o-Benzenedisulfonimide and Its Derivatives

JAMES B. HENDRICKSON, SHIGERU OKANO, AND RITA K. BLOOM

Department of Chemistry, Brandeis University, Waltham, Massachusetts 02154

Received October 3, 1968

o-Benzenedisulfonimide is a strong acid, completely ionized in water, implying that the sulfonimide anion $(Z^{:-})$ is highly stabilized. Several N-substituted derivatives of o-benzenedisulfonimide (Z-H) were made to examine the activity of Z^{:-} as a leaving group in these compounds, which include Z-Cl, Z-Br, Z-OH, Z-OCH₃, and Z-R; several other derivatives could not be prepared. The halides, Z-Cl and Z-Br, are very active sources of ionic positive halogen and halogenate aromatic rings with ease. The other derivatives were found not to have striking reactivity as reagents, and the leaving group activity of Z^{:-} is inferred to be low.

The derivatives of *o*-benzenedisulfonimide (eq 1) should be especially attractive as synthetic tools, since the two sulfonyl groups flanking nitrogen provide substantial anionic charge stabilization so that the imide anion should be a good leaving group; furthermore, the diffusion of this charge should, conversely, make the imide anion a poor nucleophile¹ (cf. sulfate anion). These considerations can be synthetically useful in several ways, for the group Y is provided as certifiably cationic in reactions (eq 1) with anionic sites (:B), and

$$(Z - Y + :B \rightarrow Z^{-} + Y - B)$$

the imide anion product might be essentially uninvolvable as a nucleophile in subsequent reactions. Thus, a series of reagents, to act as Y⁺, could be created with Y = halogen, OH, OR, CN, CHO, COOR, NO, NO₂, NH₂, etc.; furthermore, such reagents would be crystalline and so relatively easy to handle. Finally, relatively easy solvolytic cleavage of a C-N single bond should be made possible by conversion of a primary amine (RNH₂) to a sulfonimide (Y = R, eq 1) in order to take advantage of the better leaving group properties of the sulfonimide for displacement or elimination reactions. We have simplified discussion of these compounds by abbreviating the benzenedisulfonimido group as "Z" (eq 1) so that the parent imide is ZH, its salts Z:-, and the reagents Z-Cl, Z-OH, Z-OR, etc.

o-Benzenedisulfonimide (ZH) was prepared as its ammonium salt from the action of ammonia on the disulfonyl chloride by Holleman² and by Hurtley and Smiles.³ The free imide was shown to be fully ionized in (and not extractable from) water and said to possess acidity comparable to that of hydrochloric acid.^{3,4}

The free imide, prepared by ion exchange, is a hydrate (hydronium salt, $H_3O+Z:-$), showing the same infrared bands for Z:- anion that are seen in the ammonium and silver salts. Anhydrous imide (ZH) may be crystallized from benzene after azeotropic water removal and shows a different infrared spectrum. The silver salt prepared from silver oxide and the ammonium

salt $(NH_4+Z:-)^3$ is a silver-ammine complex,⁶ while that from silver oxide and the hydrate is a hydrate. Anhydrous silver salt, required for the preparation of various Z-Y derivatives from Y-Cl, was obtained by heating the hydrated silver salt at 250° in vacuo.

N-Haloimides (**Z-C1**, **Z-Br**).—In most common anhydrous solvents, halogenation of the dry silver salt yielded only free imide (and silver halide).⁷ When the anhydrous silver imide was treated with chlorine in trifluoroacetic anhydride, however, the N-chloroimide (Z-Cl) was formed cleanly and could be separated in crystalline form by direct sublimation or, better (in over 80% yield), by evaporation, solution in phosphorus oxychloride to separate silver chloride, and subsequent recrystallization from trifluoroacetic acid to yield colorless crystals, mp 152–154°. Using bromine in the same procedure produced the N-bromoimide (Z-Br), mp 145–147°.

Both compounds gave a strong positive test with starch-iodide paper and reacted rapidly with tetrahydrofuran to negative starch-iodide and the production of Z-H. In methylene chloride, Z-Cl was stable overnight, but Z-Br had gone to negative starch-iodide in several hours. That Z-Cl was in fact a stronger chlorinating agent than chlorine was shown by the production of chlorine when Z-Cl was allowed to react with HCl.⁸ Since the bromoimide was generally more reactive and unstable than the chloro derivative, it was no surprise that comparable iodination of the silver imide produced no iodoimide. The haloimides dissolve slowly in water to yield the free imide, ZH; they are not hygroscopic and keep very well in a refrigerated desiccator.

Halogenation of unactivated aromatic compounds proceeded efficiently with the N-haloimides in several exploratory experiments. With toluene, reaction is complete in less than 1 min (with benzene in ca. 0.5 hr) and the crude product contained no benzyl chloride, only nuclear-chlorinated products. This is confirmed by the isolation of a 4:7 mixture of o- and p-chlorophenylacetic acids, but no α -chlorophenylacetic acid, from the reaction with phenylacetic acid. Similarly, β methylnaphthalene afforded a mixture of nuclear-chlorinated derivatives and no α -chloro derivatives in a very fast reaction. With Z-Br, some bromination on methyl was observed. Halogenation α to a ketone was also shown to be relatively easy in the reaction between

⁽¹⁾ A. J. Parker, Quart. Rev. (London), 16, 163 (1962).

⁽²⁾ A. F. Holleman, Rec. Trav. Chim. Pays-Bas, 40, 446 (1921).

