Tetrahedron 65 (2009) 7171-7176

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Novel cyclopeptide and unique flavone from *Desmos rostrata*. Total synthesis of desmorostratone

Ngoc Tuan Nguyen^a, Van Cuong Pham^{a,*}, Marc Litaudon^b, Françoise Guéritte^b, Bernard Bodo^c, Van Tuyen Nguyen^a, Van Hung Nguyen^{a,*}

^a Institute of Chemistry—Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam ^b Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette cedex, France ^c Laboratoire de Chimie et Biochimie des Substances Naturelles—CNRS, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75005 Paris, France

A R T I C L E I N F O

Article history: Received 23 December 2008 Received in revised form 20 May 2009 Accepted 4 June 2009 Available online 10 June 2009

ABSTRACT

Two new compounds, a cyclic peptide desmocyclopeptide (1) and a special flavone desmorostratone (2) were isolated from the stem bark of *Desmos rostrata*, along with two known compounds, desmosdumotins B (3) and C (4). Their structures were established on the basis of the spectral data, including mass spectrometry and 2D NMR. The total synthesis of desmorostratone (2) was performed in order to confirm its structure as well as that of desmosdumotin C (4), which was a tautomeric mixture in the solution. Finally, cytotoxity of these compounds were evaluated. Desmosdumotin C (4) displayed a moderate inhibition activity against KB cell line with an IC₅₀ of 19.2 μ M, whereas the other products showed a weak inhibition against the same cell line target.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the course of a screening program on the flora of Vietnam, the plant Desmos rostrata P.T. Li (basionym: Dasymaschalon rostratum, Annonaceae) was selected for its cytotoxicity against KB cell line (15% inhibition at the concentration of 1 µg/mL for the stem bark extract). We have previously isolated and characterized from this plant several antiplasmodial alkaloids, containing the tetrahydroisoquinoline motif.¹ Analysis of the CH₂Cl₂ fraction of the stem bark of *D. rostrata* led to the isolation of two new compounds, a cyclic peptide desmocvclopeptide (1) and an unique flavone type desmorostratone (2). together with two known compounds, desmosdumotins $B(3)^2$ and C (4).^{3a,b} Cyclopeptide compounds are usually found in the seed of the Annonaceae plants and rarely observed from stem bark. Desmosdumotin C (4) has been previously reported from Desmos dumosus and Campomanesia lineatifolia as a single tautomer, whereas it was isolated from D. rostrata in a tautomeric mixture of the two isomers as indicated by its ¹H NMR spectrum.

In order to confirm the structures of desmorostratone (2) and desmosdumotin C (4), their total syntheses were attempted, starting from 1-acetyl-2,4,6-trihydroxybenzene. Cytotoxicity of these compounds was evaluated on KB cells. However, they showed a moderate or weak cytotoxicity.

2. Results and discussion

Compound **1** was obtained as white solid (mp 261–262 °C) and optically active $[\alpha]_D^{20}$ –126.7 (*c* 2, CHCl₃). In its HR-ESI mass spectrum, the protonated molecular ion was observed at *m*/*z* 486.2727 [M+H]⁺ (calcd 486.2716 for C₂₅H₃₆N₅O₅), suggesting the molecular formula C₂₅H₃₅N₅O₅. The peptide nature of **1** was suggested by the

^{*} Corresponding authors. Tel.: +84 4 7564995; fax: +84 4 8361283.

E-mail addresses: phamvc@ich.vast.ac.vn (V.C. Pham), hungnv@ich.vast.ac.vn (V.H. Nguyen).

