11-(Tetrahydro-3 and 4-pyridinyl)dibenzo[b,e $][1,4]$ diazepines undergo novel rearrangements on treatment with concentrated HBr

James Cairns, ${ }^{\text {a }}$ Thomas R. Clarkson, ${ }^{\text {a,* }}$ Johan A. M. Hamersma ${ }^{\text {b }}$ and Duncan R. Rae ${ }^{\text {a, },}$
${ }^{a}$ Medicinal Chemistry Department, Research and Development, Organon Laboratories Ltd, Newhouse, Lanarkshire ML1 5SH, UK
${ }^{\mathrm{b}}$ Medicinal Chemistry Department, Organon, Oss, The Netherlands

Received 17 October 2001; accepted 4 January 2002

Abstract

Tetrahydro-1-methyl-3-pyridinyl)-5-methyl-5H-dibenzo[b,e][1,4]diazepine on heating in conc. HBr afforded trans-5-(2-aminophenyl)-1,3,4,4a,5,10a-hexahydro-2-methylbenzo[b][1,6]naphthyridin-10(2H)-one in one step. The isomer 11-(1,2,5,6-tetrahydro-1-methyl-4-pyridinyl)-5-methyl-5 H -dibenzo $[b, e][1,4]$ diazepine underwent a novel rearrangement resulting in the pentacycle, 4-amino-5,13-diaza-13-methyl-bicyclo[3.3.1]nonan[6,7,8-k,l]acridine. © 2002 Published by Elsevier Science Ltd.

mAs part of a project to find novel anti-psychotics ${ }^{1}$ a series of 11-(1,2,5,6-tetrahydro-1-methyl-3-pyridinyl)-5-alkyl-5 H-dibenzo $[b, e][1,4]$ diazepines $\mathbf{1}$ were prepared (Scheme 1). The des-alkyl compound, 11-(1,2,5,6-tetrahydro - 1 - methyl-3 - pyridinyl) - $5 H$ - dibenzo[$b, e][1,4]$ diazepine 1b, was required for biological testing. Protection of the diphenylamine as an amide was not an option as reduction of N-(2-nitrophenyl)- N-phenyl acetamide to the aniline results in immediate cyclisation to 2-methyl-1-phenyl-1 H -benzimidazole. ${ }^{3}$

Dimethyl-[2-(5-methyl-5H-dibenzo[b, f]azepin-10-yl]amine 2 has been N-demethylated with 48% hydrobromic acid. ${ }^{4}$ Heating 5-methyl-11-(pyridin-3-yl)-5 H dibenzo $[b, e][1,4]$ diazepine in conc. HBr under reflux indeed affords the N-demethylated product 3 (Fig. 1). ${ }^{5}$

We attempted N-demethylation of 11-(1,2,5,6-tetra-hydro-1-methyl-3-pyridinyl)-5-methyl-5 H -dibenzo $[b, e]$ [1,4]diazepine $\mathbf{1 a}^{6}$ in conc. HBr under reflux for 4 h . The reaction afforded a product which infrared spec-

Scheme 1. Conditions: (a) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, neat $200^{\circ} \mathrm{C}$, $18 \mathrm{~h}, 24 \%$. (b) $\mathrm{KOH}, \mathrm{Me}_{2} \mathrm{SO}_{4}$, acetone, reflux, 1.5 h . (c) Sn , aq. HCl , EtOH , reflux, $0.5 \mathrm{~h}, 95 \%$ (over two steps). (d) N-Methyl-1,2,5,6-tetrahydropyridine-3-carbonyl chloride, ${ }^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 1 \mathrm{~h}, 77 \%$. (e) PPA, $\mathrm{POCl}_{3}, 120^{\circ} \mathrm{C}, 45 \mathrm{~min}, 84 \%$.

[^0]

3

Scheme 3. Conversion of 4 to the pentacyclic dibenzodiazepine. Conditions: (i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{ZnCl}_{2}, 65^{\circ} \mathrm{C}, 1 \mathrm{~h}, 68 \%$. (ii) PPA, $\mathrm{POCl}_{3}, 120^{\circ} \mathrm{C}, 45 \mathrm{~min}, 73 \%$.
reflux for 4 h . The warm solution was poured onto ice and allowed to stand overnight at room temperature. Ammonium hydroxide was added to neutralise the solution and 17 g of a green solid collected. Purification by chromatography on silica (eluent dichloromethane/ methanol, 9/1), followed by conversion to the fumarate salt and crystallisation from methanol-ether afforded 3.38 g (12.3% yield) of 4 fumarate salt. ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 7.75(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz})$, 6.87-6.60 (m, 3H), $6.60(\mathrm{~s}, 2 \mathrm{H}$, fumaric acid), $6.10(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}$), 4.50-5.70 (broad peak, 4H), 3.70-3.50 $(\mathrm{m}, 1 \mathrm{H}), 3.45-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 2 \mathrm{H})$. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 65.24; H, 5.95; N, 9.92. Found C, 65.22; H, 6.08; N, 9.83. IR $0.5 \% \mathrm{KBr}$ disc $3300-3500 \mathrm{~cm}^{-1}$ (two peaks, NH stretch), $1670 \mathrm{~cm}^{-1}$ (carbonyl), $1615 \mathrm{~cm}^{-1}$ and $1492 \mathrm{~cm}^{-1}$ (Ar-H). Melting point $=197^{\circ} \mathrm{C}$.