⁽³⁾ W. R. H. Hurtley and S. Smiles, J. Chem. Soc., 1821 (1926).

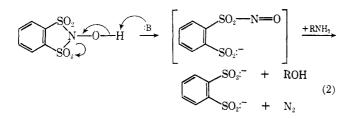
⁽⁴⁾ The cyclic imide is too acidic to measure in water and is a much stronger acid than the acyclic bis(p-toluenesulfonyl)imide,⁵ which is not substantially dissociated in water and is readily extractable with organic solvents.

⁽⁵⁾ K. Ziegler, A. Späth, E. Schaaf, W. Schumann, and E. Winkelmann, Ann. Chem., 551, 80 (1942).

⁽⁶⁾ This was shown by the isolation of the ammonium salt of the imide (NH_4+Z^{-}) after chlorination of this dried silver salt in anhydrous media.

⁽⁷⁾ Bromination of ZH under conditions which N-brominated succinimide⁵ similarly yielded only starting imide, as did the chlorination with calcium hypochlorite which had served to N-chlorinate bis(p-toluenesulfonyl)imide.⁵

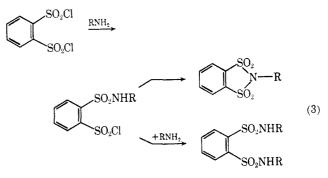
⁽⁸⁾ Z-Cl can in fact be isolated in this preparation only by virtue of the insolubility (and consequent slow reactivity) of the silver chloride produced.


acetophenone and excess Z-Cl in refluxing methylene chloride overnight; these conditions produced phenacyl chloride in good yield even though no attempt was made to optimize the conditions. Z-H crystallized out during the reaction and presumably provided the acid catalysis required for initial enol formation.

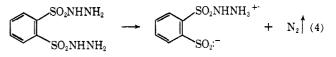
The delocalization of charge in the imide ion led us to hope that the Z-Cl reagent might attack an isolated double bond by addition of Cl⁺ and subsequent deprotonation to an allylic or vinylic chloride rather than by classical addition of the elements of Z and Cl. However, reaction with stilbene or cyclohexene at room temperature gave crystalline classical adducts (from both Z-Br and X-Cl) very rapidly and in good yield. We made a number of attempts to eliminate Z-H from these adducts (see Experimental Section), but recorded no practical success; in one instance, elimination of HCl rather than Z-H occurred in hot pyridine. The best procedure for elimination of Z-H from the stilbene adduct (Ph-CHCl-CHZ-Ph) was vacuum sublimation at 170°. Solvolysis of the stilbene adduct in boiling aqueous ethanol afforded Z-H quantitatively as well as a mixture of products, including diphenylacetaldehyde and 1-hydroxy-2-chloro-1,2-diphenylethane.

N-Hydroxyimide (**Z-OH**).—This compound was first prepared by Hurtley and Smiles³ by reduction of *o*benzenedisulfonyl chloride with sodium sulfite followed by nitrosation. The first step affords *o*-benzenedisulfinic acid, which we have isolated and characterized; the isolated acid reacts smoothly with nitrous acid to produce Z-OH.⁹ It is a rather strong acid ($pK_{a} \sim 1$; compare HOCl, $pK_{z} = 7.5$) and is reduced to Z-H by sulfur dioxide.³

The hydroxyimide was investigated as a potential source of "+OH," similar to a peracid, but showed no practical success either as a Baeyer-Villiger reagent or as a useful agent to convert aldehydes to acids. In most instances, under acidic or neutral conditions, the Z-OH was largely consumed or destroyed without substantial change in the substrate. On long standing at room temperature, crystalline Z-OH produced Z-H and o-benzenedisulfinic acid in fair quantities.


The silver salt (Z-OAg) was explored for oxidative halide displacement (cf. R-CH₂X + Z-OAg \rightarrow AgX + [R-CH₂-O-Z] \rightarrow RCHO + ZH). However, it was not possible to prepare an anhydrous silver salt, and the desired reaction was not observed. The hydroxyimide does, however, react as a nitrosating agent, bubbling immediately on contact with ammonia and primary amines and yielding the N-nitroso derivative with dicyclohexylamine in moderate yield. The reaction appears to proceed as outlined in eq 2.

(9) The original authors reported the hydroxyimide as a hydrate, mp 90° , whereas their procedure in our hands produces a solid melting at 128-130°, also clearly a hydrate from the ir spectrum. With acetyl chloride, the compound forms an acetate, with correct analyses by combustion, mass spectrum, and nmr, which may be saponified to the starting Z-OH, so that we feel that its constitution is clear despite the melting-point discrepancy.


The methoxyimide $(Z-OCH_3)$ was successfully prepared only with diazomethane on Z-OH. This derivative was inert to reaction with amines and was generally more stable than Z-OH. It showed no activity as a transfer agent for positive methoxyl with substrates like dimethylaniline and dimedone triethylamine. In the latter case, small amounts of the formaldehyde-dimedone adduct were obtained, but no trace of methoxydimedone.

N-Alkylimides (**Z-R**).—Conversion of a primary amine into a leaving group to facilitate a C-N bond cleavage is at present a synthetically difficult or unreliable process. We considered conversion into a cyclic disulfonimide for this purpose; *i.e.*, reaction with *o*-benzenedisulfonyl chloride to convert R-NH₂ into R-Z. With ammonia and with aniline³ the reaction is essentially quantitative, but with other primary amines we obtained mixtures of the cyclic imide (Z-R) and the bis-sulfonamide, *i.e.*, N,N'-dialkyl-*o*-benzenedisulfonamide, usually predominating in the latter. A series of experiments on benzylamine, altering conditions so as to favor internal over external sulfonation in the second mechanistic step (eq 3), led to very little variation in this result.

