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Norbornene Derivatives Catalyzed by Palladium
Complexes with Phosphinous Acid Ligands**
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Secondary phosphine oxides (SPOs) have been widely used
for the synthesis of tertiary phosphine oxides and have found
applications as Wittig–Horner reagents[1–2] and, later, as
effective ligands for transition-metal complexes.[3] Recently,
Li et al. showed that SPOs form air-stable palladium com-
plexes, such as POPd1, when they are
mixed with PdCl2(MeCN)2 and then
treated with Et3N.

[4] These complexes
proved efficient as catalysts in sev-
eral cross-coupling reactions[4–5] as
well as in asymmetric allylic alkyla-
tions.[6] Recent reports showed also
that these new ligands are suitable
for other types of catalyzed reactions such as the hydrolysis of
nitriles[7] and the asymmetric hydrogenation of imines[8] and
alkenes.[9] Our continued interest in the metal-catalyzed
cycloaddition reactions between alkynes and norborna-
diene[10] prompted us to investigate the catalytic behavior of
palladium(ii) complexes coordinated by SPOs.

First, we developed an easier way to synthesize the
palladium catalyst 1. Upon treatment of Pd(OAc)2 with tert-
butyl(phenyl)phosphane oxide (L1), dihydrogen di-m-
acetatotetrakis(tert-butylphenylphosphinito -k -P)dipalladate
(1) was quantitatively obtained without further treatment
(Scheme 1).[11] Second, as a model we examined the reaction
of phenylethyne (3a) with norbornadiene (2) in the presence
of 2.5 mol% of 1 in toluene at 50 8C for 24 h. Unexpectedly,
the palladium(ii) complex 1 coordinated by L1 favored the
formation of benzylidenecyclopropane (4a) as a single
diastereomer in 17% yield (Scheme 2) and contaminated by
an unidentified byproduct (5%). Surprisingly, a similar
reaction using the known chloro-bridged analogue 5[6a–12] as
catalyst did not work. Furthermore, in the reaction catalyzed
by 5, the addition of 10 mol% of AgOAc (4 equiv relative to
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catalyst 5) led to the formation of
4a in 15% yield.[13] Even if few
examples of ruthenium-[14] or pal-
ladium-catalyzed[15] cyclopropana-
tions of norbornene derivatives
with alkynes are known, a catalytic
process that is able to favor the
direct formation of alkylidenecy-
clopropanes as illustrated in
Scheme 2 has, to our knowledge,
not been reported. Herein, we
show that palladium(ii) complexes
stabilized by secondary phosphine
oxides are active catalysts for an
unusual [2+1] cycloaddition of
norbornene derivatives with termi-
nal alkynes to produce various
alkylidenecyclopropanes.

In a preliminary study, we
found that the addition of
5 mol% of acetic acid was benefi-
cial to the reaction and led to the
formation of 4a as the exclusive
product in 26% yield. This finding revealed that acetate plays
an important role in the reaction. Indeed, AcOHwas released
in the reaction medium during the formation of catalyst 1.
This observation prompted us to test the formation of
catalysts in situ. Two other SPOs, L2 and L3, were tested
under similar conditions by generating the catalyst in situ
(Table 1). The best result was observed when Pd(OAc)2 was
associated with L2 (1:2 molar ratio), affording 4a in
satisfactory yield at room temperature (entry 4).[16–17] Sim-
ilarly, palladium catalyst systems generated with L1[18] or L3
proved active but less efficient (entries 2 and 6).

Having established the feasibility of the cycloaddition
reaction, we tested various terminal alkynes 3a–k to extend
its applicability. Under optimized conditions, all reactions
proceeded cleanly and various functional groups such as
ethers, esters, alcohols, sulfones, or tertiary amines present in
the alkyne were tolerated (Table 2). Propargylic alcohols 3 f
and 3g, sulfone 3 i, and tertiary amine 3j also reacted with 2 to
afford 4 f, 4g, 4 i, and 4j, respectively, in 57–75% yields

(Table 2, entries 7, 8, 10, and 12). For an unknown reason, no
product was obtained with propargylsilane 3c (entry 3).[19]

Likewise, with an unfunctionalized alkyne such as 3b, the
reaction was slow and conversion was very low (Table 2,
entry 2). Surprisingly, an acetate group in a propargylic
position such as in 3e afforded the desired cyloadduct 4e
without formation of byproducts (entry 5).[20] A notable
difference in reactivity was observed for tertiary acetates
such as 3 l and 3m. In this case, known allenylidenecyclopro-
panes[21] 7 l and 7m were obtained in 27% and 64% yield,
respectively (Scheme 3).

Scheme 1. Synthesis of the new air-stable palladium(ii) complex 1 with
phosphinous acid ligands.

Scheme 2. Palladium(ii) complexes 1 or 5 catalyze an unusual
[2+1] cycloaddition of 2 with 3a. Conditions: 2/3a/1 =2:1:0.025;
2/3a/5/AgOAc=2:1:0.025:0.1.

Table 1: Benzylidenecyclopropanation of 2 with 3a.

Entry[a] L T [8C] Yield [%][b]

1 L1 25 trace
2 L1 50 42
3 L2 50 76
4 L2 25 80
5 L3 25 21
6 L3 50 58

[a] All reactions were carried out with 2/3a/Pd(OAc)2/L in a ratio of
2:1:0.05:0.1 for 24 h. [b] Yield of isolated product. Cy=cyclohexyl.

Table 2: Palladium-catalyzed alkylidenecyclopropanation of 2 with terminal alkynes 3.

