The synthesis and catalytic properties of imidazolinium salts and their palladium(II) complexes

Beyhan Yiğit

Received: 2 November 2011/Accepted: 9 December 2011/Published online: 21 December 2011 © Springer Science+Business Media B.V. 2011

Abstract Three 1,3-dialkylimidazolinium chloride salts and their palladium(II) complexes have been synthesized and characterized by elemental analysis, ¹H NMR, ¹³C NMR and IR spectroscopy. The catalytic activities of the 1,3-dialkylimidazolinium chloride salts and their complexes in the Heck and Suzuki coupling reactions were investigated.

Introduction

The isolation of the first stable *N*-heterocyclic carbenes (NHCs) by Arduengo and their successful use as ancillary ligands for the preparation of various metal complexes initiated an intensive search for new *N*-heterocyclic carbene ligands and their metal complexes [1–6]. The strong electron donating ability of NHC ligands combined with their easily varied steric demands has made them attractive ligands in a variety of metal-catalyzed processes. NHC metal complexes of palladium, ruthenium, rhodium, platinum and nickel have been shown to act as effective pre-catalysts in many C–C and C–N arylation, olefin metathesis, hydrogenation and hydrosilylation reactions [7–15]. Among these systems, the palladium-catalyzed Heck and Suzuki reactions are perhaps the most widespread and successful applications of carbene

B. Yiğit (🖂)

complexes. These reactions have been used extensively for the synthesis of a range of useful stilbene and biaryl derivatives [16–23]. Palladium(II) carbene complexes can be easily prepared by the reaction of palladium(II) acetate with two equivalents of a suitable azolium salt [24] or the use of silver carbene complexes as carben transfer reagents [25–28]. Generally, silver NHC complexes are prepared by the treatment of silver oxide, silver carbonate or silver acetate with the corresponding azolium salts [29–31].

Palladium complexes with 1,3-di[(R)-1-phenylethyl] imidazolin-2-ylidene ligands were described by Herrmann, who showed that the NHC-palladium complexes were effective as catalysts for Heck, Suzuki and Stille reactions [32, 33]. *N,N'*-dibenzhydrybenzimidazolium-palladium systems have been reported to be suitable for the Suzuki coupling of aryl bromides with arylboronic acid [34]. Palladium complexes with benzimidazolylidene ligands bearing an (*S*)- α -methylbenzyl group on the N atom were reported by Page et al. [35]. Recently, Kündig et al. [36] showed that chiral NHC-palladium complexes are well suited as catalysts for the asymmetric synthesis of fused indolines.

We have previously reported the synthesis of *N*-heterocyclic carbene derivative ligands and their palladium(II) carbene complexes and investigated their catalytic activity in the Heck and Suzuki reactions [37–39]. Herein, we report the synthesis of new imidazoliniums 3a-c (Scheme 1) and their palladium(II) complexes 4a-c (Scheme 2), and their application in Heck and Suzuki cross-coupling using aryl halides.

Experimental

All reactions for the preparation of 1,3-dialkylimidazolinium salts 3a-c and their palladium complexes were carried

Department of Chemistry, Faculty of Science and Art, Adiyaman University, 02040 Adiyaman, Turkey e-mail: byigit@adiyaman.edu.tr

Scheme 1 Synthesis of 1,3-dialkylimidazolinium salts

Scheme 2 Palladium-carbene complexes reported in this work

out under argon using standard Schlenk-type flasks. Heck and Suzuki coupling reactions were carried out in air. All reagents were purchased from Aldrich (Turkey). All ¹H and ¹³C n.m.r. spectra were recorded in CDCl₃ using a Bruker AC300P FT spectrometer operating at 300.13 MHz (¹H) or 75.47 MHz (¹³C). Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hertz. FTIR spectra were recorded as KBr pellets in the range 400-4,000 cm⁻¹ on a Mattson 1000 spectrophotometer (wavenumbers, cm^{-1}). GC spectra were recorded on an Agilent 6890 N GC system by GC-FID with an HP-5 column of 30 m length, 0.32 mm diameter and 0.25 µm film thickness. Melting points were measured in open capillary tubes with an Electrothermal-9200 melting point apparatus and uncorrected. Elemental analyses were performed at Inönü University Research Center.