^{0040-4020/\$ –} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.06.017

molecular formula itself and from elucidation of its NMR spectra. Analysis of the ¹H and ¹³C NMR spectral data for **1**, with the aid of ¹H–¹H-COSY, HSOC, HMBC and NOESY spectra, indicated the presence of an alanine, a glycine, a proline, an isoleucine and a phenylalanine (Table 1). The determination of the peptide sequence was established from the connectivity of the carbonyl of residue (i)and the NH proton of residue (i+1) on the HMBC spectrum as follows: the correlations of the carbonyl at δ_c 173.5 of the Ala¹ with its H α proton at $\delta_{\rm H}$ 4.37, as well as to the NH proton of the Gly² at $\delta_{\rm H}$ 7.78 were observed. The carbonyl group of the Gly² at $\delta_{\rm C}$ 168.5 was not correlated to an amide proton, suggesting its connection with the Pro³. Cross-peaks of the carbonyl of the Pro³ at $\delta_{\rm C}$ 172.1 with its H α proton at $\delta_{\rm H}$ 4.21 and NH proton ($\delta_{\rm H}$ 7.12) of the lle⁴ were presented. In addition, the carbonyl of lle⁴ at $\delta_{\rm C}$ 172.3 was correlated with its H α proton at $\delta_{\rm H}$ 4.18 and NH proton of Phe⁵ at $\delta_{\rm H}$ 7.56. Finally, ²*J*-HMBC correlation of the carbonyl of Phe⁵ at $\delta_{\rm C}$ 172.3 with its H α proton ($\delta_{\rm H}$ 4.64) and NH proton of Ala¹ ($\delta_{\rm H}$ 8.25) were noted. Complete analysis of the HMBC spectrum determined the structure of **1** as drawn in Figure 1. The NOESY spectrum of **1** depicted the strong spatial interactions of H α of Gly² with H δ of Pro³, indicating that the amide bond between Gly^2 –Pro³ was trans.⁴ The $d_{NN(i,i+1)}$ and $d_{\alpha N(i,i+1)}$ sequential connectivity from Ala¹ to Phe⁵ was clearly observed in the NOESY spectrum as indicated in Figure 1. The amino acids residue and the sequence of 1 were confirmed by fragmentation of $[M+H]^+$ ion at m/z 486. A series of adjacent a_n ion peaks were observed at m/z 311, 240, 183 and 86 corresponding to the successive loss of Phe, Ala, Gly and Pro. A second series of peaks at m/z 339, 268, 211 and 114 were assigned to adjacent b_n ion (loss of Phe. Ala. Glv and Pro). This new pentacyclopeptide **1** is named desmocyclopeptide. The structure of 1 is very close to that of pseudostellarin A which has been previously reported from the roots of *Pseudostellaria heterophylla*.⁵

Figure 1. Selected HMBC (\rightarrow) and NOESY (\leftrightarrow) correlations of **1**.

The absolute configuration of the chiral amino acids in desmocyclopeptide (1) was determined by HPLC analysis of the acid hydrolysate derivatised with Marfey's reagent,⁶ and comparison with

Table 1

NMR data for desmocyclopeptide (1) (CDCl₃, 1 H: 500.13 MHz, 13 C: 125.76 MHz)

appropriate amino acid standards, that secured the L-configuration for Ala, Ile, Phe and Pro.

Compound **2** was isolated as yellow solid (mp 199–201 °C). The HR-ESIMS of **2** showed the pseudomolecular ion $[M+H]^+$ at m/z 311.1279 (calcd 311.1283 for $C_{19}H_{19}O_4$), suggesting the molecular formula $C_{19}H_{18}O_4$. This indicated eleven degrees of unsaturation. The 1D NMR spectra (¹H and ¹³C) displayed the signals of three methyl groups, a methoxy, an sp³ quaternary carbon, six sp² methines and eight sp² quaternary carbons, including two carbonyl groups and two aromatic oxygenated carbons as assigned from their chemical shifts (Table 2). In the ¹H–¹H-COSY spectrum, the correlations of the two equivalent protons H-2' and H-6' (δ_H 7.76) with the two other equivalent ones, H-3' and H-5' (δ_H 7.53) which in turn were correlated to H-4' (δ_H 7.56). This indicated the presence of a phenyl ring (**C**-ring).

Analysis of HMBC spectrum revealed the correlations of H-3 $(\delta_{\rm H}$ 6.82) with C-1' ($\delta_{\rm C}$ 130.6), C-2 ($\delta_{\rm C}$ 161.2), the carbonyl C-4 ($\delta_{\rm C}$ 175.9) and C-10 ($\delta_{\rm C}$ 116.0). Furthermore, cross-peaks of C-2 with H-2' and H-6' ($\delta_{\rm H}$ 7.76) were observed. This observation indicated the linkages of C-2 with C-1' and C-4 with C-10. On the other hand, the two superposed methyl groups CH₃-12 and CH₃-13 were correlated to C-9 (δ_{C} 176.9), C-8 (δ_{C} 43.0) and C-7 (δ_{C} 170.2). The last carbon C-7 was further correlated with the methoxy group ($\delta_{\rm H}$ 3.96) and CH₃-11 ($\delta_{\rm H}$ 1.98) which showed ³J-HMBC correlation to the carbonyl C-5 (δ_{C} 183.6). These data indicated that C-8 was bonded to both CH₃-12 and CH₃-13 and C-6 linking to CH₃-11. The guaternary carbon C-10 was thus linked to both C-5 and C-9, forming the **A**-ring. The chemical shifts of C-9 and C-2 suggested that they were linked to an oxygen atom. Taking into account the molecular formula of 2, determined that C-2 was linked to C-9 through the oxygen atom O-1. These data permitted establishing the structure of **2** as drawn in Figure 2. This unique flavone was isolated for the first time from natural source and named desmorostratone. This compound was previously described as synthetic one, forming during the synthesis of desmosdumotin B.⁷

Figure 2. Keys HMBC correlations of 2.