4- Amino - 5,13-diaza - 13-methyl-bicyclo[3.3.1]nonan-[6,7,8-k,l]acridine 7. 11-(1,2,5,6-Tetrahydro-1-methyl-4-pyridinyl)-5-methyl- 5 H -dibenzo $[b, e][1,4]$ diazepine $\mathbf{6}$ $(0.5 \mathrm{~g}, 1.65 \mathrm{mmol})$ was treated with conc. HBr as described above. After chromatography 150 mg of a red gum was isolated (21% yield). ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.22(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz})$, 7.71 (dd, $1 \mathrm{H}, J=8.6,1.5 \mathrm{~Hz}), 7.53(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.5$ $\mathrm{Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz})$, 5.10-5.40 (br, 2H), $4.13(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}, 1 \mathrm{H}, J=2.7$ $\mathrm{Hz}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, 2.24-2.17 (m, 1H), 1.89-1.82 (m, 1H), 1.65-1.56 (m, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.6$ (q), 145.1 (q), 143.4 (q), 138.9 (q), $130.6(\mathrm{CH}), 128.9(\mathrm{CH}), 126.5$ $(\mathrm{CH}), 125.7(\mathrm{CH}), 125.3(\mathrm{q}), 123.5(\mathrm{q}), 123.0(\mathrm{CH})$, 117.6 (q), $106.8(\mathrm{CH}), 58.4(\mathrm{NCH}), 46.3\left(\mathrm{NCH}_{2}\right), 42.5$ $\left(\mathrm{NCH}_{3}\right), 33.1\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right), 28.2(\mathrm{CH}) . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3}$, EI GC-MS $289\left(\mathrm{M}^{+}\right)$.

Scheme 2. Mechanism of rearrangement of 1. Conditions: conc. HBr, reflux, $4 \mathrm{~h}, 20 \%$.

Scheme 4. Proposed mechanism for the rearrangement of 6.

Acknowledgements

We are grateful to Dr. C. W. Funke of the Analytical R\&D Department, Organon, Oss, The Netherlands and the Analytical Chemistry Department, Organon Laboratories Ltd, Newhouse, Lanarkshire ML1 5SH, UK for all analytical data.

References

1. Cairns, J.; Gibson, S. G.; Rae, D. R. Tetrahydropyridyl substituted tricyclic derivatives with dopamine antagonist activity; Eur. Pat. 0468562.
2. Martin, A. R.; Paradkar, V. M.; Peng, G. W.; Speth, R. C.; Yamamura, H. I.; Horn, A. S. J. Med. Chem. 1980, 23, 865-873.
3. (a) Smith, P.; Brown, B.; Putney, R.; Reinish, R. J. Am. Chem. Soc. 1953, 75, 6335; (b) Alberti, A.; Carloni, P.; Greci, L.; Stipa, P.; Andruzzi, R. J. Chem. Soc., Perkin Trans. 2 1991, 7, 1019-1023.
4. Allais, A.; Guillaume, J.; Poittevin, A.; Nedelec, I.; Chif-
flot, L. Eur. J. Med. Chem. Chim. Ther. 1982, 7, 371-382.
5. Data for 11-pyridin-3-yl- $5 H$-dibenzo $[b, e][1,4]$ diazepine 3: ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}): $\delta 8.85(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}$), $8.65(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz})$, $7.85(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{t}, 1 \mathrm{H}, J=8$ $\mathrm{Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 6.33(\mathrm{~s}$, 2 H).
6. Data for 11-(1,2,5,6-tetrahydro-1-methyl-3-pyridinyl)-5-methyl-5 H -dibenzo $[b, e][1,4]$ diazepine maleate salt $1 \mathbf{1 a}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $7.45(\mathrm{t}, 1 \mathrm{H}, J=7 \mathrm{~Hz}$), $7.02-$ $7.24(\mathrm{~m}, 7 \mathrm{H}), 6.32(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~d}, 1 \mathrm{H}$, $J=12 \mathrm{~Hz}), 4.16(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.51-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.20$ $(\mathrm{s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 2 \mathrm{H})$.
7. Data for 3,9 -dimethyl-1,2,3,4,4a,14c-hexahydro-3,10,14b-triaza-benzo[4,5]cyclohepta[1,2,3-de]anthracene-5-one (2:3) oxalate salt 5: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): 7.95 (d, $1 \mathrm{H}, \mathrm{ArH}, J=7 \mathrm{~Hz}), 7.79$ (d, 1H, ArH, $J=7 \mathrm{~Hz}$), 7.35 (d, $1 \mathrm{H}, \mathrm{ArH}, J=8 \mathrm{~Hz}) 7.23(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}, J=8 \mathrm{~Hz}) 7.08-7.18$ (m, 3H, ArH), 4.45 (m, 1H, CHN), $3.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCO}$ and 1 H of adjacent $\mathrm{CH}_{2} \mathrm{NMe}$), 3.16 (d, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NMe}$, $J=10 \mathrm{~Hz}), 3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$ adjacent to CHCO$), 2.85$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}\right), 2.50(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. Melting point $=170^{\circ} \mathrm{C}$.

[^0]: * Corresponding author.
 ${ }^{\dagger}$ Deceased.