The best procedure afforded 35% cyclic imide from benzylamine, 51% from phenethylamine. The products were always easily separable chromatographically, so that pure imide samples were available for tests of the ease of C-N bond cleavage in these derivatives. In general, they were surprisingly inert. Reaction of the benzylimide (Z-CH₂Ph) with sodium cyanide for 5 hr at 100° in dimethylformamide resulted in recovery of 35% unchanged benzylimide. Elimination of Z-H from the phenethylimide (PhCH₂CH₂Z) was attempted using base or sublimation at elevated temperatures, but similarly resulted in very little styrene (<10% isolated as the dibromide). Thus, the initial trials do not support our original presumption that Z:would act as a facile and useful leaving group.

Other Derivatives.—Generation of the N-aminoimide $(Z-NH_2)$ was attempted via o-benzenedisulfonyl chloride reaction with hydrazine and its derivatives. In all cases, only bishydrazides were produced. The parent o-benzenedisulfonhydrazide, from hydrazine itself, yielded o-benzenedisulfonyl azide on reaction with nitrous acid, and also slowly dissolves in water with evolution of a gas. The product of this reaction is the rather unstable internal salt of o-sulfonhydrazidesulfinic acid (eq 4). Our efforts to close this salt to the N-amino

imide $(Z-NH_2)$ with mild halogenation led only to the disulfonic acid. Some efforts were directed toward the synthesis of other reagents, Z-Y, where Y = CHO, CN, SO₂R, etc., but at present it is clear either that these compounds are not easily made or that their decomposition is extremely facile. In carbon tetrachloride, the anhydrous silver salt and gaseous nitrosyl chloride yielded only Z-H. In refluxing anhydrous acetonitrile, the silver salt was unaffected by cyanogen bromide, while in refluxing tetrachloroethane, silver bromide was precipitated but the filtrate yielded only Z-H on evaporation, a result which may reflect reaction with solvent. Similarly, the silver salt did not react with toluenesulfonyl chloride at room temperature in 2 days.

In summary, our initial trials seem to indicate that of the possible reagents, Z-Y, only the ionic halogenating agents, Z-Cl and Z-Br, have any reagent value, being very clean and active agents for halogenating unactivated aromatic rings. The hydroxyimide, Z-OH, decomposes by various routes, none of which is an active hydroxylating agent, while Z-R and Z-OCH₃ are surprisingly inert to nucleophilic attack aimed at releasing Z:-. Z-NH₂ could not be prepared and no reliable route to Z-R applicable to all cases tried could be worked out.

Experimental Section¹⁰

o-Benzenedisulfonimide (ZH) and NH₄⁺ Salt.—1.0 g o-benzenedisulfonyl chloride^{2.3}/20 ml C₈H₈. Added 30 ml 3.4 M NH₃/C₂H₈OH in 10-ml portions. After 1 hr NH₄Cl ppt filtered and soln evap to 0.86 g (~100%) crystalline salt, mp 250-4° (lit.² 254°); sweet taste. Ir: 2.8, 3.2, 6.1 (w), 7.1, 7.8, 8.7-9.0, 9.5, 10.0 μ . Soln in H₂O and filtration yielded solid bisamide, 20 mg (2.3%), mp 330° dec (lit.¹¹ 335-8° dec). H₂O soln of salt through 30 g column/Dowex 50 × 8 resin (H⁺), evap to hygroscopic crystals, dried/vac/100° to 0.59 g (79%), mp 190-3° (lit.² 192°). Ir: 2.8, 6.1, 7.8, 8.7-9.0, 9.5, 10.0 μ .

Anhydrous imide by boiling down C₆H₆ soln and cooling, crystals, mp 195-6°. Ir: 3.2, 7.30, 8.55, 9.50 μ . Nmr: imide hydrate (DMSO- d_{θ}), 2.23 (s), 5.45 (m, disappears/D₂O); anhydrous (Me₂CO- d_{θ}), 1.83 (s); NH₄+ salt (Me₂CO- d_{θ}), 2.10 (s), 6.48 (~s). Neither NH₄+Z⁻ nor t-BuNH₃+Z⁻ salts yielded ZH on pyrolysis/vac.

o-Benzenedisulfonimide Silver Salt (Z^-Ag^+) .—Equimolar ZH (hydrate) and AgNO₃/H₂O \rightarrow ppt/Z⁻Ag⁺·H₂O. Ir: 2.8, 6.1, 7.8, 8.7-9.0, 9.5, 10.0 μ . Pulverize and $\Delta/vac/230-250^{\circ}/$ 1 hr to yellowish powder (loss of ir peaks at 2.8, 6.1 μ), used as is as anhydrous Z⁻Ag⁺. This salt with HCl/H₂O \rightarrow ppt/AgCl (100%) and evap/filtrate \rightarrow ZH (hydrate), mp and mmp 190-193°.

