ONE-POT SYNTHESIS OF NIDORELLAURENAL AND ITS ONE-STEP CONVERSION TO METHYL NICORELLAURINATE, A CONSTITUENT OF NIDORELLA AURICULATA 1 R. Sangaigh and G. S. Krishna Rao* Department of Organic Chamistry Indian Institute of Science Bangalore 560012, INDIA Abstract: Niderellaurenal (4) is obtained in a one-pot reaction, involving heating of the known carbinol (8) with selenium dioxide in dimethyl sulphoxide. Conversion of 4 to methyl niderellaurinate (6), the natural product from Niderella auriculata, has been achieved by Corsy's one-step procedure. Bohlmann and Fritz² recently isolated from Nidorella suriculate OC an aromatic sesquiterpene ester which was named methyl nidorellaurinate³ and its structure assigned as $(\underline{6})$ from spectral data. The biogenetic parallelism that exists between nuciferal $(\underline{3})$, an aromatic sesquiterpene aldehyde isolated from Torraya nucifers⁴ and nidorellaurenal $(\underline{4})$, the aldehyde corresponding to the naturally occurring ester² $(\underline{6})$ is striking. Both the sesquiterpene aldehydes $(\underline{3})$ and $(\underline{4})$ can be visualised as isoprenologues of p-cymene $(\underline{1})$. The terminally functionalized isopentenyl moiety $(\underline{2})$ is attached to C-9 of p-cymene $(\underline{1})$ in nuciferal $(\underline{3})$, while it is attached to C-7 of p-cymene in nidorellaurenal $(\underline{4})$. The novelty of the unusual linkage of isoprene unit and our earlier synthesis of nuciferal $(\underline{3})$ in these laboratories⁵ prompted usboundertake the synthesis of nidorellaurenal $(\underline{4})$ and convert it further to methyl nidorellaurinate $(\underline{6})$. Heating (125-130°, 4h) of the known 3-(p-isopropylphenyl)propyl dimethyl carbinol $^{6}(\underline{B})$ with selenium dioxide in dimethylsulphoxide 7 , followed by purification afforded in a one-pot reaction nidorellaurenal (4) in 25% yield resulting from concurrent dehydration 8 of the carbinol to the olefin (7) and its regiospecific oxidation 5 , 9 of the terminal (E)-methyl group to furnish the (E)-enal (4). One-step oxidation of the snal (4) by Corey's procedure 10 gave in 83% yield methyl nidorellaurinate (6), the spectral features of which showed identity with that of the natural product 2 . Oxidation of the aldehyds (4) with alkaline silver oxide 5 , 9 a gave nidorellaurenic acid (5). Stepwise dehydretion 11 of the carbinol (8) to the olefin (7), followed by oxidation of the olefin slightly reised the overall yield of the enal (4) to 37%. Elemental analysis 12 and spectral data (IR and PMR) are in agreement with the structural assignments of the compounds synthesized (4, 5, 6 and 7). The authorities of the Indian Institute of Science, Bangalore are thanked for the award of a senior research fellowship (to R.S.). ## References and notes - Studies in terpenoids: Part L1. Part L, P.Anantha Reddy and G.S.Kriehna Rao, <u>Indian J. Chem.</u>, In press. - 2. F.Bohlmann and U.Fritz, Phytochem., 17, 1769 (1978). - 3. Though the German authors² spell the ester as methyl nidorellaurinate, the alternative spellings, viz., nidorellaurenal, nidorellaurenic acid etc., would be suggestive of the unsaturated nature of these compounds. - 4. T.Sakai, K.Nishimura, and Y.Hirose, <u>Tetrahedron Lett.</u>, 1171 (1963). - 5. J.Alexander and G.S.Krishna Rao, <u>Indian J. Chem.</u>, 9. 776 (1971). - 6. D.G.Farnum and G.Mehta, J. Chem. Soc. Chem. Commun., 1643 (1968). - 7. A.W.Singh, A.B.Upadhye, M.S.Wadia, V.V.Mhaskar, and Sukh Dev, Tetrahedron, 25, 3855 (1969). - V.J.Traynelis, W.L.Hergenrother, H.T.Hanson, and J.A.Valicent1, J. Org. Chem., 29, 123 (1964). - 9. ak.J.Clark, G.I.Fray, R.H.Jaeger, and R.Robinson, <u>Tetrahedron</u>, <u>6</u>, 217 (1955 bp.Naegeli and G.Weber, <u>Tetrahedron Latt.</u>, 959 (1970). - 10. E.J.Corey, N.W.Gilman, and B.E.Ganem, J. Am. Chem. Soc., 90, 5616 (1968). - 11. W.G.Dauben and G.A.Boswell, J. Am, Chem. Soc., 83, 5003 (1961). - 12. Elemental analysis of the compounds (5) and (6) are in agreement with the calculated values (C \pm 0.16, H \pm 0.35). (Received in UK 28 April 1980)