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Abstract: Aurilide (1), a novel cyclodepsipeptide isolated from the Jap-
anese sea hare Dolabella auricularia, was enantioselectively synthe-
sized, and the present result unambiguously confirmed its
stereostructure. In addition, the cytotoxicity of 1 was evaluated by
employing synthetic 1.

Recently, we isolated aurilide (1) as a very minute constituent from the
Japanese sea hare Dolabella auricularia and elucidated the absolute ste-
reostructure of 1 on the basis of its spectral analysis and organic syn-
thetic methods.! Although aurilide (1) was isolated from a cytotoxic
fraction of the sea hare, the scarcity of a natural supply has prevented
the evaluation of its cytotoxicity. This fact and the novel 26-membered
cyclodepsipeptide structure prompted us to synthesize aurilide (1). We
describe herein the enantioselective synthesis of aurilide (1) and its bio-
logical evaluation.

A key step in the synthesis of aurilide (1) is the 26-membered ring clo-

sure (Scheme 1). After careful inspection of the aurilide structure (1), ‘

we planned to construct the cyclic structure of 1 by the macrolactamiza-
tion of amino acid 2, which is synthesized from pentapeptide 3 and the
protected dihydroxy acid 4.

The synthesis of pentapeptide 3 was carried out starting from N-meth-
ylglycine tert-butyl ester hydrochloride in a stepwise manner in 84%
overall yield (Scheme 2).

The protected dihydroxy acid 4 was synthesized from (4S,5R)-4-methyl-
5-phenyl-3-propionyl-2-oxazolidinone (5), as shown in Scheme 3. The
anti selective aldol reaction® between § and trans-2-methyl-2-pentenal
afforded aldol 6>* (67%), which was converted into aldehyde 7 by the
standard synthetic reactions (78%, 3 steps). The vinylogous

Aurilide (1)

Scheme 1
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Mukaiyama aldol reaction’ between 7 and 2-methyl-1-trimethylsiloxy-
1,3-butadiene provided a conjugated aldehyde, oxidation of which and
subsequent treatment with diazomethane gave methyl ester 8 as a single
diasterecomer (59%, 3 steps).6 Configuration inversion of the C35
hydroxyl group in 8 was effected as follows: Dess-Martin oxidation’ of
8 afforded keto ester 9, and reduction of the resulting keto group in 9
stereoselectively proceeded to give alcohol 10 (81% from 8),8 which has
the desired stereochemistry concerning the C35 hydroxyl group.6 Pro-
tection of the hydroxyl group in 10 followed by hydrolysis provided the
protected dihydroxy acid 4 (68%, 2 steps).

The coupling reaction of pentapeptide 3 and the protected dihydroxy
acid 4 was effected with EDCIsHCI® and DMAP to provide ester 11,
which was converted into alcohol 12 (91% from 4). Esterification of 12
with N-Fmoc-N-methyl-L-alanine gave the N-methylalanine ester 13
(92%). The trichloroethyl group and the Fmoc group in 13 were
removed in two steps to give amino acid 2, which was subjected to mac-
rolactamization with Bop—CllO to afford cyclodepsipeptide 15 (29%
from 13).11 Finally, the MTM group in 15 was removed to give aurilide
(1) in 93% yield. Synthetic aurilide (1) was found to be identical with
the natural product 1 by comparison of their spectral (UV, IR, g NMR,
MS, and oip) and chromatographic properties.

In conclusion, the enantioselective synthesis of aurilide (1) was carried
our in 3.9% overall yield based on the longest linear sequence (18
steps),15 and the stereostructure of aurilide was unambiguously con-
firmed to be 1. Aurilide (1) was found to exhibit a strong cytotoxicity
against HeLLa Sj celis with an IC5, of 0.011 pug/mL by employing the
synthetic specimen.
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Reagents and conditions: (a) DEPC,'® Et;N, DMF, 23 °C (98%); (b) Hp, Pd-C, EtOH, 23 °C; (c) PyBOP,' i-ProNEt, CHyCly, 23 °C (92%,
2steps); (d) Hp, Pd-C, EtOH, 23 °C; (e) EDCI-HCI,? HOBt, DMF, 23 °C (95%, 2 steps); (f) TMSOTY, 2,6-lutidine, CH,Cly, 0 °C (100%);

(g)EDCIsHCI, HOB, EtgN, DMF, CHoCly, 23 °C (98%).

Scheme 2
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Reagents and conditions: (a) trans-2-methyl-2-pentenal (1.25 equiv.), Bu,BOTF (2.0 equiv.), i-ProNEt (1.15 equiv.), Et,0, ~100 °C — ~78 °C (67%);

{b) MeNH(OMe)HCI, Me,Al, THF, 50 °C (84%); (c) TBSCI, imidazoie, DMF, 23 °C (100%); (d) DIBAL, THF, =78 °C (93%); (e) 2-methyl-1-irimethylsiloxy-
1,3-butadiene, BF3*OEty, CH,Cly, Et,0, —78 °C (59%); (f) NaClO,, NaH,PO,, 2-methyl-2-butene, +BuOH, H,0, 23 °C; (g) CHoN,, Et,0, 0 °C (100%,

2 steps); (h) Dess—Martin periodinane, CH,Cly, 23 °C (99%); (i) NaBH,, MeOH, 23 °C (82%); (j) DMSO, AcyO, AcOH, 40 °C (74%); (k) LIOH, MeOH, H,0,

30 °C (92%); () EDCI*HCI, DMAP, CHxCly, 23 °C (91%); (m) HF+pyridine, pyridine, THF, 40 °C (100%);

Y; (n) N-Fmoc-N-methyl-L-alanine, EDCI-HCI, DMAP,

CHyCla, 23 °C (92%); (0) Zn, NH,OAc, THE, H,0, 23 °C (91%); (p) Eto.NH, MeCN, 23 °C; (q) Bop-Cl, EtaN, CHxCly, 23 °C (32%, 2 steps); () AgNOs,

2,6-lu

tidine, THF, Ho0, 70 °C (93%).