N-Chloro-o-benzenedisulfonimide (Z-Cl).—1.12 g anhyd ZAg/5 ml (CF₃CO)₂O. Passed in Cl₂ (dried/H₂SO₄)/3 hr. Evap, added 8 ml POCl₃, filtered AgCl ppt (~100%). Filtrate + large vol/CCl₄ \rightarrow white crystals, 0.45 g, mp 150–1°; second crop/ evap, 0.86 g, mp 132–7° (total >90%). Recryst/dry CF₃-COOH, mp 152-4°, mmp with ZH, 133–5°. ZCl stable in desiccator/refrigerator, strong KI test. Ir: 7.3, 8.3, 8.4, 8.9 μ . Nmr (CDCl₃): τ 1.80 (s). Anal. Caled for C₆H₄NS₂O₄Cl: C, 28.45; H, 1.58; N,

Anal. Calcd for $C_tH_4NS_2O_4Cl$: C, 28.45; H, 1.58; N, 5.54; Cl, 14.01. Found: C, 28.35; H, 1.58; N, 5.71; Cl, 13.92.

Z-Cl: sol/CH₂Cl₂ or CHCl₃, retaining KI-positive overnight, sol/C₆H₆ but destroyed overnight (or 0.5 hr/reflux). Reaction/ H₂O or THF exothermic and \rightarrow ZH, mp 191-4°. Reaction/ CH₃OH required 3 days. Reaction/HCl (anhyd): 0.13 ml H₂O/8 ml SOCl₂ stood 4 hr, then 25 mg ZCl, reflux 0.5 hr, evap to white crystals, mp and mmp 194-6° (no reaction/SOCl₂ alone). N-Bromo-o-benzenedisulfonimide (Z-Br).—1.16 g anhyd ZAg/5 ml (CF₃CO)₂O. Added 0.62 g Br₂, stirred 4 hr: Br₂ color gone and no Ag⁺ ppt/HCl. Evap, added 10 ml POCl₃, filtered AgBr ppt (0.63 g, 94%), evap to residue. Sublimed to 0.89 g (84%) white crystals/ZBr, mp 137-42°. Recryst/dry CF₃COOH, mp 145-9°. Ir: $<12 \mu$ very similar to Z-Cl.

Reactions of Z-Cl with Aromatics.—Reaction/C₆H₅CH₃ very fast/25°. Nmr: τ 2.7 (m), 7.62–7.67 (3 singlets), no C₆H₅CH₂Cl methylene. Reaction/2-methylnaphthalene (50 mg)/ 3 ml CH₂Cl₂ + 89 mg Z-Cl exothermic. Partition/H₂O-CH₂Cl₂ gave 75 mg ZH (~100%) from H₂O, and from CH₂Cl₂ 55 mg oil (no starting material). Nmr: τ 2.0–2.7 (m, ~6 H), 7.40 (s, 3 H), no aromatic -CH₂Cl. With Z-Br ~1:4 mix/aliphatic: aromatic from nmr singlets at τ 5.28 and 7.35.

Reaction/C₆H₅CH₂COOH (30 mg)/1 ml CH₂Cl₂ + 56 mg Z-Cl/1 ml CH₂Cl₂ 6 hr/25° (positive KI), then overnight/ reflux. Crystalline ppt/ZH (mp 192-3°) filtered, H₂O added and partitioned. CH₂Cl₂ evap to 37 mg colorless crystals, mp 55-75°. Ir 3.3 (broad), 5.82 μ . Nmr: τ 2.77 (m), 6.21 (s), 6.36 (s); intensities (resp) = 47, 14, 3, 5, indicating 13% starting acid (τ 6.36) owing to insufficient Z-Cl, 23% ortho, and 64% *p*-chlorophenylacetic acids and no α -chloro acid.

Reaction/ $\dot{C}_6H_5COCH_3$ (10 mg) + 25 mg Z-Cl/2 ml CH₂Cl₂ required overnight/reflux for completion (by KI). Washed/ H₂O + evap to 10 mg, recryst/petrol ether to mp 52-3°, mmp (with C₆H₅COCH₂Cl, mp 53-5°) 53-5°.

Reaction of Z-Cl with Olefins. A. Cyclohexene.—1.0 g ZCl + 3 ml C₆H₁₀/10 ml CH₂Cl₂ exothermic, KI neg. Turned dark blue/standing, some ppt/ZH. Washed/H₂O, dried, evap to 0.87 g (67%) dark crystals; recryst/C₆H₆-Et₂O to white crystals mp 202-4°. Ir: 7.45, 8.30, 8.50, 9.35 μ . Nmr: τ 1.90 (s, 4 H), 5.0-6.0 (m, 2 H), 7.3-8.8 (m, 8 H).

Anal. Caled for $C_{12}H_{14}S_2O_2NC1$: C, 42.93; H, 4.20; N, 4.17. Found: C, 43.17; H, 4.02; N, 3.91. Adduct (82 mg) + 28 mg t-BuOK/5 ml dry t-BuOH/3 days/

Adduct (82 mg) + 28 mg t-BuOK/5 ml dry t-BuOH/3 days/ 25°: tlc showed unchanged adduct. Reflux/2 hr, normal work-up \rightarrow adduct unchanged (ir). Adduct refluxed/5 hr/50% aq HOAc + 1 hr/70% also unchanged. 50 mg adduct/1 ml quinoline/200°/1 hr and dark mixture partitioned/H₂O-CH₂Cl₂, washed/HCl, dried + evap to 34 mg, largely starting adduct by ir + tlc. Adduct sublimed unchanged at 120-180°/~40 μ .

