HPLC

Rt = 13.51 min. MALDI-TOF MS calcd for $C_{87}H_{106}N_9O_{26}$ (MH⁺) 1692.72, found 1692.73. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (294.7), 512.5 (11.6), 548 (5.9), 590.5 (3.7), 643.5 (2.2). ¹H NMR (pyridine- d_5): δ (ppm) 9.92 (broad s, 1H, NH glycine), 9.07 (d, 2H, J = 4.7 Hz, HC_{3.7} pyrrole), 9.03 (s, 4H, HC_{12,13,17,18} pyrrole), 9.02 (d, 2H, J = 4.7 Hz, HC_{2,8} pyrrole), 8.76 (d, 2H, m-carboxyphenyl), 8.59 (broad t, 3H, NH-CH₂), 8.39 (m, 2H, o-carboxyphenyl), 8.37 (m, 6H, o-phenyl), 7.80 (m, 9H, m- and pphenyl), 7.20 (t, 3H, OH), 6.77 (t, 3H, OH), 6.54 (t, 3H, OH), 6.43 (t, 3H, OH), 4.82 (d, 3H, J = 7.6 Hz, HC₁), 4.64 (m, 2H, CH₂ glycine), 4.55 (m, 3H, HC₄), 4.45 (m, 9H, HC₂ and HC₆), 4.18 (m, 6H, HC₃ and CH_{2a}-O-galactosyl), 4.04 (m, 3H, HC₅), 3.90 (m, 3H, CH_{2b}-Ogalactosyl), 3,64 (m, 18H, 2CH₂O and CH₂NH), 2.67 (m, 6H, CH₂CO), 2.57 [m, 6H, (CH₂)₃-C], -2.42 (s, 2H, NH). ¹³C NMR (pyridine-d₅): δ (ppm) 173.8 (CO-den), 169.6 (CO glycine), 168.3 (CO phenyl), 145.2 (C1 carboxyphenyl), 142.2 (C1 phenyl), 134.8 (ophenyl and o-carboxyphenyl), 134.3 (p-carboxyphenyl), 131.6 (C pyrrole), 128.2 (p-phenyl), 127.2 (m-phenyl), 126.7 (m-carboxyphenyl), 120.9 (meso-C15), 120.8 (meso-C10,20), 119.6 (meso-C5), 105.1 (C1), 77 (C5), 75.1 (C₃), 72.3 (C₂), 70.3 (CH₂O), 70.1 (C₄), 70 (CH₂O), 68.7 (CH₂-Ogalactosyl), 62.2 (C₆), 58.7 (C-NH), 44.7 (CH₂ glycine), 39.6 (CH₂-NH), 31.3 [(CH₂)₃-C], 30.8 (COCH₂).

Porphyrin 7:³⁵ The title compound was deprotected as in compound 1 from peracetylated porphyrin 7-OAc. Pure title compound was obtained as a red powder and used without other purification (yield 95%). HPLC Rt = 13.73 min. MALDI-TOF MS calcd for $C_{87}H_{106}N_9O_{26}$ (MH⁺) 1692.71, found 1692.78. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (347), 513 (14.2), 546.5 (6.4), 589 (4.3), 644.5 (3.1). ¹H NMR (pyridine- d_5): δ (ppm) 9.88 (t, 1H, J = 5.1 Hz, NH glycine), 9.08 (d, 2H, J = 4.4 Hz, HC_{3,7}), 9.03 (s, 6H, HC_{12,13,17,18}), 9.02 (d, 2H, HC_{2,8}), 8.76 (d, 2H, J = 8 Hz, *m*-carboxyphenyl), 8.64 (broad s, 1H, NH-CH₂), 8.58 (broad s, 3H, NH-CH₂), 8.40 (m, 6H, o-carboxyphenyl), 8.36 (m, 2H, o-phenyl), 7.80 (m, 9H, m- and p-phenyl), 5.39 (s, 3H, HC₁), 4.61 (m, 3H, CH₂), 4.55 (m, 12H, C_{2.3,4,6}), 4.36 (m, 6H, HC₅), 4.36 (d, 3H, $J = 8.4 \text{ Hz}, \text{H}_{a}\text{C}_{6}$, 4.06 (m, 3H, CH_{2a}-O-mannosyl), 3.72 (m, 3H, CH_{2b}-O-mannosyl), 3.63 (m, 14H, CH₂), 2.70 [s, 6H, (CH₂)₃-C], 2.58 (broad s, 6H, CH₂CO), -2.44 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.9 (CO-den), 169.7 (CO glycine), 168.4 (CO-phenyl), 145.4 (C₁ carboxyphenyl), 142.4 (C1 phenyl), 135 (o-carboxyphenyl and ophenyl), 134.5 (p-carboxyphenyl), 131.8 (C pyrrole), 128.3 (p-phenyl), 127.4 (m-phenyl), 126.9 (m-carboxyphenyl), 121 (meso-C₁₅), 120.9 (meso-C_{10,20}), 119.8 (meso-C₅), 101.6 (C₁), 75.3 (C₅), 72.9 (C_{2,3,4}), 72 (C_{2,3,4}), 70.4 (CH₂-O-mannosyl), 70.2 (CH₂), 69.2 (C_{2,3,4}), 66.8 (CH₂-O-mannosyl), 63.3 (C₆), 58.8 (C-NH), 44.8 (CH₂ glycine), 40 (CH₂-NH), 31.5 [(CH₂)₃-C], 31 (COCH₂).