1,3-Di(1-phenylethyl)imidazolinium chloride, (3a)

To a solution of 1,2-bis(1-phenylethylamino)ethane (2.00 g, 7.46 mmol), CH(OEt)₃ (3 mL, 18.06 mmol) and NH₄Cl (0.40 g, 7.46 mmol) were added, and reaction mixture was heated for 12 h at 110 °C. The white precipitate was filtered off and recrystallized from ethanol.

Yield: 1.90 g, 81%, m.p. 143–145 °C. I.r., $v_{(NCN)}$: 1,644 cm⁻¹. (Found: C, 72.4; H, 7.4; N, 8.9. C₁₉H₂₃N₂Cl calcd.: C, 72.5; H, 7.3; N, 8.9%). ¹H-n.m.r. (CDCl₃): δ 1.77 (d, 6H, J = 6.6 Hz, CH(CH₃)C₆H₅); 5.30 (quart., 2H, J = 6.6 Hz, CH(CH₃)C₆H₅); 5.30 (quart., 2H, J = 6.6 Hz, CH(CH₃)C₆H₅); 3.53 and 3,71 (m, 4H, NCH₂CH₂N); 7.28 and 7.42 (m, 10H, Ar–*H*); 10.65 (s, 1H, NCHN). ¹³C-n.m.r. (CDCl₃): δ 19.1 (CH(CH₃)C₆H₅); 45.5 (NCH₂CH₂N); 57.6 (CH(CH₃)C₆H₅); 127.1; 128.8; 128.9; 129.2; 137.3 and 137.4 (Ar–*C*); 156.8 (NCHN).

1,3-Di[1-(4-methoxyphenyl)ethyl]imidazolinium chloride, (*3b*)

This compound was prepared in the same way as 3a from 1,2-bis[1-(4-methoxyphenyl)ethylamino]ethane (1.91 g, 5.82 mmol), CH(OEt)₃ (3 mL, 18.06 mmol) and NH₄Cl (0.31 g, 5.80 mmol) to give white crystals of 3b.

Yield: 1.61 g, 74%, m.p. 147–150 °C. I.r., $v_{(NCN)}$: 1,639 cm⁻¹. (Found: C, 67.4; H, 7.2; N, 7.4. C₂₁H₂₇N₂O₂Cl calcd.: C, 67.3; H, 7.2; N, 7.5%). ¹H-n.m.r. (CDCl₃): 1.70 (d, 6H, J = 6.9 Hz, CH(CH₃)C₆H₄(OMe)-4); 3.49 and 3,69 (m, 4H, NCH₂CH₂N); 3.77 (s, 6H, CH(CH₃)C₆H₄(OMe)-4); 5.26 (quart., 2H, J = 6.9 Hz, $CH(CH_3)C_6H_4(OMe)-4$); 6.86 and 7.36 (d, 8H, J = 8.1 Hz and J = 7.5 Hz, CH(CH₃)C₆H₄(OMe)-4); δ 10.60 (s, 1H, NCHN). ¹³C-n.m.r. (CDCl₃): δ 19.0 (CH(CH₃)C₆H₄(OMe)-4); 45.2 (NCH₂CH₂N); 55.3 CH(CH₃)C₆H₄(OMe)-4); 57.1 (CH(CH₃) C₆H₄(OMe)-4); 114.0; 114.5; 128.1; 128,5; 129.3; 129.4 and 156.7 (Ar–*C*); 159.8 (NCHN).

1,3-Dibenzhydrylimidazolinium chloride, (3c)

This compound was prepared in the same way as 3a from 1,2-bis(dibenzhydrylamino)ethane (2.00 g, 5.09 mmol), CH(OEt)₃ (3 mL, 18.06 mmol) and NH₄Cl (0.27 g, 5.05 mmol) to give white crystals of 3c.

Yield: 1.92 g, 86%, m.p. 197–198 °C. I.r., $v_{(NCN)}$: 1,631 cm⁻¹. (Found: C, 79.4; H, 6.2; N, 6.4. C₂₉H₂₇N₂Cl calcd.: C, 79.4; H, 6.1; N, 6.4%). ¹H-n.m.r. (CDCl₃): δ 4,07 (s, 4H, NCH₂CH₂N); 6.42 (s, 2H, CH(C₆H₅)₂); 7.10 and 7.41 (m, 20H, Ar–H); 8.24 (s, 1H, NCHN). ¹³C-n.m.r. (CDCl₃): δ 48.7 (NCH₂CH₂N); 66.3 (CH(C₆H₅)₂); 128.4; 128,9; 129.3 and 135.6 (Ar–C); 158.6 (NCHN).