B. Stilbene.—0.50 g trans-stilbene/10 ml CH₂Cl₂ + 1.05 g (1.5 equiv) Z-Cl added in portions and boiled. First portions = immediate KI neg. Final = KI pos and no stilbene/tlc. Washed/H₂O and recovered 0.41 g ZH/H₂O. CH₂Cl₂ evap to 1.20 g (~100%) colorless crystals (one spot/tlc), mp 110-150° after recryst/C₆H₆-C₂H₅OH; second crop, mp 158-161°. Fortuitous crystallization in some runs yielded mp 70-90°. All had similar ir (7.4, 8.3, 8.5 μ). Nmr showed mixture/diastereomers: τ 2.0-3.0 (m, ~14 H), 3.75 (d, J = 1.5), 3.93 (d, J = 1.5), 4.22 (d, J = 4.5), 4.40 (d, J = 4.5). Sum of doublets ~2 H in varying ratios. Positive Beilstein test.

Adduct, mp 70–90°, refluxed/CsH₅N. No change/20 hr. Adduct, mp 110–150°, refluxed/CsH₅N/4 hr, partitioned/ HCl_{aq}-CH₂Cl₂ to oil (\sim 50% wt) which yielded 8 mg crystals (from 21 mg/oil), mp 160–1°, from C₂H₅OH, neg Beilstein test. Ir: 7.30, 8.50 μ ; λ_{max} 230, 310 m μ . Nmr: τ 212 (s, 4 H), 2.3–2.8 (m, \sim 11 H) and no other peaks.

Adduct (50 mg), mp 70-90°, refluxed/95% C₂H₅OH/1 hr, partitioned/H₂O-C₈H₆ to 26 mg (~100%) ZH, mp 189-191°, from H₂O, from C₆H₆, 26 mg (colorless oil, pos Beilstein test. Ir: 2.80, 5.80 μ (no SO₂ peaks). Nmr: τ 0.12 (d, J = 2.5), 2.7-2.9 (m), 5.0-5.3 (m), intensities ~0.3, 12, 2 (resp). 2,4-DNPH yielded 10 mg golden crystals, recryst to 147-9° [lit.¹² for (C₈H₅)₈CHCHO deriv, 149-50°].

for $(C_8H_5)_2$ CHCHO deriv, 149–50°]. Adduct (80 mg), mp 110–150°, sublimed (160–170°/ \sim 20 μ) to 22 mg (56%) CeH₅CH=CClCeH₅, mp 40–42°. Nmr: τ 2–2.8 (m, 10 H), 8.95 (s, 1 H) and 37 mg off-white solid which yielded 30 mg (74%) ZH, mp and mmp 193–5° and 7 mg (8%) of starting adduct (by ir).

N-Hydroxy-o-benzenedisulfonimide (**Z-OH**).—Reduction/disulfonyl chloride by Na₂SO₃ followed by HNO₂ gave Z-OH (83%), white crystals, mp 128–130° (lit.^{3,9} 90–1°). Ir: 2.80, 6.15 (w), 7.20, 7.35, 8.30, 8.50 μ . Nmr: τ 1.5–2.1 (sym multiplet). Reduction/Z-OH with 10% aq SO₂ in C₂H₅OH/50–60°/3 hr, evap + recrystallize to ZH, mp 190°. Analysis showed ZOH-H₂O³ and efforts to dehydrate failed, usually giving ZH.

⁽¹⁰⁾ Melting points on Fisher-Johns block, uncorrected. Ir in KBr unless noted, on a Perkin-Elmer Infracord; nmr with MeiSi on Varian A-60A given in r units.

⁽¹¹⁾ W. V. Farrav, J. Chem. Soc., 3063 (1960).

⁽¹²⁾ T. A. Favorskaya and L. A. Remizova, Zh. Obshch. Khim., 23, 817 (1953).

Substrate	Acid catalyst	Solvent	Reaction temp and time, hr	Acid yield, %	Re- covered Z-OH, %	Recovered substrate, %
Anisaldehyde	Toluenesulfonic acid (catalytic)	THF	RT, 18	0	40	100
Anisaldehyde	Toluenesulfonic acid (catalytic)	THF	Reflux, 4	0	24	90
Phenylacetaldehyde	Toluenesulfonic acid (catalytic)	THF	RT, 16	0	35	50
Anisaldehyde	Boron trifluoride etherate (1 equiv)	Acetonitrile	Reflux, 6.5	13	0	60
Anisaldehyde	Boron trifluoride etherate (1 equiv)	Acetonitrile	Reflux, 23	12	0	81
Anis a ld ehy de [¢]	Boron trifluoride etherate (1 equiv)	$\mathbf{Acetonitrile}$	Reflux, 16	0		
Phenylacetaldehyde	Boron trifluoride etherate (1 equiv)	Acetonitrile	Reflux, 17	0		
Deoxybenzoin	Boron trifluoride etherate (1 equiv)	Acetonitrile	Reflux, 16			73

TABLE I OXIDATIONS WITH N-HYDROXYIMIDE (Z-OH)

^a No Z-OH.

Ag salt (Z-OAg): $100 \text{ mg Z-OH} + 54 \text{ mg Ag}_2\text{CO}_3/3.5 \text{ ml H}_2\text{O}/$ Gas evolved and color = brown \rightarrow white, 117 N₂/stirring 1 hr. mg (87%) solid filtered. Attempts to dry gave dec. Ir showed mg (61%) solid interest. Action μ is the probability of μ is the

 Na_2SO_3 and evap H_2O to syrup. Added CH_2Cl_2 and 30% $H_2SO_4/0^\circ$. Satd $H_2O/NaCl$ and ext/CH_2Cl_2 , dried + evap to 0.30 g crystals, mp 113-5° from 0.50 g disulfonyl chloride (80%). Ir: 2.85, 3.2, 8.75, 8.85 μ . Suspension in dil aq H₂SO₄ and addn/NaNO₂ gave Z-OH. Disulfinic acid stable in refrigerator.