Porphyrin 8: The title compound was deprotected as in compound 1 from peracetylated porphyrin 8-OAc. Pure title compound was obtained as a red powder powder and used without other purification (yield 94%). HPLC Rt = 13.74 min. MALDI-TOF MS calcd for $C_{93}H_{119}N_9O_{29}$ (MH⁺) 1825.80, found 1825.82. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (389.3), 513 (15.9), 546 (7.2), 589 (4.9), 645 (3.5). ¹H NMR (pyridine- d_5): δ (ppm) 9.97 (t, 1H, J = 5.2 Hz, NH glycine), 9.07 (d, 2H, J = 4.8 Hz, HC_{3.7} pyrrole), 9.02 (s, 4H, HC_{2.8.12,13,17,18} pyrrole), 8.75 (d, 2H, J = 8.1 Hz, *m*-carboxyphenyl), 8.64 (broad s, 1H, NH), 8.60 (broad t, 1H, NH-CH₂), 8.41 (d, 2H, J = 8.1 Hz, o-carboxyphenyl), 8.35 (m, 6H, o-phenyl), 7.79 (m, 6H, m- and p-phenyl), 6.97 (t, 6H, 2OH), 6.67 (t, 3H, OH), 6.27 (t, 3H, OH), 5.40 (d, 3H, J = 1.2 Hz, HC₁), 4.62 (m, 3H, HC_{2,3,4,5}), 4.60 (s, 2H, CH₂ glycine), 4.55 (m, 3H, H_aC₆), 4.55 (dd, 3H, J = 3.1 and 10.1 Hz, HC_{2,3,4,5}), 4.55 (d, 3H, J = 10 Hz, $HC_{2,3,4,5}$), 4.36 (d, 6H, J = 6 and 13.6 Hz, H_bC_6), 4.34 (m, 3H, HC2,3,4,5), 4.05 (m, 3H, CH2a-O-mannosyl), 3.72 (m, 3H, CH2b-Omannosyl), 3.64 (m, 18H, CH₂-NH and CH₂), 3.57 (m, 12H, CH₂-O), 2.66 (m, 6H, CH₂-CO), 2.56 (m, 6H, (CH₂)₃-C), -2.43 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.8 (CO-den), 169.6 (CO glycine), 168.5 (CO carboxyphenyl), 145.4 (C₁ carboxyphenyl), 142.3 (C₁ phenyl), 135 (*o*-phenyl and *o*-carboxyphenyl), 134.6 (*p*-carboxyphenyl), 131.8 (C pyrrole), 128.4 (*p*-phenyl), 127.4 (*m*-phenyl), 126.9 (*m*carboxyphenyl), 121.1 (*meso*-C₁₅), 121 (*meso*-C_{10,20}), 119.8 (*meso*-C₅), 101.8 (C₁), 75.3 (C_{2,34,5}), 73 (C_{2,34,5}), 72.2 (C_{2,34,5}), 70.8 (CH₂-O), 70.6 (CH₂-O), 70.4 (CH₂-O), 69.2 (C_{2,34,5}), 66.8 (CH₂-O-mannosyl), 63.2 (C₆), 58.8 (C-NH), 45 (CH₂ glycine), 40 (C-NH), 31.6 [(CH₂)₃-C], 31 (COCH₂).

Porphyrin 9: The title compound was deprotected as in compound 1 from peracetylated porphyrin 9-OAc. Pure title compound was obtained as a red powder and used without other purification (yield 88%). HPLC Rt = 15.20 min. MALDI-TOF MS calcd for $C_{88}H_{100}$ -N₉O₂₃ (MH⁺) 1650.69, found 1650.75. UV-vis spectrum in MeOH/ pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (322.9), 513 (13.1), 547 (5.8), 588.5 (3.8), 644.5 (2.7). ¹H NMR (pyridine- d_5): δ (ppm) 9.82 (d, 1H, J = 7.68 Hz, NH phenylalanine), 9.06 (d, 2H, J = 4.7 Hz, HC_{3.7} pyrrole), 9.03 (s, 4H, HC_{12.13.17.18} pyrrole), 8.93 (d, 2H, J = 4.7 Hz, HC_{2.8} pyrrole), 8.63 (d, 2H, J = 8.0 Hz, *m*-carboxyphenyl), 8.43 (broad t, 3H, NH-CH₂), 8.36 (m, 6H, o-phenyl), 8.34 (m, 2H, o-carboxyphenyl), 7.8 (m, 9H, m- and p-phenyl), 7.53 (d, 2H, J = 7.2 Hz, o-phenylalanine), 7.39 (t, 2H, m-phenylalanine), 7.26 (m, 1H, p-phenylalanine), 7.25 (m, 6H, 2OH), 7.17 (t, 3H, OH), 6.52 (t, 3H, OH), 5.56 (dd, 1H, J = 6.7 Hz, HC phenylalanine), 4.88 (d, 3H, J = 7.6 Hz, HC₁), 4.57 (m, 3H, H_aC₆), 4.34 (m, 3H, H_bC₆), 4.22 (m, 6H, HC₃ and HC₄), 4.17 (m, 3H, CH_{2a}-O-glucosyl), 4.05 (m, 3H, HC₂), 3.98 (m, 6H, HC₅ and CH_{2b}-O-glucosyl), 3.73 (m, 6H, CH₂NH), 3.63 (m, 1H, CH_{2a} phenylalanine), 3.51 (m, 1H, CH_{2b} phenylalanine), 2.57 [broad s, 6H, (CH₂)₃-C], 2.51 (broad s, 6H, CH₂CO), -2.44 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.7 (CO-den), 172.1 (CO phenylalanine), 168.7 (CO phenyl), 145.3 (C₁ carboxyphenyl), 142.3 (C₁ phenyl), 139.1 (C1 phenylalanine), 134.9 (o-carboxyphenyl and o-phenyl), 134.7 (pcarboxyphenyl), 131.5 (C pyrrole), 129.9 (o-phenylalanine), 128.8 (mphenylalanine), 128.2 (m- and p-phenyl), 127.2 (p-phenylalanine), 126.9 (*m*-carboxyphenyl), 121 (*meso*-C₁₅), 120.8 (*meso*-C_{10,20}), 119.6 (*meso*-C₅), 104.9 (C₁), 78.4 (C₃), 78.3 (C₅), 75.1 (C₂), 71.5 (C₄), 69.5 (CH₂-Oglucosyl), 62.6 (C₆), 59 (C-NH), 57.2 (CH phenylalanine), 40.3 (CH₂-NH), 38.5 (CH₂ phenylalanine), 31.5 [(CH₂)₃-C], 30.9 (COCH₂).