Entry[a] Alkyne R T [8C] t [h] Cycloadduct Yield [%][b]

1 3a Ph 25 20 4a 80
2 3b nBu 50 20 4b 9
3 3c CH2TMS 50 48 4c –
4 3d CH2OBn 25 50 4d 70
5 3e CH2OAc 25 50 4e 73
6 3 f CH2OH 25 50 4 f 34
7 3 f CH2OH 50 48 4 f 57
8 3g C(Me)2OH 50 36 4g 75
9 3h CH2CH(CO2Me)2 50 50 4h 52

10 3 i CH2SO2Ph 25 48 4 i 66
11 3 j CH2Mp 25 48 4 j 34
12 3 j CH2Mp 50 36 4 j 60
13 3k CO2Me 25 60 6k 56

[a] Experiments were performed on a 1-mmol scale using 5 mol% of Pd(OAc)2 and 10 mol% of L2 (2/3/
Pd/L2 =2:1:0.05:0.1). [b] Yield of isolated product. TMS= trimethylsilyl; Bn=benzyl; Mp=morpho-
linyl (C4H8NO).
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With the electron-deficient alkyne 3k (Table 2, entry 13),
the expected cycloadduct 4k and the rearranged (valence
isomerization) product 6k were observed in 1:1 ratio in the
crude reaction mixture. After purification by chromatography
on silica gel, only 6k was isolated in 56% yield. Valence
isomerization proved to be effective on cycloadducts 4a, 4h,
and 4 i under thermal conditions in the absence of solvent:
heating these cycloadducts to 180 8C at 1 mmHg resulted in
clean and complete conversion after 1 h (Scheme 4).[22–23]

The cycloaddition reaction was extended to other
norbornene derivatives by using phenylethyne (3a) as a
partner (Table 3).[24] The cyclopropanation of alkenes 8–
12 afforded expected benzylidenecyclopropanes 13–17
in moderate to good yields. The best yields were
observed for norbornene (8) or benzonorbornene (9 ;
entries 2 and 3). The cycloaddition with functionalized

norbornenes gave the products in fair yields (entries 4 and 6).
For cyclopentadiene dimer 11, the cyclopropanation occurred
exclusively at the most strained double bond to yield the
cycloadduct 16 in 51% as a 1:1 mixture of diastereomers
(Table 3, entry 5). Note the exclusive formation of cyclo-
propane 15 from 10 (entry 4). Indeed, diacetate 10 has been
previously used in palladium(0)-catalyzed elimination[25] and
alkylation[26] reactions and proceeds via an intermediate p-
allyl complex.

Although the mechanism of this unusual cyclopropana-
tion remains unclear at the moment, we assume that the
reaction may involve palladium vinylidene species as key
intermediates in a catalytic process that favors the formation
of [2+1] cycloadducts over dimerization[27] products of
alkynes (Scheme 5). Palladium vinylidene complex B may
be generated from 1-alkyne 3,[28, 29] and B could allow a
[2+2] cycloaddition with the double bond of the norbornene.
The resulting 2-alkylidene palladacyclobutane (C) would
release cycloadduct 4 after reductive elimination. The for-
mation of this unprecedented Pd vinylidene complex is
supported by results from deuterium-labeling experiments.
Starting from monodeuterophenylacetylene [D1]3a and 2,

under similar conditions the reaction led to compound [D1]4a
in 88% yield with 80% incorporation of deuterium on the
external double bond (Scheme 5).[30] For the formation of
allenylidenecyclopropanes 7 l and 7m, the reaction is thought
to proceed through a similar mechanism via a palladium
allenylidene intermediate (Pd=C=C=CR2).

[31]

Finally, we briefly examined the interesting asymmetric
version of this cycloaddition by using chiral secondary
phosphine oxides (�)-L1 and (�)-L2 obtained by separation
with chiral HPLC.[32] Indeed, alkylidenecyclopropanes syn-
thesized from symetrical 2 showed geometrical enantio-
morphic isomerism.[33–34] Preliminary results obtained are
encouraging: an asymmetric induction of 59% ee was
achieved with (�)-L1 without optimization of the reaction
conditions (Table 4, entry 1).

In conclusion, we have shown that palladium(ii) com-
plexes stabilized by secondary phosphine oxide ligands
catalyze a very unique [2+1] cycloaddition of norbornene
derivatives with various terminal alkynes to afford function-
alized alkylidenecyclopropanes.[35–36] Moreover, our results
suggest a Pd vinylidene complex as a key intermediate. A
detailed investigation of the mechanism and the development

Scheme 3. Synthesis of allenylidenecyclopropanes 7 l and 7m from
tertiary acetates. Conditions: 2/3/Pd/L2 =2:1:0.05:0.1.

Scheme 4. Thermal rearrangements (valence isomerization)
of 4.

Table 3: Cyclopropanation of various norbornenes 8–12 with phenyl-
ethyne (3a).

Entry[a] Alkene T [8C] t [h] Cycloadduct Yield [%][b]

1 25 60 51
2 50 48 94

3 25 60 84

4 50 36 58

5 50 72 51

6 50 48 56

[a] Experiments were performed on a 1-mmol scale using 5 mol% of
Pd(OAc)2 and 10 mol% of L2. [b] Yield of isolated product.

Scheme 5. A possible pathway for the palladium-catalyzed [2+1] cycloaddition of
norbornadienes and alkynes. (D) denotes the proton exchanged for deuterium in
labeling experiments.
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of asymmetric cycloaddition reactions are underway in our
laboratory.
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