Reactions of Z-OH. A. With Amines.—Z-OH bubbles (odor-less, not SO₂) vigorously with aq NH₃ or RNH_2/Et_2O (used as diagnostic). C₆H₆CH₂NH₂ yielded white ppt (ir: 3-3.7, 3.85, 10, 10.6 μ) identical (ir) to ppt from *o*-benzenedisulfonic acid + the amine. Z-OH (100 mg, 0.4 mmol) + 790 mg (4.1 mmol) dicyclohexylamine mixed/15 min. Partitioned/Et₂O-2% HCl to 15 mg crystals (17%) from Et₂O, recryst (CH₃)₂CO, mp 105-6°. Mmp/authentic N-nitroso-dicyclohexylamine (mp 104.5-6°), 104.5-6°

B. With Aldehydes.—Equimolar Z-OH + aldehydes (with added acid) stirred as shown in Table I. Work-up by pouring on Et2O-ice and ext Et2O/aq NaHCO3, dried + evap to unchanged aldehyde. Acidification/aq NaHCO₃ and extn/ CH_2Cl_2 gave Z-OH and/or acid.

N-Methoxy-o-benzenedisulfonimide (Z-OCH₃).-Excess CH₂- N_2/Et_2O (dried/KOH) added to 0.30 g Z-OH; N_2 bubbled vigorously. After 0.5 hr, filtered + evap to 0.20 g crystals, recryst/ hexane-CCl₄ to mp 180-3°. Ir: 7.15, 7.30, 8.30, 8.50 μ . Nmr (CDCl₃): $\tau 2.06$ (s, 4 H), 5.90 (s, 3 H).

A. With $C_6H_5N(CH_3)_2$.—60 mg (0.24 mmol) Z-OH + 29 mg (0.24 mmol) $C_6H_5N(CH_3)_2/2$ ml CH₂Cl₂/24 hr. Tlc shows starting materials still present. 2 ml s-C2H2Cl4 added and evap CH_2Cl_2 . Refluxed/5 hr. Purple mix onto ice-10% HCl and ext/ CH_2Cl_2 , dried + evap to dark solid, 40 mg (66%), ir and tlc identical with Z-OCH₃. Acid layer + 50% NaOH and ext/CH₂-Cl₂ to 15 mg residue, seven spots/tlc.

Cl₂ to 15 mg residue, seven spots/tic. **B.** With Dimedone.—100 mg (0.4 mmol) ZOCH₃ + 56 mg (0.4 mmol) dimedone + 43 mg (0.43 mmol) Et₃N/5 ml CH₃CN refluxed 40 hr. Evap, partitioned/CH₂Cl₂-10% NaOH. Evap/ CH₂Cl₂ gave 22 mg (22%) Z-OCH₃. Aq NaOH acidified/ conc HCl + ext/CH₂Cl₂ to 43 mg yellow solid. Nmr (C₅D₇N): τ 7.65 (s), 7.70 (m), 8.98 (s), 9.07 (m). Tle gave 10 mg (18%) dimedone and 7 mg (6%) dimedone-CH₂O adduct, recryst/ CH₂OH to mp 194° mm/authentic sample (mp 194°) 194° C₂H₅OH to mp 194°, mmp/authentic sample (mp 194°), 194

N-Acetoxy-o-benzenedisulfonimide (Z-OCOCH₃).--0.50 g Z-OH + 10 ml CH₂COCl/stirred 2 days, mostly dissolved. Filtered + evap to 0.58 g crystals, mp 128–132°, recryst/C₆H₆ to mp 128–130°, mmp/Z-OH, 118–119°. Ir: 5.50, 7.15, 7.30, 8.3, 8.4,

8.6 μ. Nmr (CDCl₃): τ 2.00 (s, 4 H), 7.80 (s, 3 H). Crystals slowly dissolved/10% NaOH. After 15 min, acidified to crystal-line ppt, mp 128-130°, identical with Z-OH by ir. Anal. Calcd for $C_8H_7NS_2O_6$: C, 34.68; H, 2.53; N, 5.08; S, 23.10. Found: C, 34.62; H, 2.37; N, 5.61; S, 23.04. N-Benzyl-o-benzenedisulfonimide (ZCH₂Ph) and N,N'-Di-benzyl a benzenedisulfonimide (ZCH₂Ph) and N,N'-Di-

benzyl-o-benzenedisulfonamide. A.-Following lit.3: 160 mg o-benzenedisulfonyl chloride added to C2H5OH soln of 320 mg (4 equiv) PhCH₂NH₂ and 320 mg NaOAc. 3 hr/reflux, filtered + cooled: 62 mg (36%) ZCH₂Ph crystals, mp 150–1°. Ir: 7.45, 8.35, 8.50 μ . Nmr (CDCl₃): τ 2.33 (d, 4 H), 2.53 (m, 5 H), 5.10 (s, 2 H).

Anal. Calcd for C₁₃H₁₁S₂O₄N: C, 50.48; H, 3.58; N, 4.53. Found: C, 50.61; H, 3.52; N, 4.37.