	5 1 1		-	,				
Residue	δ_{C}	δ _H m (J, Hz)	Residue	δ_{C}	δ _H m (J, Hz)	Residue	δ_{C}	δ _H m (J, Hz)
Ala ¹			γ-CH ₂	25.1	1.99 m	Phe ⁵		
α-CH	49.5	4.37 m		_	2.12 m	α-CH	57.0	4.64 m
β-CH ₃	15.8	1.31 d (7.5)	δ-CH ₂	46.9	3.48 ddd (6.7, 6.7, 9.5)	β-CH ₂	37.2	3.18 dd (7.0, 13.7)
C=0	173.5			—	3.97 ddd (7.0, 7.0, 9.5)		—	3.26 dd (9.0, 13.7)
NH		8.25 d (7.5)	C=0	172.1		1'-Phe	136.8	
Gly ²			Ile ⁴			2′,6′-Phe	129.4	7.22 m
α-CH ₂	42.5	3.56 dd (3.2, 15.5)	α-CH	58.7	4.18 dd (8.5, 8.5)	3′,5′-Phe	128.4	7.20 m
	_	4.35 dd (5.7, 15.5)	β-CH	35.7	1.88 m	4'-Phe	126.8	7.19 m
C=0	168.5		γ -CH ₂	24.9	0.97 m	C=0	172.3	
NH		7.78 dd (3.2, 5.7)		_	1.40 m	NH		7.56 d (7.5)
Pro ³			γ' -CH ₃	15.3	0.81 d (6.5)			
α-CH	62.5	4.21 dd (6.0, 8.0)	δ-CH ₃	10.9	0.83 t (7.5)			
β-CH ₂	29.7	1.96 m	C=0	172.3				
	_	2.29 m	NH		7.12 d (8.5)			

Table 2NMR data for desmorostratone (2): (CDCl₃, 298 K)

Carbon	δ_{C}	$\delta_{\rm H} \mbox{ m} (J, \mbox{ Hz})$	Carbon	δ_{C}	δ _H m (J, Hz)
2	161.2	_	2′	125.6	7.76 m (1.0, 7.5)
3	113.1	6.82 s	3′	129.3	7.53 m
4	175.9	_	4′	131.7	7.56 m
5	183.6	_	5′	129.3	7.53 m
6	119.2	_	6′	125.6	7.76 m (1.0, 7.5)
7	170.2	_	11	10.0	1.98 s
8	43.0	_	12	24.5	1.64 s
9	176.9	_	13	24.5	1.64 s
10	116.0	_	OMe	62.2	3.96 s
1′	130.6	_			

The two known compounds, desmosdumotins B (3)² and C (4)^{3a,b} were also isolated from this plant. Their structures were established from the spectral data analysis. However, the ¹H NMR spectrum of **4** showed two nearly similar sets of signal with a ratio of 2.5:1. This suggested the presence of two isomers. Analysis of 2D NMR spectra of this mixture allowed assignment of NMR data for the two isomers **4a** and **4b** (Scheme 1). The two enolic forms were determined by HMBC correlations of their enolic proton with C-8 in **4a** and with C-5' for **4b**. As mentioned above, desmosdumotin C (**4**) has been previously reported from *D. dumosus* and *C. lineatifolia* as single tautomer **4a**. In order to confirm the structures of desmorostratone (**2**) and desmosdumotin C (**4**), their total syntheses were accomplished.

Scheme 1. Synthesis of desmosmodutin C (4).

The syntheses of desmosdumotin B $(3)^7$ and derivatives of desmosdumotin $C^{8a,b}$ have been previously described, starting from 2,4,6-trihydroxyacetophenone. During the synthesis of **3**, desmorostratone (**2**) has been obtained as side product with low yield. Recently, a number of desmosdumotin B derivatives have been also prepared and some of them showed interesting anti tumors activity.⁹ Our effort in this work was studying and optimization of the synthetic conditions to obtain desmorostratone (**2**) in high yield.

