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Abstract: Two pentasaccharides, representative of those found on
complex N-glycans, were synthesized for use as potential substrates
for sulfotransferases. The synthesis was achieved by the addition of
a disaccharide donor b-D-GlcA(1→3)a-D-Gal-trichloroacetimidate
to the two acceptor trisaccharides b-D-GlcNAc(1→6)a-D-
Man(1→6)b-D-Man-O-octyl (15) and b-D-GlcNAc(1→2)a-D-
Man(1→6)b-D-Man-O-octyl (14). After deprotection, the two pen-
tasaccharides 1 and 2 were characterized by 1H NMR spectroscopy.
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Complex carbohydrates, such as the HNK-1 glycan
(sulfo→3GlcAb1→3Galb1→4GlcNAc→R) can mediate
important cellular functions. The HNK-1 epitope is ex-
pressed on adhesion molecules in the nervous system
where it seems to play a role in cell-cell and cell-substra-
tum interactions.1 This structure can be present on differ-
ent branches of N-linked glycans, and it is not clear
whether there is a branch-specificity for the sulfotrans-
ferase that completes the epitope. We therefore decided to
synthesize pentasaccharides 1 and 2, representing two of
the branches of N-linked oligosaccharides for use in the
study of sulfotransferase specificity.

In our synthetic scheme, we envisaged building the pen-
tasaccharide backbone by using as the key step the glyco-
sylation reaction between the imidate donor 9 and the
acceptor trisaccharides 14 and 15, respectively. Com-
pound 9 was prepared by the condensation between the
glucuronic acid donor 7 and the galacto derivative 6.
Compounds 14 and 15 in turn, were prepared by the addi-
tion of the glucosamine N-trichloroacetyl donor 10 to two
different acceptor disaccharides, with either OH-2 (12) or
OH-6 (13) of the a Man (1→6)b Man sequence groups
free (Figure 1).

Starting from b-D-galactose pentaacetate, the anomeric
center was protected as the paramethoxyphenylether to af-
ford compound 3 (90%). Removal of the acetate esters
(MeOH, NaOMe, quant.), followed by selective protec-
tion of OH-3 and OH-4 with 2,2-dimethoxy propane and
CSA in DMF gave compound 4 (79%). The hydroxyl
groups at the 2 and 6 positions were protected as benzyl
ethers [BnBr, NaH, DMF (77%)]. Acetal hydrolysis
afforded compound 5 (73%). Selective benzoylation of

OH-4 using trimethylorthobenzoate (quant.) afforded
compound 6 following the hydrolysis of the intermediate
3,4-orthobenzoate (Scheme 1). 1H NMR (CDCl3) con-
firmed that O-4 was benzoylated (H-4: 5.7 ppm, J3,4 = 3.5
Hz, J4,5<1.0 Hz, H-3: 3.7 ppm, J2,3 = 10.0 Hz). Coupling
of 6 and 72 (1.2 equiv), using TMSOTf, provided the
target disaccharide 8 in 84% yield. The new glycosidic
linkage was confirmed by 1H NMR (CDCl3)-: H-1¢: 5.4
ppm J1¢,2¢ = 7.5 Hz. Four more steps afforded 9: catalytic
hydrogenation [Pd(OH)2, MeOH, 95%], benzoylation
(BzCl, pyridine, 70%) and activation to provide the
trichloroacetimidate derivative (CAN, toluene, aceto-
nitrile, water, (75%) then CCl3CN, DBU, CH2Cl2, 80%)
(Scheme 2).

Scheme 1 Synthesis of 6: a) MPOH, CH2Cl2, TfOH, molecular sie-
ves 4 Å, 1 h (90%); b) MeOH, NaOMe, overnight (quant.); c) 2,2-di-
methoxy propane, CSA, DMF, overnight (79%); d) BnBr, NaH,
DMF, 5 h, (77%); e) AcOH, H2O, 2 h, (73%); f) trimethylorthoben-
zoate, p-TsOH, PhCH3, 1 h, g) AcOH, H2O, 10 min (2 steps, quant.).

