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Biological microenvironment plays a momentous role in the regulation of various vital activities, and its
abnormal changes are often closely related to some diseases. Viscosity, as an indispensable part of
microenvironment parameters, has always been one of the research hotspots of investigators. Herein,
we constructed a new red-emitting fluorescent probe (HVM) to identify the abnormal situation of mito-
chondria through viscosity changes in the biological microenvironment. Interestingly, HVM has excellent
optical properties such as large stokes shift (160 nm), viscosity sensitivity (195-fold), high photostability,
and biochemical properties with low cytotoxicity and excellent biocompatibility. For these reasons, the
novel probe could successfully be used to identify the normal and inflammatory models via viscosity
changes in biological experiments. Therefore, we provided a convenient synthetic route to obtain viscos-
ity sensor HVM with excellent application properties.

� 2021 Published by Elsevier B.V.
1. Introduction

Cell viscosity, an important microenvironment parameter, is a
significant factor affecting macromolecular interaction, chemical
signal transmission and active metabolite diffusion in living cells
[1–5]. Abnormal changes of viscosity associated with dysfunction
and clinical symptoms, including diabetes, hypertension,
atherosclerosis, cancer and so on [6–9]. Therefore, monitoring cell
viscosity is become an effective means to distinguish normal cells
from inflammatory cells. As a kind of semi-autonomous organelle,
mitochondria play an indispensable role in multitudinous life
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activities. The disorder of mitochondrial function will lead to the
change of mitochondrial matrix composition, resulting to the
change of its viscosity [10–15]. Therefore, it is crucial to develop
an effective strategy for monitoring the mitochondrial viscosity
to better understand various physiological activities and functions
in cells.

The current intracellular viscosity senser is still a hot point in
academic student, particularly in biochemical field. Several tradi-
tional analytical methods are developed to detect viscosity, such
as chemiluminescence, capillary electrophoresis, spectrophotome-
try, and electrochemical. However, the above methods cannot be
applied for viscosity measurement of biological systems in situ
although they have wally universality for macro fluid detection.
Till now, small-molecule fluorescent probes transmute the main-
stream tool for detecting the viscosity in biological and pathology
due to their high sensitivity, nondestructive detection, real-time
imaging, and so on [16–21]. Additionally, near-infrared (NIR) fluo-
rescent dyes are becoming effective means to monitor the level of
biological indicators in cells and organisms due to its low back-
ground, high penetration depth and other advantages [22–27].
Recently, several fluorescent probes for monitoring endocellular
viscosity changes have been reported (Table S3, ESI) [28–34].
Undeniably, most of them have excellent optical and biological
properties but complex structure and difficult to be synthesized
[35,36]. Therefore, a new simple and easy-to-do design idea of
red emitting fluorescent probe is proposed in this paper, which
seems to be a decent point.

We herein synthesized a new near-infrared fluorescent probe
(HVM) by using 4-Dimethylaminobenzaldehyde and modified
quinoline as a donor and an acceptor respectively, to distinguish
normal and inflammatory models by viscosity variation with min-
imal background fluorescence and immense response multiples
(Scheme 1). HVM hold an emission maximum at 670 nm and large
stokes shift (160 nm). In addition, the biological imaging experi-
ments result confirmed the ability of HVM was not only possesses
mitochondrial targeting capability, but also has excellent mem-
brane permeability, and can high-speed enter mitochondria in a
short space of time. Thus, by way of the probe HVM, detected vis-
cosity anomalous in living cells, zebrafish and mice, based on the
low background fluorescence, good biocompatibility and high sen-
sitivity of the probe. Besides, the probe HVM constructed in this
work was potential to portray the curve of micro viscosity config-
uration in vivo.
2. Experimental section

2.1. Apparatus and chemicals

Unless otherwise mentioned, the reagents and drugs used in
this paper are purchased. In addition, details of the instruments
used were reviewed in the supporting literature.
Scheme 1. The design strategy o