Bis[1,3-di(1-phenylethyl)imidazolin-2ylidene]dichloropalladium(II), (4a)

A stirred DMSO solution (10 mL) of 1,3-di(1-phenylethyl)imidazolinium chloride (0.34 g, 1.08 mmol) and Pd(OAc)₂ (0.12 g, 0.54 mmol) was heated at 60 °C for 3 h and then at 110 °C for a further 2 h. The volatile compounds were removed under vacuum and the precipitate was filtered off, then washed twice with THF. Recrystallization from CH₂Cl₂–Et₂O was carried out. The crystals were washed with diethyl ether (3 × 15 mL) and dried under vacuum.

Yield: 0.32 g, 80%, m.p. 282 °C. I.r., $v_{(NCN)}$: 1,510 cm⁻¹. (Found: C, 62.2; H, 5.9; N, 7.7. C₃₈H₄₄N₄ PdCl₂ calcd.: C, 62.2; H, 6.0; N, 7.6%). ¹H-n.m.r. (CDCl₃): δ 1.77 and 1.85 (m, 12H, CH(CH₃)C₆H₅); 2.84 and 3,43 (m, 8H, NCH₂CH₂N); 6.70 (quart., 4H, J = 6.6 Hz, CH(CH₃)C₆H₅); 7.24 and 7.70 (m, 20H, Ar–H). ¹³C-n.m.r. (CDCl₃): δ 16.52 (CH(CH₃)C₆H₅); 41.8 (NCH₂CH₂N); 56.9 (*C*H(CH₃)C₆H₅); 127.5; 128.0; 128,5; 139.4; 139.5; 139.6; 139.7 and 139.8 (Ar–*C*); 197.7 (*C*_{carbene}).

Bis[1,3-di(1-(4-methoxyphenyl)ethyl)imidazolin-2ylidene]dichloropalladium(II), (4b)

Compound 4b was prepared in a similar way to 4a, from 1,3-di[1-(4-methoxyphenyl)ethyl]imidazolinium chloride (0.40 g, 1.08 mmol) and Pd(OAc)₂ (0.12 g, 0.54 mmol).

Yield: 0.32 g, 71%, m.p. 218 °C. I.r., $v_{(NCN)}$: 1,515 cm⁻¹. (Found: C, 59.1; H, 6.0; N, 6.6. C₄₂H₅₂N₄O₄PdCl₂ calcd.: C, 59.0; H, 6.1; N, 6.5%). ¹H-n.m.r. (CDCl₃): δ 1.73 and 1.81 (m, 12H, CH(CH₃)C₆H₄(OMe)-4); 2.84 and 3,39 (m, 8H, NCH₂CH₂N); 3.78 and 3.82 (m, 12H, CH(CH₃)C₆H₄(OMe)-4); 6.63 and 6.67 (m, 4H, CH(CH₃)C₆H₄(OMe)-4); 6.85 and 7.59 (m, 16H, CH(CH₃)C₆H₄(OMe)-4). ¹³C-n.m.r. (CDCl₃): δ 16.8 (CH(CH₃)C₆H₄(OMe)-4); 42.6 (NCH₂CH₂N); 55.2 CH(CH₃)C₆H₄(OMe)-4); 56.3 (CH(CH₃)C₆H₄(OMe)-4); 113.7; 129.1; 131.7; 131.8; 131.9 and 158.9 (Ar–C); 197.2 (C_{carbene}).

Bis(1,3-dibenzhydrylimidazolin-2ylidene)dichloropalladium(II), (4c)

Compound 4c was prepared in a similar way to 4a, from 1,3dibenzhydrylimidazolinium chloride (0.47 g, 1.08 mmol) and Pd(OAc)₂ (0.12 g, 0.54 mmol).