Compound 11, a GlcNAc derivative having a temporary
protecting group on OH-4 and a thioethyl anomeric-
blocking group, was selected as the b-hexosamine donor.
The use of N-trichloroacetyl group was preferred to the
more commonly used phthalimido group because the N-
trichloroacetyl group can be easily converted to the N-
acetyl group at the end of the synthesis in a single free rad-
ical reduction step.3

The known compound 102 was deacetylated (MeOH,
NaOMe, quant.) and a benzylidene group was introduced
to mask the 4 and 6 positions (PhCHO, TFA, 83%). After
protecting OH-3 as the benzyl ether (NaH, BnBr, DMF,
78%), regioselective reductive opening of the benzylidene
acetal using Et3SiH / BF3·Et2O,4 followed by acetylation,
afforded 11 [partial 1H NMR (CDCl3) d 7.02 (N-H), 5.05
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(1 H, t, J3.4 = J4.5 = 9.5 Hz, H-4), 5.02 (1 H, d, J1.2 = 10.0
Hz), 4.2 ppm (1 H, t, J2.3 = J3.4 = 9.5 Hz, H-3)].

Compound 12 was obtained by condensation between 2-
O-acetyl-3,4,6-tri-O-benzyl-a,b-D-mannopyranosyl tri-
chloroacetimidate5 and octyl 2,3,4-tri-O-benzyl-b-D-
mannopyranoside6 using catalytic TMSOTf, followed by
deacetylation (95%, 2 steps). Characteristic proton and
carbon signals in the 1H and 13C NMR (CDCl3) spectra [d
5.04 (s, J1,2 = 1.5 Hz, aMan H-1), 4.38 (s, J1,2<1 Hz, bMan
H-1), 2.22 (s, OH); 13C NMR: d 101.7, 99.6] confirmed
the structure of 12. Condensation of 11 and 12 and subse-
quent deacetylation provided the trisaccharide 14 in 63%
yield (2 steps) (Scheme 3). Following the same procedure,
compounds 11 and 137 were coupled and the trisaccharide
was deacetylated in order to give compound 15 in 75%
yield (2 steps) (Scheme 3). The observed chemical shifts
and coupling constants in CDCl3 [14: d 7.08 (d, J2,NH = 7.2
Hz, GlcNAc N-H), 5.10 (s, J1,2 = 1.5 Hz, aMan H-1), 4.97
(d, J1,2 = 7.5 Hz, GlcNAc H-1), 4.24 (s, J1,2<1 Hz, bMan
H-1); 15: d 5.19 (d, J1,2 = 8.5 Hz, GlcNAc H-1), 4.90 (s,
J1,2 = 1.5 Hz, a-Man H-1), 4.36 (s, J1,2<1 Hz, b-Man H-1)]
unambiguously established the expected stereochemistry
in both trisaccharides 14 and 15.

Figure 1
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(95%); c) BzCl, pyridine, r.t., 20 h, (70%); d) CAN, PhCH3, CH3CN,
H2O, r.t., 90 min., (75%); e) CCl3CN, DBU, CH2Cl2, 0 °C, 1 h, (80%).
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Scheme 3 Synthesis of trisaccharides 14 and 15: a) NaOMe, MeOH,
r.t., 2 h (quant.); b) PhCHO, TFA, r.t., 3 h, 90 min., (83%); c) BnBr,
NaH, DMF, 0°C, 2 h, (78%), d) Et3SiH, BF3·Et2O, CH2Cl2, 0 °C to
r.t., 90 min., (70%); e) Ac2O, pyridine, r.t., overnight (96%); f) NIS,
TMSOTf, molecular sieves 4 Å, 0 °C to r.t., 2 h (75%); g) NIS,
TMSOTf, molecular sieves 4 Å, 0 °C to r.t., 3h (63%); h) MeOH,
NaOMe, overnight, (quant.).

Trisaccharides 14 and 15 were each condensed with
trichloroacetimidate 9 to give pentasaccharides 16 and 17
in 71% and 96% yield, respectively (Schemes 4 and 5).
Chemical shifts and coupling constants in their 1H and 13C
NMR (CDCl3) spectra [17: d 5.84 (dd, J3,4 = 3.5 Hz,
J4,5 = 1 Hz, Gal H-4), 5.77 (m, J2,3 = J3,4 = J4,5 = 10 Hz,
GlcA H-3 and H-4), 5.58 (dd, J1,2 = 8.0 Hz, GlcA, H-2),
5.30 (dd, J1,2 = 7.5 Hz, Gal H-2), 5.07 (d, J1,2 = 1.5 Hz, a-
Man H-1), 4.37 (s, J<1.0 Hz, b-Man H-1); 13C: d 101.7,
100.6, 99.9, 99.3, 98.4; 16: d 5.86 (dd, J3,4 = 3.5 Hz,
J4,5 = 1 Hz, Gal H-4), 5.70 (m, J2,3 = J3,4 = J4,5 = 10 Hz,
GlcA H-3 and H-4), 5.58 (dd, J1,2 = 8.2 Hz, GlcA, H-2),
5.30 (dd, J1,2 = 7.0 Hz, Gal H-2); 13C: d 101.7, 100.6,
100.0, 98.5, 97.3] confirmed the stereoselective glyco-
sylation.