2

2.2. Synthesis of the trans-form of HVM and IVM

HVM ((E)-4-(4-(dimethylamino)styryl)-1-ethylquinolin-1-ium
iodide) and IVM ((E)-4-(4-(diphenylamino)styryl)-1-ethylquino
lin-1-ium iodide) were synthesized according to the methods used
in previous studies [37,38]. Compounds 1 (296 mg, 1 mmol), 4-
Dimethylaminobenzaldehyde (149 mg, 1 mmol) or 4-(N, N-
Diphenylamino) benzaldehyde (273 mg, 1 mmol) were dissolved
in 8 mL alcohol with two drops of piperidine. The mixture was kept
stirring vigorously for 12 h at ambient temperature, and then the
solvent of the reaction mixture was removed under pressure. The
crude product was purified by silica column chromatography to
obtain the desired product.

HVM (258 mg, yield 60%). 1H NMR (500 MHz, DMSO d6) d 9.17
(d, J = 5.9 Hz, 1H), 9.02 (d, J = 8.1 Hz, 1H), 8.43(d, J = 8.5 Hz, 1H),8.36
(d, J = 5.9 Hz, 2H), 8.20–8.16 (m, 2H), 8.04–7.92 (m, 2H), 7.86(d,
J = 7.9 Hz, 2H), 6.80 (d, J = 7.9 Hz, 2H), 4.92 (d, J = 6.5 Hz, 3H),
3.06(s, 6H), 13C NMR (126 MHz, DMSO d6) d 153.69, 146.26,
145.32, 138.10, 135.20, 131.86, 129.00, 127.20, 126.55, 123.5,
119.17, 114.76, 113.57, 112.33, 51.86, 40.57, 40.54, 40.37, 40.20,
40.03. HRMS(m/z): [M]+ calcd for C21H23N2

+:303.1861; found,
303.1857.

IVM (221 mg, yield 40%). 1H NMR (500 MHz, DMSO d6) d 9.32(d,
J = 6.6 Hz, 1H), 9.06–8.98 (m, 1H), 8.52 (d, J = 8.9 Hz, 1H), 8.47 (d,
J = 6.7 Hz, 1H), 8.26–8.21 (m, 1H), 8.16 (d, J = 3.3 Hz), 8.03–7.99 (m,
1H), 7.90(d, J = 8.8 Hz, 2H), 7.44–7.37 (m, 4H), 7.21–7.12 (m, 6H),
6.97 (d, J = 8.8 Hz, 2H), 3.34 (s, 3H). 13C NMR (126 MHz, DMSO d6)
d 153.35, 150.29, 147.20, 146.56, 143.54, 138.13, 135.48, 131.07,
130.34, 129.39, 128.88, 127.20, 126.97, 125.96, 125.13, 120.90,
119.44, 117.35, 116.17, 40.71, 40.01, 39.78, 39.61, 39.51. HRMS
(m/z): [M]+ calcd for C31H27N2

+:427.2174; found, 427.2160.

3. Results and discussion

3.1. Design and synthesis of HVM and IVM

The excogitation of viscosity probes is usually including two key
factors: molecular rotor and push–pull electronic structure. Quino-
line derivatives are attracted much attention in recent years
because of their wide range of biological activities, excellent pho-
tophysical properties, and significant effect in organic synthesis
and therapeutic chemistry [39,40]. Thus, Quinoline derivatives
with the ability to target mitochondria were selected as receptor
of probe. Besides, we presumed that increasing the molecular rotor
might change the fluorescence properties of the fluorophores.
Based on this idea, we utilized two similar structure moieties, 4-
(Dimethylamino) benzaldehyde and 4-(N, N-Diphenylamino) ben-
zaldehyde (Scheme 2), to structure different viscosity probes HVM
and IVM, and discuss the trend of its fluorescence intensity with
the quantity of molecular rotors. When the probe was in non-
viscosity or low viscosity environment, the molecular rotates
rotors freely around the single bond, resulting the probe inter-
molecular energy nonradiative (Scheme 1). With the increase of
viscosity, the rotation of molecules was limited, which turned on
f HVM response to viscosity.