Porphyrin 10: The title compound was deprotected as in compound 1 from peracetylated porphyrin 10-OAc. Pure product 10 (yield 92%) was obtained as a red powder and used without other purification. HPLC Rt = 15.21 min. MALDI-TOF MS calcd for C₈₈H₁₀₀N₉O₂₃ (MH⁺) 1650.69, found 1650.67. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (320.7), 513 (13), 546 (5.8), 589.5 (3.8), 644.5 (2.7). ¹H NMR (pyridine- d_5): δ (ppm) 9.81 (broad s, 1H, NH phenylalanine), 9.07 (d, 2H, J = 4.5 Hz, HC_{3.7} pyrrole), 9.03 (s, 4H, HC_{12,13,17,18} pyrrole), 8.93 (d, 2H, J = 4.6 Hz, HC_{2,8} pyrrole), 8.64 (d, 2H, J = 7.9 Hz, mcarboxyphenyl), 8.42 (m, 3H, NH-CH₂), 8.36 (m, 6H, o-phenyl), 8.33 (m, 2H, o-carboxyphenyl), 7.80 (m, 9H, m- and p-phenyl), 7.54 (d, 2H, J = 6.9 Hz, *o*-phenylalanine), 7.39 (t, 2H, J = 7.4 Hz, *m*-phenylalanine), 7.32 (d, 1H, J = 6.9 Hz, p-phenylalanine), 7.05 (t, 3H, OH), 6.83 (t, 3H, OH), 6.59 (t, 3H, OH), 6.42 (3H, OH), 5.58 (dd, 1H, J = 7.3 Hz, HC phenylalanine), 4.79 (d, 3H, J = 7.6 Hz, HC₁), 4.44 (m, 12H, HC₂, HC₄ and HC₆), 4.17 (m, 6H, HC₃ and CH_{2a}-O-galactosyl), 4.06 (m, 3H, HC₅), 3.99 (m, 3H, CH_{2b}-O-galactosyl), 3.69 (m, 6H, CH₂NH), 3.61 (m, 1H, CH_{2a} phenylalanine), 3.51 (m, 1H, CH_{2b} phenylalanine), 2.53 [m, 12H, (CH₂)₃-C and CH₂CO], -2.44 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.9 (CO-den), 172.1 (CO phenylalanine), 168.6 (CO phenyl), 145.1 (C₁ carboxyphenyl), 142.2 (C₁ phenyl), 138.3 (C1 phenylalanine), 134.8 (o-carboxyphenyl and o-phenyl), 134.3 (p-carboxyphenyl), 131.5 (C pyrrole), 129.8 (o-phenylalanine), 128.7 (m-phenylalanine), 128.1 (m- and p-phenyl), 127.2 (p-phenylalanine), 126.8 (*m*-carboxyphenyl), 120.8 (*meso*- C_{15}), 120.7 (*meso*- $C_{10,20}$), 119.6 (*meso*- C_5), 105.2 (C_1), 76.8 (C_5), 75 (C_3), 72.4 (C_2), 70 (C_4), 69.2 (CH_2 -O-galactosyl), 62.3 (C_6), 58.8 (C-NH), 57 (CH phenylalanine), 40.2 (CH₂-NH), 38.5 (CH₂ phenylalanine), 31.3 [(CH₂)₃-C], 30.8 (COCH₂).