The synthesis of desmosdumotin C (**4**) was performed by using the modified method previously illustrated.^{6,7} Methylation of **3** with MeI in the presence of NaOCH₃ gave **6** in low yield (35%). However, when using *t*-BuOK as a base, compound **6** was obtained in higher yield (72%). Exposure of **6** to a solution of Et₂O containing excess of trimethylsilanediazomethane at -18 °C yielded **7** in 60%. Condensation of **7** with benzaldehyde at room temperature provided compound **4** in good yield (91%). ¹H NMR spectrum of the synthetic compound was identical with that of the natural one isolating from *D. rostrata* and showed the presence of the two isomers **4a** and **4b** with a ratio of 2.5:1, respectively. This result confirmed the structure of **4** and indicated that the two enolic forms **4a** and **4b** were stable enough at room temperature and could be identified by NMR. Oxidative cyclization of 4 was firstly carried out with DMSO/I₂ at 100 °C, but the desired compound 2 was not observed. This reaction was then performed with addition of a small amount of H₂SO₄ and heated at 80 °C.⁷ Under this condition, only desmosdumotin B(3) was obtained with 71% yield. An alternative approach was the cyclization of **2** in basic media with concurrent oxidation (Scheme 2). However, the methoxy group was cleaved off and two flavanones, 7 and 8 were obtained under this reaction condition. These results indicated that the methoxy group in the structure of 4 (or even in the structures of the cyclized products) was unstable in both acidic and basic media. This observation suggested that the oxidative cyclization of **4** should be carried out under mild conditions. Finally, desmorostratone (2) was obtained in good yield by treatment of 4 with SeO₂ in dimethylsulfate at 70 °C. Comparison of NMR data of the synthetic compound with the natural one revealed that they were identical.

Scheme 2. Synthesis of desmorostratone (2).

In order to understand the formation of desmorostratone (2) and related compounds such as desmosdumotins B(3) and C(4) in the plants, their biosynthesis pathways were proposed (Scheme 3). As similar with the well-known biosyhthesis of chalcones, cinnamoyl-ScoA (11) is resulted from phenylalanine (10). Condensations of 11 with three malonate units following by intramolecular cyclization afford the triketone 12. C-Methylation of 12 yields the champanone B (13), which has recently isolated from C. lineatifolia.^{3b} Cyclization of **13** provides the champanone C (**14**), previously characterized from D. dumosus and C. lineatifolia.^{3b,10} Oxidation of 14 yields desmosdumotin B (3). On the other hand, champanone (13) could be O-methylated affording desmosdumotin C (4), which should be further cyclized to give compound 16. Finally, oxidation of 16 finishes the biosynthesis of desmorostratone (2). However, desmorostratone (2) could be also derived from desmosdumotin B (3) by O-methyaltion of its tautomer 15 (Scheme 3). The presence of desmosdumotin C, champanone B (13) and especially champanone C (14) in the plants supports for the hypothesis that C-methylation process is probably occurred before intramolecular cyclization of 13 and 14.

3. Biological evaluation

In vitro cytotoxicity of the isolated compounds in human tumor cell lines (KB) was assessed as previously described.^{11a,b} IC₅₀ values

Scheme 3. Proposed biosynthesis pathway for desmorostratone (**2**) and related compounds.

defined, as the concentration required inhibiting cell growth by 50%, were determined after 72 h drug exposures. The results indicated that only desmosdumotin C (**4**) showed a moderate cytotoxic activity with an IC₅₀ of 19.2 μ M. The other compounds (**1–3**) presented very weak cytotoxicity on the same cell line target even when they were tested at the concentration of 25 μ M.

4. Experimental section

4.1. General

Analytical TLC was performed with 0.25 mm silica gel 60 plates. Plates were developed by spraying with 5% H_2SO_4 in EtOH followed by heating on a hot plate. ¹H NMR spectra were recorded at 500.13 MHz and reported in ppm using tetramethylsilane (0.00 ppm) or solvent (CDCl₃: 7.24 ppm) as an internal standard. Data are reported as s=singlet, d=doublet, m=multiplet, br=broad; coupling constant(s) in Hz. ¹³C NMR spectra were recorded at 125.76 MHz with chemical shifts reported in ppm (δ) in reference to the solvent peak of CDCl₃ (δ 77.16). The ESIMS spectra were measured by Electrospray MS in the positive mode.

4.2. Plant material and extraction

The plant *D. rostrata* P.T. Li was collected in Hatinh-Vietnam in March 2004 and a specimen (VN 1273) was deposited at the Institute of Ecology and Biological Resources—VAST—Vietnam. Dried and ground stem bark (1.0 kg) of *D. rostrata* were extracted with MeOH at room temperature for three times (3×4 L). The solvent was removed under diminished pressure. The crude MeOH extract was suspended in water and extracted successively with *n*-hexane and then with CH₂Cl₂. The CH₂Cl₂ extract solution was concentrated under diminished pressure and the residue (5.3 g) was purified by repeated open column chromatography over silica gel, eluted with a mixture of CH₂Cl₂/MeOH to afford desmocyclopeptide (**1**, 25 mg), desmorostratone (**2**, 16 mg), desmosdumotin B (**3**, 125 mg) and desmosdumotin C (**4**, 86 mg).