Scheme 2. Synthesis of the trans-form of HVM and IVM.
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the red fluorescence signal. The structures of HVM and IVM were
ample characterized by 1H and 13C NMR spectroscopy and HRMS
(high resolution mass spectrometer) (Fig. S6-S10).

3.2. Optical properties of HVM and IVM

Primarily, the optical responded capability of HVM and IVM to
the viscosity was evaluated by absorption and fluorescence spectra
in PBS solution-glycerol system. From the ultraviolet absorption
spectra, we found that the maximum absorption peaks of HVM
and IVM were red shifted about 40 nm (510–550 nm) and 30 nm
(500–530 nm) from PBS buffer solution to glycerol system, respec-
tively (Fig. 1a, 1d). Compared with HVM, the absorption peak of
IVM with two benzene rings in the aniline part blue-shifted
slightly. This phenomenon may be caused by the increase of the
number of molecular rotors, which makes the conjugation system
of the probe relatively weak. Furthermore, the fluorescence spectra
of HVM and IVM were measured by adjusting PBS solution and
glycerol system with different viscosity gradients under the same
parameters. It was found that the fluorescence intensity increased
with the increase of viscosity (Fig. 1b, 1e). In addition, the results
show that the fluorescence enhancement of HVM was about 195-
Fig. 1. (a, d) Absorption of probe HVM (a) and IVM (d) (10 lM) in glycerol solution (black
(b) and IVM (kex = 500 nm) (e) in PBS–glycerol solution with different viscosities (1.5–10
(I670nm) versus lg (g) of HVM (c) and IVM (f).
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fold, significantly higher than that of IVM (147-fold) under the
same condition. Similar to the above results, the linear relationship
of HVM was also superior to that of IVM(Fig. 1c, 1f). At the same
time, the fluorescence quantum yields of the two compounds were
calculated, and the results showed that the fluorescence quantum
yields of HVM (174-fold) were also significantly enhanced than
that of IVM (75-fold) (Table. S2 ESI). These experimental results
showed that HVM had better optical properties and viscosity
response compared with IVM, so HVM was selected for further
researches.

Afterwards, the selectivity of probe HVM to various related spe-
cies in organism was detected. Metal ions, anions and active small
molecules were used as typical species to verify the selectivity of
HVM in complex biological microenvironment (Fig. 2a, Table. S3,
ESI). All the interference species (1 mM) that could be considered
induce almost negligible fluorescence changes in PBS buffer solu-
tion. This further indicated that HVM could be used to detect intra-
cellular viscosity. In order to further study the biological
application ability of the probe, we simulated the viscosity
microenvironment of mitochondria in vivo and detected the fluo-
rescence intensity of HVM in the presence of different interfering
ions (Fig. 3a). As we expected, HVMwas barely affected by the nec-
essary species for regulating life activities. This was consistent with
the previous selectivity results, indicated that the probe had classy
anti-interference ability and suitable for monitoring mitochondrial
viscosity.

Specificity and stability of probes were basic and key for biolog-
ical applications, which were particularly important in viscosity
detection. Before that, we first studied the effect of different sol-
vents on the probe, and the results showed that there was a weak
fluorescence signal in different solvents of HVM compared with
glycerol. It was also drawing a conclusion that the solvent had little
effect on the fluorescence emission of probe HVM (Fig. S2a, S2b,
ESI). In addition, the effect of pH on HVM was investigated in
PBS solution and 50% glycerol solution (PBS: glycerol = 1:1) of dif-
ferent pH (Fig. 2b). The results showed that the fluorescence inten-
sity of the probe changed little in the two different systems in the
pH range of 4.01 ~ 10.07. Furthermore, we explored the excellent
optical properties of HVM by evaluating its photobleaching resis-
tance (Fig. 3b). The results showed that the fluorescence intensity
line) and PBS solution (red line); (b, e) Fluorescence changes of HVM (kex = 510 nm)
99.5 cP), Excitation Slit: 20.0 nm, Emission Slit: 20.0 nm; (c, f) Curve plotted with lg