Filtrate evap + crystallized/aq C₂H₅OH to 28 mg (12%) bisamide, mp 105-7°. Ir: 2.98, 7.55, 8.60, 8.70 μ . Nmr (CDCl₃): 2 equiv groups (~4 peaks each) at τ 1.96, 2.48 (total = 4 H), 2.87 (s, 10 H), 3.36 (t, 2 H, J = 6, disappeared/D₂O), 5.84 (d, 4 H, J = 6, \rightarrow singlet/D₂O). In general, all imides observed showed a singlet $(4 \text{ H}) \sim \tau 2$ and o-sulforyl bis derivatives a broad multiplet $\sim 1.8-2.4$. Mother liquors = only these two spots/tlc (bis amide predominant).

B.—A series of efforts made to favor cyclization (eq 3) are shown in Table II.

C.—o-Benzenedisulfonic anhydride (56 mg) + 36 mg C₆H₅-CH₂NH₂/CH₂Cl₂ refluxed/3 hr. Evap, added THF, refluxed 1 hr; added 0.5 g PCl₅, refluxed 1 hr. Poured/H₂O, ext/C₆H₆ to dark oil containing phosphorus: $Tlc = ZCH_2Ph$, no bis amide; other side products were present and product did not crystallize.

Reactions of N-Benzyl-o-benzenedisulfonimide (ZCH₂Ph). NaCN (163 mg, 0.33 mmol, finely ground) + 103 mg (0.33 mmol) ZCH₂Ph/3.5 ml DMF stirred/95°/5 hr. Cooled, par-

titioned/10% NaHCO₃-CH₂Cl₂. CH₃Cl₂ washed/HCl, dried, evap to 36 mg (35%) recovered ZCH₂Ph. **B.**-ZCH₂Ph (77 mg, 0.25 mmol) refluxed (suspension) 20 hr in 5 ml 50% aq C₂H₅OH. Cooled, crystallized 16 mg (21%) If if if 3 min 50% and 0.21150 H. Cooled, crystanzed to ing (21%)ZCH₂C₆H₅. Filtrate evap and partitioned/H₂O-CH₂Cl₂ gave 8 mg colorless oil. Reaction/3,5-dinitrobenzoyl Cl and the gave 8 mg solid, recryst/C₂H₅OH-H₂O to 5 mg mp 112.5-113°. Mmp/authentic benzyl 3,5-dinitrobenzoate (mp 113°), 114.5-115

 $N-(\beta-Phenethyl)-o-benzenedisulfonimide (ZCH_2CH_2Ph).-$ o-Benzenedisulfonyl chloride (100 mg, 0.36 mmol) added to 177 mg (1.46 mmol) PhCH₂CH₂NH₂ + 177 mg (2.18 mmol) NaOAc/ 10 ml EtOH, refluxed 3 hr, cooled, filtered. 9 mg (6%) crystals of bis amide, recryst/EtOH, mp 176-8°. Ir: 3.0, 7.55, 8.65 μ . Nmr (CDCl₃): two groups at τ 2 (4 H), 2.75 (m, 10 H), 3.75 (2 H, disappeared/D₂O, 6.8 (m, 4 H), 7.25 (m, 4 H). Filtrate

TABLE II							
BENZYLAMINE REACTION WITH O-BENZENEDISULFONYL CHL	ORIDE						

No.	Mole ratio of amine: chloride	Solvent	Base ^a	Time/temp ^b	Product ratio ^c of imide: bis amide
1	4:1	THF	5% aq NaOH	0.5 hr/RT	80%
2	3:1	C_6H_6	NaHª	$0.5 \text{ hr}/\Delta$	56%°
3	4:1	(CH ₃ O) ₃ B		$2 \text{ hr}/\Delta$	56%°
4	1:1	C ₆ H ₆	$BF_{3} \cdot Et_{2}O (4) + C_{5}H_{5}N (4)$	$4 \text{ hr}/\Delta$	1:3
5	1:1	C_6H_6	Et ₃ N	$5 \min/\mathrm{RT}$	1:1
6	1:1*	C_6H_6	C ₆ H ₅ N	1 hr/RT	1:4
7	1:1	$\rm CH_2 Cl_2$	$Et_{3}N$ (1) ¹	$0.5 \ hr/RT$	3:2
8	1:1*	t-BuOH	$t-BuO^{-}(2)$	3 hr/RT	1:1
9	1:1•	t-BuOH	$t-BuO^{-}(2)$	$4 hr/\Delta$	1:1

^a Excess base, except (no./equiv) in parentheses. ^b RT = room temp; Δ = reflux. ^c Isolated yield of bis amide noted. ^d Amine added first to NaH. ^e Slow addition of amine last, over 0.5-1 hr. ^f 1 equiv of base first (with chloride), then slow addition of amine followed by excess base.

cooled. $42 \text{ mg} (36\%) \text{ crystalline ZCH}_2\text{CH}_2\text{Ph}$ sublimed to colorless crystals, mp 112-3°. Ir: 7.40, 8.42, 8.62 μ . Nmr: τ 2.05 (d, 4 H), 2.68 (s, 5 H), 5.89-6.92 (m, 4 H). Second crop 17 mg (14%) ZCH}_2\text{Ph} (total yield 50%).

Reactions of ZCH₂CH₂Ph.—84% recovery from 24 hr/100°/ C₅H₅N + 1 equiv Et₃N. At 170°/N₂/2 hr in 1,5-diazabicyclo-[4.3.0]-5-nonene, ZCH₂CH₂Ph was destroyed. Residue + Br₂ yielded 5% PhCHBrCH₂Br.