4.3. Desmocyclopeptide (1): C₂₅H₃₅N₅O₅

White solid (Et₂O/EtOH), mp 261–262 °C; R_f 0.37 (CH₂Cl₂/MeOH: 92/8); $[\alpha]_D^{20}$ –126.7 (*c* 2, CHCl₃); UV (MeOH) λ_{max} (log ε) 241.6 (2.98), 283.0 (2.45); ν_{max} (KBr) 3542, 3477, 3341, 2969, 2876,

1651, 1531, 1437 cm⁻¹; HRMS (ESI): $[M+H]^+$, found 486.2727. C₂₅H₃₆N₅O₅ requires 486.2716; ESI-MS/MS on $[M+H]^+$ ion, *m*/*z*: 486, 458, 339, 311, 268, 240, 211, 183, 114, 86; NMR data see Table 1.

4.4. Desmorostratone (2): C₁₉H₁₈O₄

Yellow solid (*n*-hexane/EtOAc), mp 199–201 °C; R_f 0.29 (*n*-hexane/EtOAc: 9:1); UV (MeOH) λ_{max} (log ε) 213.4 (2.44), 253.0 (2.85), 274.9 (2.89); ν_{max} (KBr) 1675, 1632, 1451, 1405, 1123 cm⁻¹; HRMS (ESI): [M+H]⁺, found 311.1279. C₁₉H₁₉O₄ requires 311.1283; NMR data see Table 2.

4.5. Desmosdumotin B (3): C₁₈H₁₆O₄

Yellow solid (*n*-hexane/EtOAc), mp 215–216 °C; R_f 0.75 (CH₂Cl₂/MeOH: 98:2); ν_{max} (KBr) 3435, 2934, 1685, 1635, 1602, 1555, 1446, 1427, 1294, 1161 cm⁻¹; ¹H NMR (500.13 MHz, CDCl₃): δ_H 13.05 (1H, s, chelated-OH), 7.81 (2H, m, *J* 7.0 Hz, H-2' and H-6'), 7.61 (1H, m, *J* 7.0 Hz, H-4'), 7.57 (2H, m, H-3' and H-5'), 6.89 (1H, s, H-3), 1.88 (3H, s, Me-11), 1.59 (6H, s, Me-12 and Me-13); ¹³C NMR (125.76 MHz, CDCl₃): δ_C 196.2 (C-7), 180.8 (C-4), 174.1 (C-9), 164.3 (C-2), 163.5 (C-5), 132.6 (C-4'), 130.0 (C-1'), 129.5 (C-3' and C-5'), 126.0 (C2' and C-6'), 110.5 (C-10), 110.2 (C-3), 108.6 (C-6), 47.3 (C-5), 25.3 (C-12 and C-13), 7.0 (C-11); HRMS (ESI): [M+H]⁺, found 297.1121. C₁₈H₁₇O₄ requires 297.1127.

4.6. Desmosdumotin C (4): C₁₉H₂₀O₄

Yellow solid (*n*-hexane/EtOAc), mp 93–94 °C; *R*_f 0.52 (*n*-hexane/ EtOAc: 9:1); v_{max} (KBr) 3434, 2934, 1664, 1616, 1573, 1519, 1419, 1202, 1116 cm $^{-1}$; **4a**: 1 H NMR (500.13 MHz, CDCl_3): $\delta_{\rm H}$ 19.14 (1H, s, chelated-OH), 8.26 (1H, d, J 16.0 Hz, H-8), 7.86 (1H, d, J 16.0 Hz, H-7), 7.59 (1H, m, H-4), 7.32 (4H, m, H-2, H-3, H-5 and H-6), 3.88 (3H, s, OMe), 1.93 (3H, s, Me-7'), 1.31 (6H, s, Me-8' and Me-9'); ¹³C NMR (125.76 MHz, CDCl₃): δ_C 198.0 (C-6'), 192.4 (C-2'), 187.2 (C-9), 176.6 (C-4'), 144.8 (C-7), 135.3 (C-1), 130.6 (C-3 and C-5), 129.0 (C-4), 128.9 (C-2 and C-6), 123.3 (C-8), 113.6 (C-3'), 106.6 (C-1'), 62.1 (OMe), 50.4 (C-5'), 24.3 (Me-8' and Me-9'), 9.8 (Me-7'); **4b**: ¹H NMR (500.13 MHz, CDCl₃): $\delta_{\rm H}$ 18.72 (1H, s, chelated-OH), 8.47 (1H, d, J 16.0 Hz, H-8), 7.88 (1H, d, J 16.0 Hz, H-7), 7.61 (1H, m, H-4), 7.32 (4H, m, H-2, H-3, H-5, H-6), 3.82 (3H, s, OMe), 1.88 (3H, s, CH₃-7'), 1.40 (6H, s, CH₃-8', CH₃-9'); ¹³C NMR (125.76 MHz, CDCl₃): δ_C 201.6 (C-6'), 189.5 (C-9), 186.2 (C-2'), 171.0 (C-4'), 145.4 (C-7), 135.2 (C-1), 130.7 (C-3 and C-5), 129.0 (C-2 and C-6), 123.7 (C-8), 118.5 (C-3'), 108.4 (C-