Yield: 0.44 g, 84%, m.p. 306 °C. I.r., $v_{(NCN)}$: 1,504 cm⁻¹. (Found: C, 71.0; H, 5.4; N, 5.8. C₅₈H₅₂N₄ PdCl₂ calcd.: C, 70.9; H, 5.3; N, 5.7%). ¹H-n.m.r. (CDCl₃): δ 3,29 (s, 8H, NCH₂CH₂N); 7.21 and 7.30 (m, 40H, Ar–*H*); 7.60 (s, 4H, CH(C₆H₅)₂). ¹³C-n.m.r. (CDCl₃): δ 45.1 (NCH₂CH₂N); 65.6 (CH(C₆H₅)₂); 127.3; 128,1; 128.4; 129.0; 129.4 and 138.5 (Ar–*C*); 201.6 (C_{carbene}).

General procedure for the Heck-type coupling reactions

Pd(OAc)₂ (1.0 mmol %), salts 3a-c (2.0 mmol %) or 4a-c (1.5 mmol %), aryl bromide (1.0 mmol), styrene (1.5 mmol), Cs₂CO₃ (2.0 mmol) and dioxane (3 mL) were placed in a Schlenk tube under argon, and mixture was heated at 80 °C for 8 h. At the conclusion of the reaction, the mixture was cooled, extracted with Et₂O, filtered through a pad of silica gel with copious washings, concentrated and purified by flash chromatography on silica gel. Purity of compounds was checked by NMR and GC. The yields are based on aryl bromide.

General procedure for the Suzuki-type coupling reactions

Pd(OAc)₂ (1.0 mmol %), salts 3a-c (2.0 mmol %) or 4a-c (1.5 mmol %), aryl chloride (1.0 mmol), phenylboronic

acid (1.5 mmol), Cs_2CO_3 (2.0 mmol) and water (3 mL)-DMF (3 mL) were placed in a Schlenk tube under argon, and the mixture was heated at 80 °C for 5 h. At the conclusion of the reaction, the mixture was cooled, extracted with Et₂O, filtered through a pad of silica gel with copious washings, concentrated and purified by flash chromatography on silica gel. Purity of the compounds was checked by NMR and GC. The yields are based on aryl chloride.

Results and discussion

Saturated imidazolinium salts can be obtained by alkylation of dihydroimidazole and by cyclization reactions of N,N'-dialkyl-1,2-diaminoethane dihydro halides with triethyl orthoformate [40, 41]. The general route for the preparation of 1,3-dialkylimidazolinium salts is shown in Scheme 1. The condensation of 1,2-diaminoethane with ketones gave the corresponding imines 1 in high yields. Reduction of these imines with NaBH₄ in methanol leads to N,N'-dialkylethane-1,2-diamines 2. The symmetrical 1,3-dialkylimidazolinium salts 3 were easily synthesized in high yields by reaction of 2 with triethyl orthoformate and ammonium chloride. After purification, the 1,3-dialkylimidazolinium salts 3a-c were obtained in good yields (74-86%). The salts are soluble in the common polar solvents such as ethanol and dichloromethane and are stable under air and in the presence of moisture. The structures of 3 were deduced from their spectroscopic data and elemental analyses (see Experimental section). The ¹³C n.m.r. spectra of 3a-c show sharp high-field signals at 156.8 ppm (3a), 159.8 ppm (3b) and 158.6 ppm (3c) for the imino carbon. The ¹H n.m.r. spectra of the imidazolinium salts further supported the assigned structures. The C(2)-H resonances were observed as sharp singlets at δ 10.65, 10.60 and 8.24 ppm for 3a-c, respectively. The IR data for 3a-c clearly indicate the presence of the -C=N- group with a $v_{(C=N)}$ vibration at 1,644, 1,639 and 1,631 cm⁻¹ for 3a-c, respectively. These NMR and IR values are similar to those reported for other 1,3-dialkylimidazolinium salts [42].

The palladium complexes 4a-c were prepared by reaction of the 1,3-dialkylimidazolinium chlorides with Pd(OAc)₂ in DMSO (Scheme 2). The complexes were characterized by ¹H and ¹³C n.m.r. spectroscopy, FTIR and elemental analysis. They show a characteristic $v_{(NCN)}$ band at 1,510, 1,515 and 1,504 cm⁻¹ for 4a, 4b and 4c, respectively. In the ¹H n.m.r. and ¹³C n.m.r. spectra, the absence of signals for the acidic proton (2-*CH*) at 10.65, 10.60, 8.24 ppm and imidazolinium carbon (2-*CH*) at 156.8, 159.8, 158.6 ppm showed the formation of the expected palladium complexes. The ¹³C n.m.r. chemical shifts, which provide a useful diagnostic tool for metal carbene complexes, show that $C_{carbene}$ is substantially deshielded. The values of δ (¹³ $C_{carbene}$) are 197.7, 197.2 and 201.6 ppm for 4a, 4b and 4c, respectively, and are similar to those found in other carbene complexes. These new complexes show typical spectroscopic signatures, which are in line with those recently reported for *trans*-[PdCl₂(NHC)₂] complexes [43–46].