Porphyrin 11: The title compound was deprotected as in compound 1 from peracetylated porphyrin 11-OAc. Pure title compound was obtained after drying as a red powder and used without other purification (yield 80%). HPLC Rt = 15.75 min. MALDI-TOF MS calcd for C₈₈H₁₀₀N₉O₂₃ (MH⁺) 1650.69, found 1650.66. Anal. (C₈₈H₉₉-N₉O₂₃), 8H₂O calcd: C 58.89, H 6.46, N 7.02. Found: C 58.75; H 6.22; N 6.87. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} , nm $(\varepsilon, L \cdot mmol^{-1} \cdot cm^{-1})$ 414 (380.4), 512.5 (15.4), 547 (6.7), 588.5 (4.5), 644.5 (3). ¹H NMR (pyridine- d_5): δ (ppm) 9.78 (d, 1H, NH phenylalanine), 9.06 (d, 2H, J = 4.8 Hz, HC_{3.7} pyrrole), 9.02 (s, 4H, HC_{12,13,17,18} pyrrole), 8.98 (d, 2H, J = 4.8 Hz, HC_{2,8} pyrrole), 8.63 (d, 2H, J = 8.2 Hz, m-carboxyphenyl), 8.52 (m, 3H, NH-CH₂), 8.36 (m, 6H, o-phenyl), 8.33 (m, 2H, o-carboxyphenyl), 7.79 (m, 9H, m- and pphenyl), 7.51 (d, 2H, J = 7.0 Hz, o-phenylalanine), 7.37 (t, 2H, J = 7.6 Hz, *m*-phenylalanine), 7.29 (d, 1H, *J* = 7.3 Hz, *p*-phenylalanine), 6.91 (t, 3H, OH), 6.71 (t, 3H, OH), 6.64 (t, 3H, OH), 6.46 (t, 3H, OH), 5.49 (dd, 1H, J = 7.9 Hz, HC phenylalanine), 5.37 (m, 3H, HC₁), 4.56 (m, 12H, HC_{2} , HC_{3} , HC_{4} and $H_{a}C_{6}$), 4.35 (m, 6H, HC_{5} and $H_{b}C_{6}$), 4.08 (m, 3H, CH_{2a}-O-mannosyl), 3.80 [m, 3H, CH_{2b}-O-mannosyl), 3.71 (m, 6H, CH₂NH), 3.55 (m, 2H, CH₂ phenylalanine), 2.56 [m, 12H, CH₂CO and $(CH_2)_3$ -C], -2.45 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.8 (CO-den), 172.2 (CO phenylalanine), 168.8 (CO phenyl), 145.2 (C₁ carboxyphenyl), 142.2 (C₁ phenyl), 138.3 (C₁ phenylalanine), 134.8 (o-carboxyphenyl), 134.7 (o-phenyl), 134.2 (p-carboxyphenyl), 131.7 (C pyrrole), 129.9 (o-phenylalanine), 128.8 (m-phenylalanine), 128.2 (m- and p-phenyl), 127.2 (p-phenylalanine), 126.9 (m-carboxyphenyl), 120.8 (meso- C_{15}), 120.7 (meso- $C_{10,20}$), 119.6 (meso- C_5), 101.6 (C_1), 75.3 (C_5), 72.7 (C₃), 71.9 (C₂), 69 (C₄), 67 (CH₂-O-mannosyl), 62.9 (C₆), 58.9 (C-NH), 57.4 (CH phenylalanine), 39.8 (CH₂-NH), 38.4 (CH₂ phenylalanine), 31.4 (COCH₂), 31 [(CH₂)₃-C].

Porphyrin 12: The title compound was deprotected as in compound 1 from peracetylated porphyrin 12-OAc. Pure title compound was obtained after drying as a red powder and used without other purification (yield 96%). HPLC Rt = 15.18 min. MALDI-TOF MS calcd for C₉₄H₁₁₂N₉O₂₆ (MH⁺) 1782.76, found 1782.77. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ε , L·mmol⁻¹·cm⁻¹) 414 (265), 513 (10.8), 546 (4.7), 589 (3.2), 644 (2.2). ¹H NMR (pyridine d_5): δ (ppm) 9.81 (d, 1H, J = 7.4 Hz, NH phenylalanine), 9.07 (d, 2H, J = 4.7 Hz, HC_{3,7} pyrrole), 9.03 (s, 4H, HC_{12,13,17,18} pyrrole), 8.93 (d, 2H, J = 4.8 Hz, HC_{2,8} pyrrole), 8.84 [broad s, 1H, NH-(C)], 8.60 (d, 2H, *J* = 7.9 Hz, *m*-carboxyphenyl), 8.50 (broad t, 3H, NH-CH₂), 8.33 (m, 8H, o-phenyl and o-carboxyphenyl), 7.8 (m, 9H, m- and p-phenyl), 7.56 (m, 2H, o-phenylalanine), 7.38 (m, 2H, m-phenylalanine), 7.35 (t, 3H, OH), 7.29 (m, 1H, p-phenylalanine), 7.18 (m, 6H, 2OH), 6.45 (t, 3H, OH), 5.57 (m, 1H, HC phenylalanine), 4.90 (d, 3H, J = 7.7 Hz, HC₁), 4.48 (m, 3H, H_aC_6), 4.34 (m, 3H, H_bC_6), 4.23 (m, 6H, HC_3 and HC_4), 4.16 (m, 3H, CH_{2a}-O-glucosyl), 4.01 (m, 3H, HC₂), 3.88 (m, 6H, HC₅ and CH_{2b}-O-glucosyl), 3.59 (m, 20H, CH₂NH, CH₂ phenylalanine and 2CH₂O), 2.57 [m, 12H, (CH₂)₃-C and CH₂CO], -2.44 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.8 (CO-den), 172 (CO phenylalanine), 168.5 (CO phenyl), 145.2 (C1 carboxyphenyl), 142.2 (C1 phenyl), 138 (C1 phenylalanine), 134.9 (o-phenyl), 134.7 (o-carboxyphenyl and pcarboxyphenyl), 131.5 (C pyrrole), 129.9 (o-phenylalanine), 128.7 (mphenylalanine), 128.2 (p-phenyl), 127.3 (m-phenyl and p-phenylalanine), 126.9 (m-carboxyphenyl), 120.9 (meso-C₁₅), 120.8 (meso-C_{10,20}), 119.6 (meso-C₅), 104.6 (C₁), 78.4 (C₃ and C₅), 75 (C₂), 71.5 (C₄), 70.4 (CH₂O), 70.1 (CH₂O), 69.7 (CH₂-O-glucosyl), 62.5 (C₆), 58.8 (C-NH), 57.6 (CH phenylalanine), 39.7 (CH₂-NH), 38.5 (CH₂ phenylalanine), 31.3 [(CH₂)₃-C], 30.8 (COCH₂).