1'), 61.9 (OMe), 46.1 (C-5'), 24.4 (Me-8' and Me-9'), 10.2 (Me-7'); HRMS (ESI): [M+H]⁺, found 313.1446. C₁₉H₂₁O₄ requires 313.1440.

4.6.1. Preparation of 6

A solution of 2,4,6-trihydroxyacetophenone (5, 982 mg, 5.8 mmol) and potassium tert-butoxide (2.4 g, 21.4 mmol) in anhydrous MeOH (70 mL) containing methyliodide (1.2 mL, 19.2 mmol) was heated to reflux for 7 h. The reaction mixture was cooled to 0 °C and acidified with 1 N HCl aqueous solution, then extracted three times with EtOAc (3×30 mL). The combined organic layers were washed with water (3×50 mL), dried over Na₂SO₄ and concentrated under diminished pressure. The residue was chromatographed on silica gel colunm, eluted with *n*-hexane/EtOAc (9:1) to provide **6** (876 mg, 72%). Yellow solid, mp 164–165 °C (*n*hexane/EtOAc); R_f 0.45 (CH₂Cl₂/MeOH: 97:3); v_{max} (KBr) 3123, 1665, 1596, 1532, 1378, 1338, 1278 cm⁻¹; ¹H NMR (500.13 MHz, DMSOd₆): δ_H 18.93 (1H, br s, chelated-OH), 2.47 (3H, s, Me–Ac), 1.78 (3H, s, Me), 1.28 (6H, s, $2 \times$ Me); ¹³C NMR (125.76 MHz, DMSO- d_6): δ_C 199.8, 196.5, 189.1, 175.1, 113.8, 106.1, 47.6, 24.7, 7.7; HRMS (ESI): [M+H]+, found 211.0975. C₁₁H₁₅O₄ requires 211.0970.

4.6.2. Preparation of **7**

To a solution of 6 (545 mg, 2.6 mmol) in a mixture of CH₃CN/ MeOH (2:1; 7.5 mL), was added slowly a solution of (CH₃)₃SiCHN₂ in diethyl ether (5 mL, 10 mmol) at -18 °C and the resulting mixture was stirred for 3 h. Acetic acid was then added to destroy the excess of (CH₃)₃SiCHN₂. The mixture was concentrated under diminished pressure and the residue was purified by silica gel column chromatography, eluted with *n*-hexane/EtOAc (9:1) to afford **7** (352 mg, 60%) as yellow oil. $R_f 0.63 (CH_2 Cl_2 / MeOH: 97:3); \nu_{max} (KBr)$ 3112, 1661, 1602, 1526, 1374, 1331, 1279 cm⁻¹; ¹H NMR (500.13 MHz, CDCl₃) (mixture of two tautomers): $\delta_{\rm H}$ 18.91 (s) and 18.13 (s) (2:1, chelated-OH), 3.94 (s) and 3.87 (s) (2:1, OMe), 2.70 (s) and 2.61 (s) (1:2, C(O)Me), 1.97 (s) and 1.91 (s) (2:1, Me), 1.44 (s) and 1.33 (s) (2:1, 2×Me); ¹³C NMR (125.76 MHz, CDCl₃): δ_{C} 199.6, 199.1, 192.5, 192.1, 189.2, 189.5, 173.1, 172.4, 118.1, 117.3, 107.6, 107.2, 61.9, 61.7, 46.5, 46.3, 24.6, 24.5, 10.7, 10.2; HRMS (ESI): [M+H]⁺, found 225.1122. C₁₂H₁₇O₄ requires 225.1127.