The Pd-catalyzed Heck reaction between aryl halides and alkenes is a very useful method to prepare styrene derivatives. The Heck coupling reactions of styrene with aryl bromides to form alkenes were undertaken with $Pd(OAc)_2/3a-c$ or the complexes 4a-c as catalysts in the presence of a base in air. The performance of such metal catalyzed cross-coupling reactions depends on a number of factors such as base, solvent, time, temperature, ligands and nature of the catalyst. The choices of base and solvent are usually important in achieving an efficient cross-coupling reaction. For optimization of the reaction conditions, the Pd(OAc)₂-catalyzed cross-coupling of bromobenzene with styrene was employed as a model reaction using ligand 3a at 80 °C, and the commonly used bases Cs₂CO₃, K₂CO₃, K₃PO₄ and *t*-BuOK were tested. The coupling of aryl bromides and styrene was carried out in dioxane (3 mL) with 1 mol % Pd(OAc)₂, 2 mol % 3a-c or 1.5 mol % 4a-c and 2 equivalents of Cs₂CO₃ for 8 h at 80 °C. Reaction of p-bromoacetophenone, p-bromotoluene, pbromobenzaldehyde, p-bromoanisol and bromobenzene with styrene gave high yields (77-99%) using this catalytic system, and the coupling reaction did not occur in the absence of salt or palladium complex. The results are summarized in table 1.

Of the five different aryl bromides, those bearing electron-withdrawing groups react with styrene to give the coupled products in excellent yields (Table 1, entries 2, 8, 13, 21 and 26). The imidazolinium salt bearing a methoxy group on the aromatic ring (3b) was the most effective in catalyzing these reactions. Similarly, the palladium carbene complex (4b) derived from (3b) showed better catalytic activity than the other complexes. Hence, the electron donating *p*-methoxy substituent increased the catalytic activity. As expected, in situ reaction of the azolium salts with palladium led to significantly better results than the use of the preformed palladium complexes. Recently, the Suzuki reactions of aryl chlorides catalyzed by palladium-NHC complexes have been extensively studied and these catalysts are very effective for Suzuki coupling of aryl chlorides in dioxane at 80 °C, with Cs₂CO₃ as base [45–47]. The Suzuki coupling of phenylboronic acid with aryl chlorides to form biaryls was therefore studied with $Pd(OAc)_2/3a-c$ or 4a-c as catalysts. Similar reaction conditions were employed as for the Suzuki reactions, with Cs_2CO_3 as the base. The coupling reactions of aryl chlorides and phenylboronic acid were carried out in DMF/H2O

Table 1 The Heck coupling reaction of aryl bromides with styrene

-Br

____ (

Table 2	The Suzuki	coupling	reaction	of ary	1 chlorides	with phen-
ylboronio	e acid					

			-
Entry	R	Catalyst	Yield (%)
1	COCH ₃	3a	98
2	COCH ₃	3b	99
3	COCH ₃	3c	99
4	COCH ₃	4a	92
5	COCH ₃	4b	95
6	COCH ₃	4c	94
7	CH ₃	3a	85
8	CH ₃	3b	87
9	CH ₃	3c	84
10	CH ₃	4a	79
11	CH ₃	4b	81
12	CH ₃	4c	77
13	СНО	3a	98
14	СНО	3b	97
15	СНО	3c	95
16	СНО	4a	90
17	СНО	4b	93
18	СНО	4c	90
19	OCH ₃	3a	83
20	OCH ₃	3b	85
21	OCH ₃	3c	86
22	OCH ₃	4a	80
23	OCH ₃	4b	84
24	OCH ₃	4c	83
25	Н	3a	93
26	Н	3b	97
27	Н	3c	96
28	Н	4a	89
29	Н	4b	93
30	Н	4c	90