The N-trichloroacetyl protecting groups were readily
transformed into N-acetyl on treatment with tributylstan-
nane and azo-bis-isobutyronitrile (AIBN) in refluxing
benzene (77% and 80%). Hydrogenation [Pd(OH)2, H2,
MeOH] and careful saponification (LiOH, H2O2,

8 THF/
H2O overnight, then NaOH 4M, MeOH, 8 h) led to 2 and
1 in 65% and 43% overall yield, respectively (Schemes 4
and 5). In order to confirm the desired stereochemistry a
total assignment by NMR 1H was carried out9 (Table 1).
The NMR data confirmed the stereochemistry at each in-
terglycosidic linkage as well as the expected regiochemis-
try.10 The molecular weights of 1 and 2 were confirmed
using high resolution mass spectrometry.11

Pentasaccharides 1 and 2 differ only in the position of
linkage of the terminal trisaccharide to either O-2 or O-6

of the aMan (1→6)bMan reducing disaccharide. This
could in principle affect the rotameric distribution around
C5-C6 of the b-Man residue resulting in a very different
presentation of the HNK-1 epitope. The 1H NMR cou-
pling constants (J5,6a and J5,6b) for 1 and 2 were however,
almost identical (5.3 and 1.9/2.0) suggesting similar, if not
identical rotameric populations for these two compounds.
This distribution would be similar to the statistical distri-
bution of 60 (GG): 40 (GT) reported by Bock and Duus.12

The two pentasaccharides 1 and 2 are currently being
evaluated in biological assays. The results of these studies
will be reported elsewhere in due course.
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Table 1 Proton-NMR9 Chemical Shifts and Coupling Constants for 1 and 2

Ring b-GlcA b-Gal b-GlcNAc a-Man b-Man

Molecule 1 2 1 2 1 2 1 2 1 2

H-1
(J1,2)

4.678
(7.8)

4.678
(7.8)

4.533
(7.9)

4.528
(7.9)

4.586
(8.3)

4.610
(7.8)

4.894
(1.5)

4.930
(1.6)

4.666
(<1)

4.666
(<1)

H-2
(J2,3)

3.417
(9.1)

3.418
(9.3)

3.697
(9.9)

3.700
(9.8)

3.784
(10.5)

3.750c 3.976d

(3.5)
4.129d

(3.5)
3.983
(3.2)

3.988
(3.3)

H-3
(J3,4)

3.514b

(ca.9)
3.516b

(ca.9)
3.816
(3.3)

3.818
(3.3)

3.740c 3.750c 3.808
(9.5)

3.854
(9.5)

3.628
(9.4)

3.630
(9.3)

H-4
(J4,5)

3.532b

(8.8)
3.534b

(9.0)
4.195
(ca. 1)

4.196
(ca. 1)

3.746
(9.2)

3.750
(9.2)

3.651
(9.5)

3.518
(9.5)

3.720
(9.6)

3.720
(9.6)

H-5 3.725 3.725 3.730 3.760 3.608 3.581 4.168d 3.652d 3.497 3.495

H-6a
(J5,6a)

a 
– – 3.720c 3.740c 4.008

(2.2)
3.990
(2.4)

3.790d,c 3.914d

(1.8)
3.914
(5.4)

3.964
(5.4)

H-6b
(J5,6b)

a
– – 3.720c 3.740c 3.848

(4.9)
3.854
(5.0)

3.790d,c 3.660d,c 3.785
(1.9)

3.793
(2.0)

AcNH (CH3) 2.06 2.06

a When two distinct signals were observed, the greater chemical shift was assigned to H-6a.
b Assignments might be interchanged.
c Unavailable due to extensive spectral overlap.
d Chemical shifts in bold are most affected by the different substitution at the a-Man residue.
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