Fig. 2. (a) The fluorescence intensity of HVM (10 lM) in glycerol or in PBS solution with the various anions (1 mM). (b) The fluorescence intensity of HVM (10 lM) treated
with various species (1 mM) in mixtures of glycerol and PBS at different ratios: blank; Ca2+; Cu2+; Fe2+; K+; Mg2+; Na+; Zn2+; SCN-; OCl-; H2O2; Cys; Hcy; GSH; glucose. kex/
em = 510/670 nm, Excitation Slit: 20.0 nm, Emission Slit: 20.0 nm.
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of HVM probe remained unchanged with the increase of illumina-
tion time (60 min) in several commonly used solvents, which indi-
cated thatHVM had excellent photobleaching boycott. Through the
above experiments, HVM had Excellent pH reliability and optical
stability, and these experimental data provided the basis for fur-
ther research.
3.3. Fluorescence imaging in living cells

Before the biological application experiment, we first analyzed
the biological toxicity of HVM as a pre-index to the HeLa cells by
MTT assays (Fig. S5, ESI). The results showed that the survival rate
of HeLa cells was 85% at the probe concentration reached 50 mM.
This indicated that HVM had negligible cytotoxicity, and it could
be used in the future biological scientific study. Moreover, it was
necessary to evaluated the cellular localization and potential appli-
cation capacity of HVM. We observed the staining of cells under
confocal microscope, and the HVM probe could penetrate into cells
in a short incubation period (1 min) and showed the strongly flu-
orescence signal. To verify the ability to target mitochondria of
HVM, the cells were stained HVM (10 mM) and Mitochondrial Deep
Red FM (500 nM) together (Fig. 4a and 4b). The combined image
showed that red fluorescence and purple fluorescence overlaps
well (Fig. 4c). Then the probe with a high Pearson’s correlation of
0.92 was confirmed by the intensity scatter plot and the intensity
profile of the two channels (Fig. 4d, 4e). Hence, colocalization
results showed that HVM primarily assembled in the
mitochondria.

To validate that HVM was sensitive to abnormal change viscos-
ity, fluorescence images of HeLa cells were obtained in the pres-
Fig. 3. (a) The fluorescence intensity of HVM (10 lM) in PBS (red) or in glycerol: PBS = 1:1
and EtOH with continuous irradiation for 60 min. kex/em = 510/670 nm, Excitation Slit: 2
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ence ionophores of monensin (Mon) and nystatin (Ny) [41,42]. As
stimulants of cell state, Mon and Ny can induce the change or
expansion of mitochondrial structure, bringing about mitochon-
drial viscosity increase. To eliminate the interference of Mon and
Ny, the fluorescence spectra of ionophores were determined before
cell imaging (Fig. S3, ESI). The results showed that the fluorescence
intensity of HVM remained unchanged with around stimulus
imputed, indicated that HVM could be effectively applied to mon-
itor cell viscosity and related in vivo studies. To evaluate the effec-
tiveness of HVM in intracellular viscosity imaging, we obtained
confocal images of HeLa cells loaded with HVM probe after treating
two kinds of ionophores. From the Fig. 5a1-a3, the cells treated
with HVMmerely showed weak red fluorescence. In contrast, HeLa
cells treated with Mon (Fig. 5b1-b3) or Ny (Fig. 5c1-c3) showed
exceedingly shining red fluorescence. Meanwhile, this result can
be observed more intuitively by image quantization, and the fluo-
rescence intensity increases about 3–4 times before and after cell
stimulation (Fig. 5d). Therefore, this experiment showed that
HVM had a classy effect for the monitoring of cell viscosity
changes.
3.4. Monitoring viscosity in zebrafish

Wehavecertificated that theprobeHVM canvisualize thechange
of cell viscosity, therefore, HVM viscosity imaging in zebrafish was
further studied. In the initial study, we incubated zebrafish for
30minwithHVM (Fig. 6a1-a3), and theweak redfluorescence signal
could be observed. After that, the viscosity of zebrafish was
increased by drug stimulation (Mon and Ny), and incubated with
HVM for the same time. Compared with simplex probe handle, the
(black) at different pH. (b) The photostability of HVM in glycerol, PBS, water, MeOH
0.0 nm, Emission Slit: 20.0 nm.