4.6.3. Preparation of desmosdumotin C (4)

A solution of **7** (330 mg, 1.47 mmol) in EtOH (15 mL) and 50% KOH in water (10 mL), was treated with benzaldehyde (1.5 mL, 1.48 mmol). The resulting solution was stirred at room temperature for 24 h. The reaction mixture was poured into 1 N HCl aqueous solution, and then extracted with CH_2Cl_2 . The organic extract was washed with brine, dried over Na_2SO_4 and concentrated under diminished pressure. The residue was chromatographed on silica gel, eluted with *n*-hexane/EtOAc (9:1, v/v) to obtain 4 (417 mg, 91%) as tautomeric mixtures **4a** and **4b** with a ratio of 2.5:1, respectively. Yellow solid (*n*-hexane/EtOAc), mp 92–96 °C; NMR-spectra are identical with those of the natural compound.

4.6.4. Preparation of 8 and 9

A solution of Me₂SO₄ (2 mL), containing **4** (20 mg, 0.06 mmol) was treated with NaOH (2.56 mg, 0.06 mmol) at room temperature for 12 h. The reaction solution was then neutralized with 1 N HCl aqueous solution to pH ~7 and then extracted with EtOAc (3×10 mL). The solvent was removed under diminished pressure and then the residue was purified by preparative TLC (30% EtOAc/*n*-hexane) to provide **8** (8 mg, 42% yield) and **9** (5.7 mg, 30% yield). **8**: R_f 0.46 (CH₂Cl₂/MeOH: 97:3); ¹H NMR (500.13 MHz, CDCl₃): δ_H 11.61 (1H, s, chelated-OH), 7.48–7.40 (5H, m, phenyl ring), 5.58 (1H, dd, *J* 3.5, 13.5 Hz, H-2), 3.10 (1H, dd, *J* 13.5, 17.0 Hz, H-3_{ax}), 2.88 (1H, dd, *J* 3.5, 17.0 Hz, H-3_{eq}), 1.81 (3H, s, Me), 1.45 (3H, s, Me), 1.41 (3H, s, Me); ¹³C NMR (125.76 MHz, CDCl₃): δ_C 196.6 (C-7), 194.5 (C-4), 186.0 (C-9), 164.0 (C-5), 136.3 (C-1'), 129.6 (C-4'), 129.1 (C-3' and C-

5'), 126.0 (C-2' and C-6'), 105.7 (C-6), 103.2 (C-10), 81.2 (C-2), 48.5 (C-8), 41.7 (C-3), 24.8 (Me), 24.7 (Me), 6.7 (Me); HRMS (ESI): $[M+H]^+$, found 299.1279. C₁₈H₁₉O₄ requires 299.1283; **9**: *R*_f 0.56 (CH₂Cl₂/MeOH: 97:3); ¹H NMR (500.13 MHz, CDCl₃): $\delta_{\rm H}$ 15.80 (s, chelated-OH, 1H); 7.47–7.39 (5H, m, phenyl ring), 5.32 (1H, dd, *J* 3.5, 11.0 Hz, H-2), 3.03 (1H, dd, *J* 11.0, 18.0 Hz, H-3_{ax}), 2.92 (1H, dd, *J* 3.5, 18.0 Hz, H-3_{eq}), 1.86 (3H, s, Me), 1.42 (3H, s, Me), 1.40 (3H, s, Me); ¹³C NMR (125.76 MHz, CDCl₃): $\delta_{\rm C}$ 201.8 (C-5), 198.1 (C-7), 182.9 (C-4), 161.3 (C-9), 138.1 (C-1'), 129.0 (C-3' and C-5'), 128.9 (C-4'), 125.8 (C-2' and C-6'), 107.4 (C-8), 101.5 (C-10), 76.1 (C-2), 52.4 (C-6), 38.3 (C-3), 25.5 (Me), 23.1 (Me), 7.9 (Me); HRMS (ESI): [M+H]⁺, found 299.1286. C₁₈H₁₉O₄ requires 299.1283.

4.6.5. Preparation of desmorostratone (2)

A solution of **4** (100 mg, 0.32 mmol) in Me₂SO₄ (10 mL) was stirred at 70 °C for 1 h, and then SeO₂ was added and continuously stirred for additional 3 h. The reaction mixture was extracted with Et₂O (3×15 mL). The combined organic extracts were washed with water, dried over Na₂SO₄ and concentrated under diminished pressure. The residue was chromatographed on silica gel column, eluted with CH₂Cl₂/MeOH (20:1, v/v), recrystallization from *n*-hexane/EtOAc gave desmorostratone (**2**) (66 mg, 65%). Yellow solid (*n*-hexane/EtOAc), mp 197–199 °C; NMR-spectra are identical with those of the natural compound.