Scheme 3
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3: a colorless amorphous powder; [OL]D27 +46.3 (c 1.41, CHCl3);
IR (CHCl3) 3420, 3360 (br), 1755, 1675, 1630, 1515, 1465, 1390,

1140 em™!; 'H NMR (400 MHz, CDCly) 8 0.78 (d, J = 6.8 Hz,
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2.55 H), 0.81 (4, J = 6.8 Hz, 0.45 H), 0.85-1.07 (m, 21 H), 1.23—
1.90 (m, 6 H), 2.05 (m, 1 H), 2.32 (m, 1 H), 2.89 (d, / = 4.9 Hz,
0.15 H), 2.93 (d, J = 4.9 Hz, 0.85 H), 2.96 (s, 0.45 H), 3.10 (s, 3
H), 3.12 (s, 2.55 H), 3.93 (d, /= 17.1 Hz, 0.15 H), 3.99 (d, J =
15.6 Hz, 0.85 H), 4.06 (d, J = 15.6 Hz, 0.85 H), 4.13 (dd, J = 2.0,
49Hz, 1H),427(d,J=17.1Hz,0.15H),4.62(d,/J=11.7Hz, 1
H), 4.64 (dd, J = 4.9, 8.8 Hz, 0.85 H), 4.69 (dd, J = 4.9, 8.3 Hz,
0.15 H), 4.82 (m, 0.15 H), 4.85 (dd, J = 6.8, 8.8 Hz, 0.85 H), 4.90
(d,/=11.7Hz, 0.85 H), 492 (d, /= 11.7 Hz, 0.15 H), 5.29 (dd, J
=54,93Hz,0.15H),5.47 (dd, J=6.3,8.3 Hz, 0.85 H), 6.74 (d, J
= 8.8 Hz, 0.85 H), 6.82-6.89 (m, 0.3 H), 6.93 (d, / = 8.8 Hz, 0.85
H); 3C NMR (100 MHz, CDCl3) § 11.8 (g), 12.6 (q), 17.39
[17.25] (q), 17.41 [17.7] (@), 19.0 (q), 19.5 (q), 22.0 [21.8] (q),
22.9 [23.1] (q), 24.7 [24.6] (d), 26.2 (1), 30.59 [30.65] (d), 30.74
(), 31.1 [30.9] (d), 36.5 (q), 37.7 [37.8] (1), 38.6 (d), 51.2 [50.7]
(d), 52.6 [52.4] (1), 53.7 [54.0] (d), 57.0 [57.3] (d), 73.95 [74.00]
(d), 74.35 [74.40] (1), 94.4 [94.3] (s), 168.6 [168.3] (s), 170.2
[170.7] (s), 171.8 [171.6] (s), 172.3 [172.4] (s), 173.6 [173.7] (s)
(the minor counter parts of doubled signals in the ratio of 5.6:1 are

SYNLETT 201

in brackets); MS (FAB) m/z 681 (M + Na)*; HRMS (FAB) calcd
for CpgH 4933 ClsN,NaO; [(M + Na)*] 681.2564, found 681.2579.

4: a colorless amorphous powder; [(X]D28 —90.3 (¢ 1.09, CHCly);
IR (CHCl3) 3100 (br), 1685, 1645, 1460, 1290, 1250, 1105, 1055,

840 cm™!; '"H NMR (400 MHz, CDCl3) 8 -0.05 (s, 3 H), 0.02 (s, 3
H), 0.72 (d, J = 6.8 Hz, 3 H), 0.89 (s, 9 H), 0.96 (t, J=7.3 Hz, 3
H), 1.54 (br s, 3 H), 1.86 (br's, 3 H), 1.95-2.11 (m, 3 H), 2.15(s, 3
H), 2.23-2.38 (m, 2 H), 3.67 (d, J = 9.3 Hz, 1 H), 4.16 (ddd, J =
34,34,88Hz 1H),453(d,J=11.7Hz, 1 H),4.63(d, /=117
Hz, 1 H), 5.30 (brt, J= 6.8 Hz, 1 H), 7.06 (m, 1 H) (signals of one
proton (COOH) were not observed); 3¢ NMR (67.8 MHz,
CDCl3) 8 -5.3 (q), 4.4 (q), 104 (), 10.7 (g), 123 (q), 13.8 (@),
14.0 (q), 18.1 (s), 20.8 (t), 25.8 (q, 3 C), 28.8 (), 38.2 (d), 73.1 (1),
75.5 (d), 80.9 (d), 127.8 (s), 130.0 (d), 134.9 (s), 143.3 (d), 173.1
(s); MS (FAB) mfz 453 (M + Na)*; HRMS (FAB) calcd for
CyHypNa0,SSi [(M + Na)*] 453.2471, found 453.2495.
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