Fig. 4. Co-stained fluorescence images of HVM in HeLa cells. The cells were stained with (a) Mito-targeting Deep Red and (b) HVM. Mito-targeting Deep Red: kex = 644 nm,
kem = 655–675 nm; HVM: kex = 510 nm, kem = 640–700 nm. (c) Merged image of (a) and (b). (d) Intensity scatter plots of the probe HVM across the cells in the red and purple
channels. (e) Intensity profile of the two channels.
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fluorescence signal intensity of zebrafishwas significantly enhanced
after drug treatment (Fig. 6b1-b3 and c1-c3). Similarly, data of com-
parison showed that the fluorescence intensity ascend by 2–3 times
(Fig. 6d). Significantly, theaboveexperimental resultswerebasically
consistent with the cells imaging experiment, and the sterling bio-
logical properties of the probe prompted us to further study.

3.5. Fluorescence imaging in normal and inflammation living mice
models

Based on the ideal results obtained, we further explored its
fluorescent map by constructing inflammation models compared
Fig. 5. (a1–a3) Fluorescence imaging in HeLa cells cultured with 5 lM HVM. (b1–b3) Flu
HVM for an additional 10 min. (c1–c3) Fluorescence imaging in HeLa cells cultured with
fluorescence intensity of HeLa cells. kex = 510 nm, kem = 640–700 nm.
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with normal mice. Lipopolysaccharide (LPS), Mon and Ny were
injected into different mice to construct multiple disease models
[43]. After that, HVM was added to normal mice and inflamma-
tory mice for imaging experiment (Fig. 7a-d). Obvious change of
fluorescence signal could be observed, and the fluorescence
intensity of mice with inflammation model was significantly
higher than normal mice. These results were consistent with
the cell level and zebrafish imaging, indicated the probe HVM
can distinguish the abnormal changes of viscosity in vivo. In a
few words, the probe HVM not only detected the viscosity but
also furnished a concise tactic for diagnoses of viscosity-related
diseases.
orescence imaging in HeLa cells cultured with 5 lM Monensin for 30 min and 5 lM
5 lM Nystatin for 30 min and 5 lM HVM for an additional 10 min. (d) Normalized



Fig. 6. (a1–a3) Fluorescence imaging in zebrafish cultured with 5 lM HVM. (b1–b3) Fluorescence imaging in zebrafish cultured with 5 lM Monensin for 30 min and 5 lM
HVM for an additional 30 min. (c1–c3) Fluorescence imaging in zebrafish cultured with 5 lM Nystatin for 30 min and 5 lM HVM for an additional 30 min. (d) Normalized
fluorescence intensity of HeLa cells. Conditions: kex = 510 nm, kem = 640–700 nm.
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4. Conclusion

In summary, we have proposed a novel NIR fluorescent probe
HVM with a small-molecule weight of mitochondrial-trackable to
discriminate normal and inflammatory models. HVM displayed
high stability, specific selectivity, ultrahigh sensitivity, low cyto-
toxicity and beneficial biocompatibility. We employed it to image
the viscosity of mitochondria in living HeLa cells. The results
showed that compared with untreated cells, the viscosity of mito-
chondria increased significantly after drug stimulation. Besides,
based on the excellent properties of the probe, HVM was proven
Fig. 7. Fluorescence imaging of normal living mice (a), mice induced with LPS (b), mone
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to further monitor the increased viscosity in zebrafish and mice.
These findings indicated that this simple near-infrared fluorescent
probe provides a powerful tool for studying the relationship
between disease and viscosity in the realms of biology and
medicine.
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