4.6.6. Peptide hydrolysis

Desmocyclopeptide (1) sample (3.0 mg) was dissolved in 6 N HCl (1 mL) and heated at 110 $^{\circ}$ C for 24 h. The solvent was removed under reduced pressure and the resulting material was subjected to further derivatisation.

4.6.7. HPLC analysis of Marfey's (FDAA) derivatives

The hydrolysate mixture (3.5 mg) or the amino acid standards (0.5 μ g) was dissolved in 0.1 mL of water and treated with 0.2 mL of 1% 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide (FDAA) in acetone and 0.04 mL of 1.0 M sodium bicarbonate. The vials were heated at 50 °C for 90 min and the contents after cooling at room temperature, were neutralised with 1 N HCl. After degassing an aliquot of the FDAA derivative was diluted with MeOH and chromatographed on a RP C-18 column (250×4.6 mm) by means of a linear gradient of acetonitrile and water containing 0.05% trifluoroacetic acid from 20:80 to 50:50 in 20 min and then isocratic. The flow rate was 1 mL/min and the absorbance detection was at 340 nm. The chromatogram was compared with those of standards treated in the same conditions.

Amino acids in desmocyclopeptide (1): Gly (13.8 min), L-Ala (14.9 min), L-Pro (15.5 min), L-Ile (21.0 min), L-Phe (21.5 min). T_R of standards: L-Ala (14.9 min), D-Ala (16.1 min), L-Pro (15.5 min), L-Ile (21.0 min), L-Phe (21.5 min), D-Phe (23.9 min).

Acknowledgements

The authors thank Mr. D. C. Dao, Mr. Q. B. Nguyen (VAST—Vietnam) for plant collection and botanical determination, Dr. G. Aubert (ICSN Gif-sur-Yvette) for cytotoxicity assay and Mr. D. Lacroix (MNHN) for HPLC analysis of amino acids. The CNRS is gratefully acknowledged for financial support of the Franco-Vietnamese Cooperation program (Study of the flora of Vietnam).

Supplementary data

¹H and ¹³C NMR spectra of the isolated compounds. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.06.017.

References and notes

- 6. Marfey, R. Carlsberg Res. Commun. 1984, 49, 591-596.
- 7. Nakagawa-Goto, K.; Bastow, K. F.; Wu, J. H.; Tokuda, H.; Lee, K. H. Bioorg. Med. Chem. Lett. 2005, 15, 3016–3019.
- Nguyen, N. T.; Pham, V. C.; Litaudon, M.; Guéritte, F.; Grellier, P.; Nguyen, V. T.; Nguyen, V. H. J. Nat. Prod. 2008, 71, 2057–2059.
 Wu, J. H.; Mao, S. L.; Liao, S. X.; Yi, Y. H.; Lan, C. Q.; Su, Z. W. Chin. Chem. Lett.
- **2001**, *12*, 49–50.
- (a) Wu, J. H.; McPhail, A. T.; Bastow, K. F.; Shiraki, H.; Ito, J.; Lee, K. H. *Tetrahedron Lett.* 2002, 43, 1391–1393; (b) Bonilla, A.; Duque, C.; Garzón, C.; Takaishi, Y.; Yamaguchi, K.; Hara, N.; Fujimoto, Y. *Phytochemistry* 2005, 66, 1736–1740.
 Douglas, D. E.; Bovey, F. A. *J. Org. Chem.* 1973, 38, 2379–2383.
 Morita, H.; Kayashita, T.; Kobata, H.; Gonda, A.; Takeya, K.; Itokawa, H. *Tetrahedron* 1994, *50*, 6797–6804.
- 8. (a) Nakagawa-Goto, K.; Wu, J. H.; Tokuda, H.; Lee. Synth. Commun. 2005, 35, (a) rates gave Goto, K., We, J. H., Tokuda, H., Ecc. Synth. Commun. **2005**, 55, 1735-1739; (b) Nakagawa-Goto, K.; Wu, J. H.; Bastow, K. F.; Wu, C. C.; Lee, K. H. Bioorg. Med. Chem. **2005**, 13, 2325–2330.
- 9. Nakagawa-Goto, K.; Bastow, K. F.; Chen, T. H.; Morris-Natschke, S. L.; Lee, K. H. J. Med. Chem. 2008, 51, 3297–3303.
- 10. Wu, J. H.; Wang, X. H.; Yi, Y. H.; Lee, K. H. Bioorg. Med. Chem. Lett. 2003, 13, 1813–1815.
- 11. (a) Mosmann, T. J. Immunol. Methods 1983, 65, 55-63; (b) Pham, V. C.; Jossang, A.; Sévenet, T.; Nguyen, V. H.; Bodo, B. *Tetrahedron* **2007**, 63, 11244–11249.