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Abstract—A convergent synthesis of phenylacetylene tripodal compounds containing boroxine cores has been accomplished. The
boroxine cores are assembled in high yield either by chemical dehydration or ligand-facilitated trimerization of the corresponding

monomeric boronic acids.
© 2005 Elsevier Ltd. All rights reserved.

The tripodal molecular architecture is a common struc-
tural motif found in such diverse areas as dendrimers,'
hyperbranched polymers,? receptors for small molecule
recognition,? and catalysts.* Boroxines, the dehydration
product of boronic acids, have found commercial use in
such diverse areas as flame retardant materials, dopants
that enhance lithium ion transference in polymer
electrolytes,® and recently as boronic acid alternatives
in Suzuki-Miyaura coupling reactions.” Our group is
interested in utilizing boroxine rings to construct conju-
gated Cs-symmetric materials. From a molecular design
perspective, boroxine-based organic materials® are of
interest because they provide rapid synthetic entry into
tripodal architectures. Furthermore, the boroxine’s
Lewis acidity” and rich ligand chemistry provides
additional opportunities to functionalize boroxine
based-materials through noncovalent interactions. In
this work, we have synthesized conjugated boronic acid
monomers that are efficiently converted to boroxine
containing materials (Fig. 1). In addition, we investigate
ligand-facilitated boroxine formation as an alternative
to dehydration in the construction of the central borox-
ine ring.

The conjugated synthetic precursors are synthesized
convergently with the boron functionality being intro-
duced late in the synthesis. The boronate ester is con-
verted to a boronic acid, and upon workup, the
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boronic acid is dehydrated to the boroxine. As an alter-
native to dehydration, arylboronic acids can rapidly be
converted to boroxineligand adducts by stirring at
room temperature with a suitable ligand.!®!! Although
binding of Lewis bases with preformed boroxines is well
established, utilizing the low temperature conversion of
monomeric boronic acids to boroxine-ligand adducts as
a means of assembling tripodal architectures has not
been demonstrated. Ligand-facilitated formation of
boroxine takes advantage of the high thermodynamic
stability of the boroxineligand complex relative to the
monomeric boronic acid.'?

The synthesis of boroxine 1 and 1-pyridine is shown in
Scheme 1. Using standard Sonogashira—Hagihara cou-
pling methodology,'®> commercially available 4-tert-
butylphenyl acetylene was coupled to pinacol protected
4-iodophenyboronic acid. Exchange of the pinacol
group for diethanolamine followed by acidic hydrolysis
afforded the boronic acid.!* The addition of a drying
agent, calcium chloride, to a toluene solution of the
boronic acid promotes dehydration to boroxine.

The syntheses of branched boroxines 2 and 3 are out-
lined in Schemes 2 and 3. 1,3,5-Tribromobenzene is
converted to disubstituted derivative 7. Compound 7 is
borylated with bis(pinacolato)diboron to yield com-
pound 8 in 46% isolated yield. Conversion of 8 to borox-
ine 2 was inefficient. After drying a toluene solution of
boronic acid 9 over calcium chloride, NMR analysis
shows a mixture of 2 and 9. Boroxine formation is facil-
itated by the addition of pyridine (1.5 equiv relative to
the theoretical yield of boroxine). After stirring, excess
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Figure 1. Conjugated boroxine core compounds 1-pyridine, 2-pyridine, and 3-pyridine.
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Scheme 1. Synthesis of compound 1-pyridine.

pyridine is removed under vacuum leaving the 1:1
boroxine 2-pyridine adduct.

Compound 7 can be further elaborated using 2-methyl-
3-butyn-2-ol. After deprotection under basic condi-
tions, !> acetylene 11 is coupled to 4-iodophenylboronic
acid pinacol ester 4 giving compound 12 in 37% isolated
yield (Scheme 3). After deprotection of 12, the boronic
acids are taken up in toluene and smoothly converted
to the boroxine 3 by drying over calcium chloride.

The solubility of these compounds is noteworthy.
Boroxines 1 and 3 are initially soluble in chloroform
but precipitate on standing. This is likely due to the for-
mation of m-stacked aggregates.'® In contrast, the
boroxinepyridine adducts are highly soluble in chloro-
form. Addition of a stoichiometric volume of pyridine
to a heterogeneous mixture of either monomeric boronic

CH,Cl, > 1+pyridine

acid or boroxine that has precipitated from a chloro-
form solution, results in a homogeneous solution
consisting of boroxinepyridine adduct. The introduc-
tion of the pyridine ligand drives the formation of the
boroxine adduct and this adduct shows a concomitant
increase in solubility. As in other boroxine-pyridine
adducts, 8104411 the pyridine ligand is in fast
exchange on the NMR timescale and the observed
chemical shift of the ortho protons are a weighted
average of the ligated and unligated forms.

The UV-vis absorption spectra of boronate ester 8, in
the presence of pyridine, and 2-pyridine are shown in
Figure 2. As can be seen from the data, there is no
broadening or red shifting of the absorption maxima
(291 nm, 308 nm) going from a boronate ester to the
tripodal boroxine. This suggests that there are no signifi-
cant electronic perturbations caused by boroxine ring
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Scheme 2. Synthesis of compound 2-pyridine.
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Scheme 3. Synthesis of compound 3-pyridine.

incorporation as compared to the corresponding boro-
nate ester. As expected, the molar extinction coefficient
of 2-pyridine tripodal assembly increases relative to the
monomeric boronate ester.

In conclusion, a series of phenylacetylene boroxine core
compounds have been convergently synthesized. The
boroxine core is easily formed by one of two synthetic
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Figure 2. UV-vis absorption spectra of boronate ester 8 (in the
presence of pyridine) and boroxine-pyridine adduct 2-pyridine in
dichloromethane. The spectra are normalized to 15 uM.

methods, dehydration or ligand-facilitated trimeriza-
tion, and functions as a tripodal scaffold.
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