1.0 mmol of p-R-C₆H₄Br, 1.5 mmol of styrene, 2 mmol Cs₂CO₃, 1 mmol % Pd(OAc)₂, 2 mmol % 3a-c or 1.5 mmol % 4a-c, dioxane (3 mL), 80 °C, 8 h; purity of compounds checked by n.m.r., and yields are based on aryl halide; All reactions were monitored by TLC

(3:3 mL) with 1.0 mol % Pd(OAc)₂, 2.0 mol % 3a-c or 1,5 mol % 4a-c and 2 equivalents of Cs₂CO₃ for 5 h at 80 °C. We chose the coupling of 4-chloroacetophenone with phenylboronic acid for these experiments. The results are summarized in Table 2.

These salts proved to be effective catalyst precursors for the coupling of inactivated, activated and deactivated chlorides. These catalysts give similar activities to those of other Pd-NHC complexes [34, 47] or in situ prepared Pd(OAc)₂/NHC systems [42, 48, 49] and are in agreement with other reports [33, 50].

B(OH)₂ R Catalyst Yield (%) Entry 1 COCH₃ 3a 98 2 COCH₃ 3b 97 3 COCH₃ 3c 95 4 COCH₃ 4a 96 5 95 COCH₃ 4b COCH₃ 6 91 4c 7 CH₃ 3a 81 8 CH₃ 3b 84 9 CH₃ 80 3c 10 CH₃ 4a 75 11 CH₃ 4h79 77 12 CH₃ 4c13 CHO 94 3a 14 CHO 3b 96 15 CHO 3c 94 16 CHO 4a 90 17 CHO 4b 93 91 18 CHO 4c 19 3a OCH₃ 83 20 OCH₃ 3b 85 21 OCH₃ 3c 80 22 OCH₃ 74 4a 79 23 OCH₃ 4b 24 OCH₃ 4c 76 25 Н 3a 87 26 Н 3b 91 27 Η 3c 90 28 Η 4a 83 29 Η 4b 86 30 Η 82 4c

1.0 mmol of p-R-C₆H₄Cl, 1.5 mmol of phenylboronic acid, 2 mmol Cs₂CO₃, 1 mmol % Pd(OAc)₂, 2 mmol % 3a-c, or 1.5 mmol % 4a-c, DMF/H₂O (3/3 mL), 80 °C, 5 h; purity of compounds checked by n.m.r. and yields are based on aryl chloride; all reactions were monitored by TLC

Conclusion

In summary, three 1,3-dialkylimidazolinium chloride salts 3a-c and their palladium complexes 4a-c were prepared and their catalytic activities in the Heck and Suzuki coupling reactions were investigated. The in situ catalytic system proved to be more effective than the preformed palladium complex in both the Heck reactions of aryl bromides with styrene and the Suzuki reactions of aryl chlorides with phenylboronic acid. More detailed investigations focusing

on imidazolidin-2-ylidene and benzimidazolin-2-ylidene substituent effects, functional group tolerance and catalytic activities in other coupling reactions are ongoing.

Acknowledgment This research was supported by the Adiyaman University Research Fund (FEFBAP 2009-7).

References

- 1. Arduengo AJ III, Harlow RL, Kline M (1991) J Am Chem Soc 113:361
- 2. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Chem Rev 100:39
- 3. Herrmann WA (2002) Angew Chem Int Ed 41:1290
- 4. Cavell KJ, McGuinness DS (2004) Coord Chem Rev 248:671
- Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, Cesar V (2011) Chem Rev 111:2705
- Diez-Gonzalez S (ed) (2011) N-heterocyclic carbenes: from laboratory curiosites to efficient synthetic tools. The Royal Society of Chemistry, Cambridge, UK
- 7. Hahn FE (2006) Angew Chem Int Ed 45:1348
- Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM (1999) J Org Chem 64:5575
- Hillier AC, Grasa GA, Viciu MS, Lee HM, Yang C, Nolan SP (2002) J Organomet Chem 653:69
- Occhipinti G, Bjorsvik HR, Jensen VR (2006) J Am Chem Soc 128:6952
- 11. Zaph A, Beller M (2001) Chem Eur J 7:2908
- Yen SK, Koh LL, Hahn FE, Huynh HV, Hor TSA (2006) Organometallics 25:5105
- 13. Hahn FE, Jahnke MC, Pape T (2007) Organometallics 26:150
- Hahn FE, Jahnke MC, Gomez-Benitez V, Morales-Morales D, Pape T (2005) Organometallics 24:6458
- Jahnke MC, Hussain M, Hupka F, Pape T, Ali S, Hahn FE, Cavell KJ (2009) Tetrahedron 65:909
- 16. Mizoroki T, Mori K, Ozaki A (1971) Bull Chem Soc Jpn 44:581
- 17. Heck F, Nolley JF (1972) J Org Chem 37:2320
- 18. Heck RF (2006) Synlett 2855
- 19. Miyaura N, Tanagi T, Suzuki A (1981) Synth Commun 11:513
- 20. Miyaura N, Suzuki A (1995) Chem Rev 95:2457
- 21. Suzuki A (1999) J Organomet Chem 576:147
- 22. Suzuki A (2002) J Organomet Chem 83:653
- 23. Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009
- Herrmann WA, Elison M, Fischer J, Kocher C, Artus GRJ (1995) Angew Chem Int Ed Engl 34:2371
- Simons RS, Custer P, Tessier CA, Youngs WJ (2003) Organometallics 22:1979

