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Enantioselective synthesis of 1(R)-hydroxypolygodial
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Abstract—Enantioselective preparation of 1(R)-hydroxypolygodial (5) has been achieved starting from a-ionone through a synthetic
strategy involving a Corey–Bakshi–Shibata oxazaborolidine-mediated reduction and a stereoselective Diels–Alder reaction as key
steps.
� 2005 Elsevier Ltd. All rights reserved.
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Polygodial (1) belongs to a group of terpenoid unsatu-
rated 1,4-dialdehydes, isolated from terrestrial and mar-
ine sources,1 which are known to show a pungent
sensation in the human tongue. Recently, a vanilloid
activity has been reported for some of them.2 Some
years ago, some researchers suggested that biological
activities of these compounds are linked to the dialde-
hyde moiety and to reactivity towards nucleophiles.3

The observation that some bulkier molecules, for exam-
ple, isocopalendial (2) and scalaradial (3), were not hot
tasting, suggested that the size of the molecule was also
important.4 However, the hot taste reported for com-
pound 4,5 a deacetoxy derivative of the tasteless sester-
terpenoid scalaradial, pointed out the influence of an
oxygenated function, such as the acetoxy group, on
the bioactivity of these compounds (Fig. 1). This stimu-
lated a research program directed to vanilloid active
compounds containing the unsaturated 1,4-dialdehyde
moiety and hydroxy or acetoxy groups in their skeleton
and we chose 1(R)-hydroxypolygodial (5) as first target
of our investigation.

Preparation of hydroxylated drimane compounds
involving a microbial hydroxylation was not considered
as this leads to a mixture of mono and diol derivatives
containing the hydroxyl function in several positions
of the drimane skeleton except at C-1.6 We planned a
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synthetic scheme based on a Diels–Alder reaction start-
ing from dimethylacetylenedicarboxylate (7) and the
hydroxydiene derivative 6 whose preparation involves
a stereocontrolled Corey–Bakshi–Shibata reduction
(Scheme 1).7
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Scheme 1. Retrosynthetic analysis.
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Scheme 2. Preparation of hydroxydiene 6. Reagents and conditions:

(a) MCPBA, CH2Cl2, �78 �C! 0 �C, 12 h; (b) O3, CH2Cl2, �78 �C,
4 h then Me2S, CH2Cl2, �78 �C! rt, 12 h; (c) pyrrolidine, Et2O, rt,

12 h, 76% (three steps); (d) MeP+Ph3Br
�, n-BuLi, THF, 0 �C! rt, 4 h;

(e) PDC, CH2Cl2, rt, 1 h, 79% (two steps); (f) (S)-MeCBS reagent,

BH3ÆTHF (syringe pump addition: 1.2 mmol/h), THF, 35 �C, 88%,
93% ee; (g) TBSCl, imidazole, CH2Cl2, rt, 12 h, 96%.
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Scheme 3. Preparation of 16. Reagents and conditions: (a) H2, Pd–C,

HCl and MeOH, 12 h, 16 (27%), 17 (49%); (b) DBU, THF, 40 �C, 4 h,
90%; (c) H2, Pd–C and MeOH, 5 h, 72%.
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The first step of the synthesis (Scheme 2) consists of
preparation of epoxide 9 from a-ionone (8).8 Ozonolysis
of 9, followed by reductive work-up, afforded an epoxy-
aldehyde which proved to be quite sensible to purifica-
tion conditions; therefore, the following eliminative
ring opening of the epoxide was performed on the crude
extract obtained after ozonolysis leading to compound
10 (76% yield from 8). The synthesis of ketone 11 was
completed by Wittig reaction of aldehyde 10 with
CH2@PPh3, followed by PDC oxidation (79%, two-step
yield). (R)-2,4,4-Trimethyl-3-vinyl-2-cyclohexene-1-ol
(12) was prepared by enantioselective reduction of
dienone 11 with (S)-Me-Corey–Bakshi–Shibata [(S)-
MeCBS] oxazaborolidine–borane reagent, giving dienol
12 (88% yield and 93% enantiomeric excess)9 which was
then converted into silyl derivative 6 (96%).

The Diels–Alder reaction of 6 with dimethylacetylenedi-
carboxylate (7) proceeded quite slowly (neat, 110 �C,
48 h) affording compound 1310 as a major product
(40%) together with small amounts of its diastereomer
14 (5%) and triene 15 (8.5%) (Fig. 2). The reaction
was stopped after 48 h, although unreacted diene 6
was still present, because longer reaction time favoured
the increase of triene 15.

The stereoselectivity observed can be rationalized by an
approach of the dienophile to the diene anti to the allylic
substituent. Ley�s reductive isomerization procedure for
13 (H2, Pd–C and HCl)11 proved to be unsuitable for
our substrate, causing partial loosing of the protecting
group (Scheme 3). Furthermore, deprotection of 17
proved to be very difficult probably due to the bad
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accessibility to the hydroxyl function. Therefore, we
decided to move to the methodology of Lallemand
and co-workers involving two steps: a base catalyzed
isomerization followed by hydrogenation.12

DBU catalyzed isomerization13 afforded mainly the con-
jugated diene 18 (90% yield), which was subjected to
hydrogenation (H2, Pd–C and MeOH) affording com-
pound 1614 (72% yield). The stereochemistry of 16 was
established via 1H NMR NOE measurements (Fig. 3).
Irradiation of H-1 (d 3.74 ppm) led to enhancements
of the signals due to H-5 (d 1.17 ppm) and H-9 (d
3.21 ppm).

These experiments indicated that H-1, H-5 and H-9 were
in cis-relationship. Reduction of the ester functionalities
produced diol 19, which was then oxidized using Swern
conditions (C2O2Cl2, DMSO and NEt3) to give dialde-
hyde 20 (87%).

Finally, 1(R)-hydroxypolygodial (5)15 was produced by
deprotection of the TBS ether using TBAF (74%)
(Scheme 4).
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Scheme 4. Synthesis of target 5. Reagents and conditions: (a)

DIBALH, THF, toluene, �78 �C! rt, 12 h, 94%; (b) Swern, 1 h,

87%; (c) TBAF, THF, rt, 2 h, 74%.
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In conclusion, we have completed the synthesis of 1(R)-
hydroxypolygodial (5), starting from a-ionone in 13
steps and 8% overall yield. An investigation on the
vanilloid activity of 5 is now in progress and the results
will be given in due course. This synthetic scheme offers
the possibility of preparing other correlated naturally
occurring dialdehydes, such as those isolated from
Drimys brasiliensis.16
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