Porphyrin 13: The title compound was deprotected as in compound 1 from peracetylated porphyrin 13-OAc. Pure title compound was obtained as a red powder and used without other purification (yield 98%). HPLC Rt = 15.19 min. MALDI-TOF MS calcd for C₉₄H₁₁₂N₉O₂₆ (MH⁺) 1782.76, found 1782.75. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ϵ , L·mmol⁻¹·cm⁻¹) 414 (339.5), 512.5 (13.9), 546.5 (6.2), 588.5 (4.1), 644 (2.9). ¹H NMR (pyridine- d_5): δ (ppm) 9.81 (d, 1H, NH phenylalanine), 9.08 (d, 2H, J = 4.8 Hz, HC_{3.7} pyrrole), 9.04 (s, 4H, HC_{12,13,17,18} pyrrole), 8.96 (d, 2H, J = 4.8 Hz, HC_{2.8} pyrrole), 8.85 [broad s, 1H, NH-(C)], 8.64 (d, 2H, J =8.0 Hz, m-carboxyphenyl), 8.51 (broad t, 3H, NH-CH₂), 8.35 (m, 8H, ophenyl and o-carboxyphenyl), 7.80 (m, 9H, m- and p-phenyl), 7.58 (m, 2H, o-phenylalanine), 7.38 (m, 2H, m-phenylalanine), 7.28 (m, 1H, pphenylalanine), 7.21 (t, 3H, OH), 6.75 (t, 3H, OH), 6.54 (t, 3H, OH), 6.42 (t, 3H, OH), 5.60 (m, 1H, HC phenylalanine), 4.82 (d, 3H, J = 7.6 Hz, HC₁), 4.54 (m, 3H, HC₄), 4.46 (m, 9H, HC₂ and HC₆), 4.19 (m, 6H, HC₃ and CH_{2a}-O-galactosyl), 4.04 (m, 3H, HC₅), 3.91 (m, 3H, CH_{2b}-O-galactosyl), 3,67 (m, 20H, 2CH₂O, CH₂NH and CH₂ phenylalanine), 2.63 [m, 12H, (CH₂)₃-C and CH₂CO], -2.42 (s, 2H, NH). ¹³C NMR (pyridine- d_5): δ (ppm) 173.8 (CO-den), 171.9 (CO phenylalanine), 168.4 (CO phenyl), 145.1 (C1 carboxyphenyl), 142.2 (C1 phenyl), 138.5 (C1 phenylalanine), 134.7 (o-phenyl), 134.6 (o-carboxyphenyl), 134.5 (p-carboxyphenyl), 131.6 (C pyrrole), 129.8 (o-phenylalanine), 128.7 (m-phenylalanine), 128.2 (p-phenyl), 127.2 (m-phenyl and p-phenylalanine), 126.8 (m-carboxyphenyl), 120.9 (meso-C₁₅), 120.8 (meso-C_{10,20}), 119.6 (meso-C₅), 105.1 (C₁), 76.8 (C₅), 75.2 (C₃), 72.3 (C₂), 70.4 (CH₂O), 70.1 (C₄), 70 (CH₂O), 68.7 (CH₂-O-galactosyl), 62.2 (C₆), 58.7 (C-NH), 57.1 (CH phenylalanine), 39.7 (CH2-NH), 38.6 (CH2 phenylalanine), 31.4 [(CH2)3-C], 30.9 (COCH₂).