- V L'S C Wasse L H. L'S C V (2000) Opposite the
- 26. Wang X, Liu S, Weng L-H, Jin G-X (2006) Organometallics 25:3565
- 27. Yang W-H, Lee C-S, Pal S, Chen Y-N, Hwang W-S, Lin IJB, Wang J-C (2008) J Organomet Chem 693:3729
- Han Y, Hong Y-T, Huynh HV (2008) J Organomet Chem 693:3159
- 29. Wang HMJ, Lin IJB (1998) Organometallics 17:972
- Lee CK, Vasam CS, Huang TW, Wang HMJ, Yang RY, Lee CS, Lin IJB (2006) Organometallics 25:3768
- 31. Zhang X, Gu S, Xia Q, Chen W (2009) J Organomet Chem 694:2359
- Weskamp T, Böhm VPW, Herrmann WA (1999) J Organomet Chem 585:348
- Herrmann WA, Böhm VPW, Gstöttmayr CWK, Grosche M, Reisinger C-P, Weskamp T (2000) J Organomet Chem 617–618: 616
- Huang W, Guo J, Xiao Y, Zhu M, Zou G, Tang J (2005) Tetrahedron 61:9783
- Page PCB, Buckley BR, Christie SDR, Edgar M, Poulton AM, Elsegood MRJ, McKee V (2005) J Organomet Chem 690:6210
- Nakanishi M, Katayev D, Besnard C, Kündig EP (2011) Angew Chem Int Ed 50:7438
- Yigit B, Yiğit M, Özdemir İ, Çetinkaya E (2011) Heterocycles 83:299
- Yigit B, Yiğit M, Özdemir İ, Çetinkaya E (2010) Turk J Chem 34:327
- Yigit B, Yiğit M, Özdemir İ, Çetinkaya E (2010) Heterocycles 81:943
- 40. Saba S, Brescia A, Kaloustian MK (1991) Tetrahedron Lett 32:5031
- Çetinkaya E, Hitchcock PB, Jasim HA, Lappert MF, Spyropoulos KJ (1992) Perkin Trans 1:56
- 42. Gürbüz N, Özdemir İ, Demir S, Çetinkaya B (2004) J Mol Catal A 209:23
- Özdemir İ, Demir S, Şahin O, Büyükgüngör O, Çetinkaya B (2010) J Organomet Chem 695:1555
- Huynh HV, Ho JHH, Neo TC, Koh LL (2005) J Organomet Chem 690:3854
- Özdemir İ, Arslan H, Demir S, Vaderveer D, Çetinkaya B (2008) Inorg Chem Comm 11:1462
- Özdemir İ, Yiğit M, Çetinkaya E, Çetinkaya B (2006) Appl Organometal Chem 20:187
- 47. Türkmen H, Çetinkaya B (2006) J Organomet Chem 691:3749
- 48. Özdemir İ, Demir S, Yaşar S, Çetinkaya B (2005) Appl Organometal Chem 19:55
- 49. Yaşar S, Özdemir İ, Çetinkaya B (2008) Chin J Catal 29:185
- Grasa GA, Viciu MS, Huang J, Zhang C, Trudell ML, Nolan SP (2002) Organometallics 21:2866