 $r_{12.5.07}$ -5-monene, 2CH₂CH₂Fn was destroyed. Residue + Br₂ yielded 5% PhCHBrCH₂Br. 161 mg (0.5 mmol) ZCH₂CH₂Ph + 112 mg (2 mmol) KOH ground + Δ/N₂/180°/80 mm/2 hr. Distillate + Br₂/CHCl₃ → 14 mg (11%) PhCHBrCH₂Br, recryst/aq EtOH to mp 72-3° (lit.¹³ 74°).

(III. 742). o-Benzenedisulfonhydrazide. ---0.30 g 95% NH₂NH₂/8 ml EtOH. Added disulfonyl chloride (0.8 g)/15 ml C₆H₆/0°. After 5 min filtered crystals, washed/H₂O + C₆H₈. 0.45 g (67%), mp 123-6°; recryst/THF-petrol ether, mp 126-8°. Ir: 2.92, 3.03, 7.50, 8.58 μ . Nmr: τ 1.8-2.4 (m, 4 H), 6.3 (m, ~5 H), disappears/D₂O).

Anal. Calcd for $C_8H_{10}S_2O_4N_4$: C, 27.05; H, 3.77; N, 21.05; S, 24.05. Found: C, 27.32; H, 3.80; N, 21.23; S, 23.81. Suspension/hydrazide (50 mg)/H₂O slowly bubbles + soln

Suspension/hydrazide (50 mg)/H₂O slowly bubbles + soln overnight. Evap/vac/RT to 42 mg (98%) white solid, mp \sim 70° (bubbles), insol/CHCl₃. Ir: 3-4 (br), 7.5, 8.6, 9.9, 10.5 μ . Solid goes gummy in 2 days or on recryst. Hydrazide/

(13) C. Glaser, Ann. Chem., 154, 154 (1870).

 $\rm H_2O + Br_2:~bubbles, decolorizes.~Evap to crystals, ir identical with o-benzenedisulfonic acid.$

22 mg white solid/CH₃OH + 13 mg p-MeOC₆H₄CHO \rightarrow 19 mg (76%) azine (p-MeOC₆H₄CH=N)₂ identified with authentic sample.

o-Benzenedisulfonyl Azide.—30 mg hydrazide + 5 ml/20% aq H₂SO₄. Added 50 mg NaNO₂/H₂O. Ppt 25 mg, mp 112-4°, identical with authentic sample from disulfonyl Cl with NaN₃. Ir: 4.60, 7.24, 7.32, 8.5 μ . Ms: 246 (p - 42) but no parent at 288.

Anal. Calcd for C₆H₄S₂O₄N₆: C, 25.05; H, 139; N, 29.21; S, 22.22. Found: C, 24.79; H, 1.41; N, 29.03; S, 22.51.

Registry No.—ZH, 4482-01-3; Z-Cl, 21691-08-7; Z-Br, 21691-09-8; Z-OCH₃, 21691-10-1; Z-OCOCH₃, 21691-11-2; ZCH₂Ph, 21748-37-8; ZCH₂CH₂Ph, 21691-12-3; Z-Cl, cyclohexene adduct, 21691-13-4; *o*-benzenedisulfinic acid, 21691-14-5; N,N'-dibenzyl-*o*-benzenedisulfonamide, 21691-15-6; *o*-benzenedisulfonhydrazide, 21691-16-7; *o*-benzenedisulfonyl azide, 21691-17-8.

Acknowledgment.—We wish to extend our gratitude to the National Science Foundation for a research grant (GP-5525) partially supporting these studies.

The Preparation and Reactions of Perfluoro- β -oxa- δ -valerolactone

JAMES R. THROCKMORTON

Contribution No. 554 from the Central Research Laboratories, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota

Received March 26, 1969

The preparation of perfluoro- β -oxa- δ -valerolactone (III) from perfluorooxydiacetyl chloride (I) and fluoride (IV) and metal fluorides is described. Reaction of III with excess water, methanol, and ammonia gives perfluorooxydiacetic acid, dimethylperfluorooxy diacetate, and perfluorooxydiacetamide, respectively. Ultraviolet irradiation of III gives perfluoro-1,3-dioxolane (V).

In a study of the chemistry of certain perfluoroacyl halides, it has been found that perfluoro- β -oxa- δ -valerolactone is formed when perfluorooxydiacetyl chloride or fluoride is allowed to react with metal fluorides. It is the purpose of this paper to describe the preparation and some chemical reactions of perfluoro- β -oxa- δ -valerolactone, and to describe the formation of perfluoro-1,3-dioxolane from the photolytic decarbonylation of this new lactone.

The reaction of perfluorooxydiacetyl chloride (I) with anhydrous potassium fluoride (eq 1) proceeded smoothly giving a 90% yield of perfluorinated product which was found to contain 44% perfluoro- β -oxa- δ -

valerolactone (III) and 56% perfluorooxydiacetyl fluoride¹ (IV). Fractional distillation afforded pure

$$\begin{array}{cccc} & & & & & \\ 0(CF_2CCI)_2 & \xrightarrow{KF} & F_2C & & & & \\ I & & & F_2C & & CF_2 & + & 0(CF_2CF)_2 & (1) \\ I & & & & F_2C & & O & IV \end{array}$$

samples of the two isomeric products which were readily differentiated by spectroscopic analyses, and further characterized by elemental analysis.

(1) J. L. Warnell, U. S. Patent 3,250,806 (1966).