Porphyrin 14: The title compound was deprotected as in compound 1 from peracetylated porphyrin 14-OAc. Pure title compound was obtained after drying as a red powder and used without other purification (yield 96%). HPLC Rt = 15.54 min. MALDI-TOF MS calcd for C₉₄H₁₁₂N₉O₂₆ (MH⁺) 1782.76, found 1782.71. UV-vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ε , L·mmol⁻¹·cm⁻¹) 414 (220.7), 513 (10.1), 546 (4.7), 589 (3.2), 645 (2.4). ¹H NMR (pyridine d_5): δ (ppm) 9.74 (m, 1H, NH phenylalanine), 9.07 (d, 2H, J = 4.7 Hz, HC_{3,7} pyrrole), 9.03 (s, 4H, HC_{12,13,17,18} pyrrole), 8.94 (d, 2H, J = 4.9 Hz, HC_{2.8} pyrrole), 8.82 [m, 1H, NH-(C)], 8.60 (m, 2H, *m*-carboxyphenyl), 8.43 (m, 3H, NH-CH₂), 8.34 (m, 8H, o-phenyl and o-carboxyphenyl), 7.80 (m, 9H, m- and p-phenyl), 7.54 (m, 2H, o-phenylalanine), 7.37 (m, 2H, mphenylalanine), 7.29 (m, 1H, p-phenylalanine), 5.55 (m, 1H, HC phenylalanine), 5.38 (m, 3H, HC1), 4.56 (m, 12H, HC2, HC3, HC4 and $H_aC_6),\,4.35$ (m, 6H, HC_5 and $H_bC_6),\,4.06$ (m, 3H, $CH_{2a}\text{-}O\text{-mannosyl}),$ 3.76 (m, 3H, CH_{2b}-O-mannosyl), 3.58 (m, 20H, 2CH₂O, CH₂NH and CH₂ phenylalanine), 2.56 [m, 12H, (CH₂)₃-C and CH₂CO], -2.44 (s, 2H, NH). ¹³C NMR (pyridine-*d*₅): δ (ppm) 173.7 (CO-den), 172 (CO phenylalanine), 168 (CO phenyl), 145.2 (C1 carboxyphenyl), 142.3 (C1 phenyl), 138.5 (C1 phenylalanine), 134.8 (o-phenyl), 134.6 (o-carboxyphenyl and p-carboxyphenyl), 131.5 (C pyrrole), 129.9 (o-phenylalanine), 128.7 (m-phenylalanine), 128.2 (p-phenyl), 127.2 (m-phenyl and pphenylalanine), 126.8 (m-carboxyphenyl), 120.9 (meso-C₁₅), 120.8 (meso-C_{10.20}), 119.9 (meso-C₅), 101.5 (C₁), 75.2 (C₅), 72.8 (C₃), 71.9 (C₂), 70.2 (CH₂O), 70.1 (CH₂O), 69.1 (C₄), 66.6 (CH₂-O-mannosyl), 63.2 (C₆), 58.8 (C-NH), 57.1 (CH phenylalanine), 39.9 (CH₂-NH), 38.6 (CH₂ phenylalanine), 31.1 [(CH₂)₃-C], 30.7 (COCH₂).

Porphyrin 15: The title compound was deprotected as in compound **1** from peracetylated porphyrin **15-OAc**. Product **15** was obtained as a red powder and used without other purification (yield 95%). HPLC Rt = 18.49 min. MALDI-TOF MS calcd for $C_{69}H_{76}N_9O_{11}$ (MH⁺) 1206.56, found 1206.56. Anal. ($C_{69}H_{75}N_9O_{11}$), 2H₂O calcd: C 66.70, H 6.41, N 10.15. Found: C 66.38, H 6.13, N 10.03. UV—vis spectrum in MeOH/pyridine (24/1, v/v): λ_{max} nm (ε , L·mmol⁻¹·cm⁻¹) 414

(441.4), 512.5 (17.7), 547 (7.8), 589.5 (5.2), 644.5 (3.6). ¹H NMR (pyridin- d_5): δ (ppm) 8.81 (d, 2H, J = 4.8 Hz, HC_{3.7} pyrrole), 8.77 (d, 2H, J = 4.8 Hz, HC_{2.8} pyrrole), 8.74 (s, 6H, HC_{12,13,17,18} pyrrole), 8.71 (broad s, 1H, NH glycyl), 8.32 (d, 2H, *J* = 8.3 Hz, *m*-carboxyphenyl), 8.25 (d, 2H, J = 8.2 Hz, o-carboxyphenyl), 8.17 (dd, 2H, J = 1.7 and 7.8 Hz, ophenyl), 8.07 (dd, 2H, J = 1.3 and 7.8 Hz, o-phenyl), 7.82 (broad t, 1H, J = 3 Hz, NH), 7.72 (m, 9H, m- and p-phenyl), 7.58 (m, 9H, m- and p-phenyl), 7.52 (broad t, 3H, NH), 4.78 (t, 3H, OH), 4.27 (d, 2H, J = 4.6 Hz, CH₂ glycine), 3.71 (m, 6H, CH2OH), 3.54 (m, 12H, CH2-O), 3.43 (m, 6H CH₂), 2.32 (m, 6H, CH₂-CO), 2.11 (m, 6H, CH₂-C), -2.83 (s, 2H, NH). 13 C NMR (pyridine- d_5): δ (ppm) 174.3 (CO-den), 169.9 (CO glycine), 168.8 (CO carboxyphenyl), 145.9 (C1 carboxyphenyl), 142 (C1 15phenyl), 141.9 (C1 10,20-phenyl), 134.6 (o-carboxyphenyl), 134.5 (15-ophenyl), 134.4 (10,20-o-phenyl), 132.6 (p-carboxyphenyl), 131 (C pyrrole), 128.3 (p-phenyl), 127.6 (p-phenyl), 126.6 (m-phenyl), 125.9 (m-carboxyphenyl), 120.5 (meso-C₁₅), 120.3 (meso-C_{10,20}), 118.5 (meso-C₅), 75.5 (CH₂-O), 69.4 (CH₂-O), 61.5 (CH₂OH), 58.9 (C-NH), 44.5 (CH₂ glycine), 39.6 (C-NH), 31.1 [(CH₂)₃-C and COCH₂].

ASSOCIATED CONTENT

Supporting Information. General experimental information and ¹H and ¹³C NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Email: philippe.maillard@curie.u-psud.fr.

