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Thermolysis of 2-(3-phenylsulfonylprop-1-ynyl)benzonitrile:
an aza-Myers type cyclization to isoquinolines
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Thermolysis of 2-(3-phenylsulfonylprop-1-ynyl)benzo-
nitrile (3) in refluxing benzene containing cyclohexa-1,4-
diene and triethylamine gave isoquinolone 4 in 7% yield and
compound 5 in 10% yield and 14% of the starting material
was recovered. When this cyclization reaction was carried
out under oxygen atmosphere, compound 4 was isolated in
14% yield and 20% of the starting benzonitrile 3 was re-
covered. Under refluxing carbon tetrachloride, cyclization
of 3 gave the chloroisoquinoline 6 in 18% yield and 5 in
22% yield. The isolation of compounds 4 and 6 strongly
suggests the formation of biradical 8 through a (Z)-
hexa-2,4,5-trienenitrile intermediate 7.

The mechanism of the formation of biradicals derived from
enediyne antitumor antibiotics has attracted much attention
due to their DNA-cleaving properties.! In 1972, Jones and
Bergman reported the thermal cyclization of (Z)-hex-3-ene-1,5-
diynes to 1,4-didehydrobenzene diradicals.? This cyclization is
considered to be the major mode of formation of biradical inter-
mediates in enediyne antitumor antibiotics. In studies on the
mechanism of the DNA-cleaving activity of the neocarzinostatin
chromophore, Myers and co-workers reported the cyclization
of (Z)-hepta-1,2,4-trien-6-ynes to a,3-didehydrotoluene.’
Several potent DNA-cleaving agents have been developed based
on Myers cyclization.** A similar cyclization occurs in the
thermolysis of alkynylcyclobuten-4-one in which a biradical
containing aryl and phenoxyl radical centers is produced via an
enyne-ketene, as described by Moore and Yerxa.® An alternative
pathway to enyne-ketenes was reported by Saito and co-
workers, which involved the photochemical Wolff rearrange-
ment of enynyl o-diazo ketones.” Recently, efforts have been
made to cycloaromatize a conjugated system involving hetero-
atoms.® Among these studies, there are two reports that describe
the cyclization of (Z)-hexa-2,4,5-trienenitrile systems. One
failed to obtain the cyclization product and the other obtained
aniline adducts through an unusual stabilized allylic radical
addition to nitrile.® In this communication, we report the
first successful example to isolate isoquinoline derivatives by
thermolysis of 2-(3-phenylsulfonylprop-1-ynyl)benzonitrile (3)
under alkaline conditions.

The synthesis 2-(3-phenylsulfonylprop-1-ynyl)benzonitrile
(3) is outlined in Scheme 1. 2-Iodobenzonitrile (1) was directly

SPh SO.Ph

s e
ii
CN CN CN
1 2 3

Scheme 1  Reagents and conditions: i) HC=CCH,SPh, Pd(PPh,),, Et,0,
Cul, BuNH,, 46%; ii) MCPBA, CH,Cl,, 76%.

coupled to propargyl phenyl sulfide using tetrakis(triphenyl-
phosphine)palladium(0) as the catalyst in the presence of
cuprous iodode and r-butylamine, to give 2-(3-phenylthioprop-
1-ynyl)benzonitrile (2) in 46% yield. Oxidation of sulfide 2 with
3 equivalents of MCPBA gave compound 3 in 76% yield.

When a benzene solution of 3 (0.01 M), containing cyclo-
hexa-1,4-diene (1.5 M) and Et;N (3 equiv.), was heated to reflux
for 2.5 days, isoquinolone 4 was obtained in 7% yield and com-
pound 5 was produced in 10% yield after preparative-scale thin
layer chromatography. 14% of the starting nitrile 3 is recovered
(Scheme 2)."* When compound 3 was stirred in refluxing carbon
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Scheme 2 Reagents and conditions: i cyclohexa-1,4-diene, benzene,
Et;N, reflux, 2.5 days, 4 (7%) and 5 (10%). ii)) CCl,, reflux, 2 days, 6
(18%) and 5 (20%).

tetrachloride in the presence of Et;N for two days, the 1-
chloroisoquinoline 6 was isolated in 18% yield along with
compound 5 in 22% yield. The structure of compound 5
was unambiguously determined by X-ray crystallography. The
isolation of compounds 4 and 6 strongly suggests the biradical
intermediate 8 is the intermediate of this cyclization reaction.
A rational explanation for the formation of compounds 4 and
6 is proposed (Scheme 3). Base-catalyzed isomerization of
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propargyl sulfone 3 gives allenyl sulfone 7 which is not isolable
and subsequently undergoes a Myers-type cyclization to pro-
duce the biradical intermediate 8. Trapping the c-radical of 8
with molecular oxygen and the o-radical with cyclohexadiene
gives compound 4. On the other hand, trapping the o-radical
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of 8 with carbon tetrachloride and hydrogen abstraction by the
a-radical possibly from triethylamine leads to 6. In order to
examine our hypothesis for the formation of compound 4, a
control experiment was carried out; treatment of 3 with Et;N
under refluxing benzene and cyclohexa-1,4-diene under oxygen
atmosphere for 24 h. Compound 4 was isolated in 14% yield
and 20% of the starting nitrile 3 was recovered. The increased
amount of compound 4 isolated under these conditions
supports our hypothesis. The mechanism for the formation
of compound 5 is not clear at this stage. A possible pathway
is proposed. In the base-catalyzed isomerization of propargyl
sulfone to allenyl sulfone, a small amount of phenyl sulfonyl
anion was produced via an E; mechanism. The phenyl sulfonyl
anion then added to the allenyl sulfone 7 via a 1,4-addition
to give compound 5.

In conclusion, we have demonstrated the first successful
example of thermal cyclization of the (Z)-hexa-2,4,5-tri-
enenitrile system to form isoquinoline derivatives and proved
that this cyclization involved a diradical intermediate. The
discovery of this new method of biradical formation provides
a valuable source for theoretical study of enediyne related
systems and an opportunity to design new DNA-cleaving anti-
tumor agents.
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