ACKNOWLEDGMENT

The authors acknowledge CNRS, the "Programme Incitatif et Coopératif Rétinoblastome" of Institut Curie, and the nonprofit French organization "Rétinostop" (http://www.retinostop.fr) for their financial support, Ms. Marianne Bombled, Institut Curie, for MS analysis, and Vincent Guérineau for MALDI-TOF analysis.

REFERENCES

 (a) Vallinayagam, R.; Schmitt, F.; Barge, J.; Wagnières, G.; Wenger, V.; Neier, R.; Juillerat-Jeanneret, L. *Bioconj. Chem.* 2008, *19*, 821–839. (b) Hirohara, S.; Obata, M.; Alitomo, H.; Sharyo, K.; Ogata, S.-I.; Ohtsuki, C.; Yano, S.; Ando, T.; Tanihara, M. *Biol. Pharm. Bull.* 2008, *31*, 2265–2272.
 (c) Choi, C.-F.; Huang, J.-D.; Lo, P.-C.; Fong, W.-P.; Ng, D. K. P. Org. Biomol. Chem. 2008, *6*, 2173–2181. (d) Zheng, X.; Pandey, R. K. Anticancer Agents Med. Chem. 2008, *8*, 241–268.

(2) (a) Zorlu, Y.; Ermeydan, M. A.; Dumoulin, F.; Ahsen, V.; Savoie, H.; Boyle, R. W. Photochem. Photobiol. Sci. 2009, 8, 312-318. (b) Zheng, X.; Morgan, J.; Pandey, S. K.; Chen, Y.; Tracy, E.; Baumann, H.; Missert, J. R.; Batt, C.; Jackson, J.; Bellnier, D. A.; Henderson, B. W.; Pandey, R. K. J. Med. Chem. 2009, 52, 4306-4318. (c) Soares, A. R. M.; Tomé, J. P. C.; Neves, M. G. P. M. S.; Tomé, A. C.; Cavaleiro, J. A. S.; Torres, T. Carbohydr. Res. 2009, 344, 507-510. (d) Ménard, F.; Sol, V.; Ringot, C.; Granet, R.; Alves, S.; Le Morvan, C.; Queneau, Y.; Ono, N.; Krausz, P. Bioorg. Biomol. Chem. 2009, 17, 7647-7657. (e) McCarthy, J. R.; Bhaumik, J.; Merbouh, N.; Weissleder, R. Org. Biomol. Chem. 2009, 7, 3430-3436. (f) Liu, J.-Y.; Lo, P.-C.; Fong, W.-P.; Ng, D. K. P. Org. Biomol. Chem. 2009, 7, 1583-1591. (g) Iqbal, Z.; Hanack, M.; Ziegler, T. Tetrahedron Lett. 2009, 50, 873-875. (h) Iqbal, Z.; Lyubimtsev, A.; Hanack, M.; Ziegler, T. Tetrahedron Let. 2009, 50, 5681-5685. (i) Hirohara, S.; Obata, M.; Alitomo, H.; Sharyo, K.; Ando, T.; Yano, S.; Tanihara, M. Bioconj. Chem. 2009, 50, 944-952. (j) Hirohara, S.; Obata, M.; Alitomo, H.; Sharyo, K.; Ando, T.; Tanihara, M.; Yano, S. J. Photochem. Photobiol., B 2009, 97, 22–33.

(3) (a) Hao, E.; Jensen, T. J.; Vicente, M. G. H. J. Porphyrins Phthalocyanines 2009, 13, 51–59. (b) Grin, M. A.; Lonin, I. S.; Lakhina, A. A.; Ol'shanskaya, E. S.; Makarov, A. L.; Sebyakin, Y. L.; Guryeva, L.; Toukach, P. V.; Kononikhin, A. S.; Kuzminc, V. A.; Mironov, A. F. J. Porphyrins Phthalocyanines 2009, 13, 336–345. (c) Gomes, A. T. P. C.; Leão, R. A. C.; da Silva, F. C.; Neves, M. G. P. M. S.; Faustinoa, M. A. F.; Tomé, A. C.; Silva, A. M. S.; Pinheiro, S.; de Souza, M. C. B. V.; Ferreira, V. F.; Cavaleiro, J. A. S. J. Porphyrins Phthalocyanines 2009, 13, 247–255. (d) Bakar, M. B.; Oelgemöller, M.; Senge, M. O Tetrahedron 2009, 65, 7064–7078.

(4) Chen, X.; Drain, C. M. Drug Des. Rev. - Online 2004, 1, 215–234.
(5) Cavaleiro, J. A. S.; Tomé, J. P. C.; Faustino, M. A. F. Top. Heterocycl. Chem. 2007, 7, 179–248.

(6) Zheng, X.; Pandey, R. K. Anti-Cancer Agents Med. Chem. 2008, 8, 241–268.

(7) Maillard, Ph.; Guerquin-Kern, J.-L.; Momenteau, M.; Gaspard, S. J. Am. Chem. Soc. **1989**, *111*, 9125–9126.

(8) Momenteau, M.; Maillard, Ph.; de Bélinay, M.-A.; Carrez, D.; Croisy, A. J. Biomed. Opt. **1999**, *4*, 298–318.

(9) Croisy, A.; Lucas, B.; Maillard, Ph. Actual. Chim. Ther. 2005, 31, 181-244.

(10) Laville, I.; Figueiredo, T.; Loock, B.; Pigaglio, S.; Maillard, Ph.; Grierson, D. S.; Carrez, D.; Croisy, A.; Blais, J. *Bioorg. Med. Chem.* **2003**, *11*, 1643–1652.

(11) Monsigny, M.; Roche, A.-C.; Kieda, C.; Midoux, P.; Obrenovitch, A. *Biochimie* **1988**, *70*, 1633–1649.

(12) Lotan, R.; Raz, A. Ann. N.Y. Acad. Sci. 1988, 551, 385-396.

(13) Laville, I.; Pigaglio, S.; Blais, J.-C.; Doz, F.; Loock, B.; Maillard, Ph.; Grierson, D. S.; Blais, J. J. Med. Chem. **2006**, 49, 2558–2567.

(14) Maillard, Ph.; Loock, B.; Grierson, D. S.; Carrez, D.; Croisy, A.; Laville, I.; Blais, J.; Doz, F.; Desjardins, L. *Photodiagn. Photodyn. Ther.* **2007**, *4*, 261–268.

(15) Lupu, M.; Thomas, C. D.; Maillard, Ph.; Loock, B.; Chauvin, B.; Aerts, I.; Croisy, A.; Beloir, E.; Volk, A.; Mispelter, J. *Photodiagn. Photodynamic Ther.* **2009**, *6*, 214–220.

(16) Varki, A. Glycobiology 1993, 3, 97-130.

(17) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. *Science* **2001**, *291*, 2370–2376.

(18) Wells, L.; Vosseller, K.; Hart, G. W. Science **2001**, 291, 2376–2378.

(19) Kiessling, L. L.; Pohl, N. L. Chem. Biol. 1996, 3, 71-77.

(20) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998, 37, 2754–2794.

(21) Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E. Curr. Opin. Chem. Biol. 2000, 4, 696–703.

(22) Lindhorst, T. K. Top. Curr. Chem. 2001, 218, 201-235.

(23) Monsigny, M.; Mayer, R.; Roche, A.-C. *Carbohydr. Lett.* 2000, 4, 35–52.

(24) Chabre, Y. M.; Roy, R. Curr. Top. Med. Chem. 2008, 8, 1237-1285.

(25) Wong, S. Y. C. Curr. Opin. Struct. Biol. 1995, 5, 599-604.

(26) Villalonga-Barber, C.; Micha-Screttas, M.; Steele, B. R.;

Georgopoulos, A.; Demetzos, C. Curr. Top. Med. Chem. 2008, 8, 1294–1309.

(27) Roy, R. Curr. Opin. Struct. Biol. **1996**, 6, 692–702.

(28) Lindhorst, T. K.; Kieburg, C. Angew. Chem., Int. Ed. Engl. 1996, 35, 1953–1956.

(29) Alper, J. Science 2001, 291, 2338-2343.

(30) Bezouska, K. Rev. Mol. Biotechnol. 2002, 90, 269-290.

(31) Sampathkumar, S.-G.; Yarema, K. J. Chem. Biol. 2005, 12, 5-6.

(32) Sampathkumar, S.-G.; Yarema, K. J. Nanotechnologies the Life Sciences In *Nanomaterials for Cancer Diagnosis*; Challa, S. S. R, Ed.; Kumar, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; Vol. 7, pp 1–47.

(33) Ballardini, R.; Colonna, B.; Gandolfi, M. T.; Kalovidouris, S. A.; Orzel, L.; Raymo, F. M.; Stoddart, J. F. *Eur. J. Org. Chem.* **2003**, 288–294.

(34) Matsuo, T.; Nagai, H.; Hisaeda, Y.; Hayashi, T. *Chem. Commun.* 2006, 3131. (35) Ballut, S.; Makky, A.; Loock, B.; Michel, J.-Ph.; Maillard, Ph.; Rosilio, V. *Chem. Commun.* **2009**, 224–226.

(36) Makky, A.; Michel, J.-Ph.; Kasselouri, A.; Briand, E.; Maillard, Ph.; Rosilio, V. *Langmuir* **2010**, *26*, 12761–12768.

(37) Polidori, A.; Pucci, B.; Zarif, L.; Lacombe, J.-M.; Riess, J. G.; Pavia, A. A. *Chem. Phys. Lipids* **1995**, *77*, 225–251.

(38) Zemplén, G. Ber. Dtsch. Chem. Ges. 1927, 1555-1564.

(39) Suda, Y.; Arano, A.; Fukui, Y.; Koshida, S.; Wakao, M.; Nishimura, T.; Kusumoto, S.; Sobe, M. *Bioconj. Chem.* **2006**, *17*, 1125–1135.

(40) Magnusson, G.; Noori, G.; Dahmén, J.; Frejd, T.; Lave, T. Acta Chem. Scand. **1981**, 35, 213–216.

(41) Dahmén, J.; Frejd, T.; Grönberg, G.; Lave, T.; Magnusson, G.; Noori, G. Carbohydr. Chem. **1993**, 116, 303–307.

(42) Sasaki, A.; Murahashi, N.; Yamada, H.; Morikawa, A. *Biol. Pharm. Bull.* **1994**, *17*, 680–685.

(43) Sasaki, A.; Murahashi, N.; Yamada, H.; Morikawa, A. *Biol. Pharm. Bull.* **1995**, *18*, 740–746.

(44) Kessel, D. Biochemistry 1977, 16, 3443-3449.