

Bioorganic & Medicinal Chemistry 6 (1998) 2317-2336

# Novel Small Renin Inhibitors Containing 4,5- or 3,5-Dihydroxy-2-substituted-6-phenylhexanamide Replacements at the P<sub>2</sub>-P<sub>3</sub> Sites

Grace L. Jung,<sup>†</sup> Paul C. Anderson, Murray Bailey, Monique Baillet, Gary W. Bantle, Sylvie Berthiaume, Pierre Lavallée, Montse Llinas-Brunet, Bounkham Thavonekham, Diane Thibeault and Bruno Simoneau\*

Bio-Méga Research Division, Boehringer Ingelheim (Canada) Ltd, 2100 rue Cunard, Laval, Québec, Canada H7S 2G5

Received 21 May 1998; accepted 23 July 1998

Abstract—Renin inhibitors containing a 4,5- or a 3,5-dihydroxy-2-substituted-6-phenylhexanamide fragment at the  $P_2$ - $P_3$  sites have been prepared and evaluated. The four possible diastereomeric diols of the two series of inhibitors were synthesized to determine the optimal configuration of the carbinol centers for these replacements. The most potent inhibitors of each series, 1a and 2c have a molecular weight of only 503 and IC<sub>50</sub> values of 23 and 20 nM in a human plasma renin assay at pH 6.0. Their very low aqueous solubility limited their further evaluation. The efficacy of these  $P_2$ - $P_3$  replacements is a result of their ability to maintain the important hydrogen-bonds with the enzyme. Due to conformational differences with the dipeptide, adjustment at the  $P_2$  side chain was required. These 4,5- and 3,5-dihydroxyhexanamide segments could be seen as novel N-terminal dipeptide replacements. © 1998 Elsevier Science Ltd. All rights reserved.

# Introduction

The renin-angiotensin system plays a central role in the regulation of blood pressure and the maintenance of sodium and volume homeostasis (Fig. 1).<sup>1</sup> Despite the success of angiotensin converting enzyme (ACE) inhibitors in the treatment of hypertension and congestive heart failure, there have been reports of side-effects. The most common side-effect, a dry and persistent cough, is attributed to the potentiation of bradykinin, one of the ACE substrates which include angiotensin  $I^{2,3}$  This side-effect as well as the success of ACE inhibitors have been incentives to look at other modes of intervention in the same enzymatic cascade such as renin inhibition<sup>4,5</sup> and angiotensin II antagonism.<sup>6</sup> Renin, an aspartyl protease, constitutes a very attractive target because this highly specific enzyme has only one natural substrate,

\*Corresponding author. Fax: (450) 682-4189;

E-mail: bsimoneau@bio-mega.boehringer-ingelheim.ca <sup>†</sup>Current address: Nortran Pharmaceuticals Inc., 3650 Wesbrook Mall, Vancouver, BC, Canada, V6S 2L2.

0968-0896/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved *P11*: S0968-0896(98)00181-3

angiotensinogen, and is involved in the first and ratelimiting step in the cascade. The potential of renin as a target was recognized two decades ago. The search for potent and orally active renin inhibitors has generated an enormous medicinal chemistry effort but with limited success so far.4,5 The poor oral efficacy encountered with most highly potent (IC<sub>50</sub> values<1 nM) peptide/peptidomimetic renin inhibitors has been attributed to poor absorption, first-pass metabolism and/or proteolytic degradation. A popular strategy to tackle these problems has been to design less peptidic inhibitors.<sup>7-15</sup> Recently, several groups have also reported small renin inhibitors (MW << 600) with good in vitro potencies.<sup>16-20</sup> We have evaluated two series of small and non-peptidic inhibitors possessing a dipeptide replacement for the  $P_{2-}$ P<sub>3</sub> segment in conjunction with a known diol transition state analogue:<sup>21</sup> 4,5- and 3,5-dihydroxyhexanamide derivatives 1 and 2 (Fig. 2). The proposed inhibitors 1 and 2 span only from the  $P_3$  to  $P_1'$  positions. It was clearly established in the case of peptidic renin inhibitors that the P<sub>3</sub> carbonyl interacts strongly with the enzyme while the P2-P3 amide NH was defined as a noncritical hydrogen-bond.<sup>22</sup> In order to be useful, these  $P_2-P_3$ 

Key words: Antihypertension; renin inhibitors; N-terminal dipeptide replacements.

replacements must achieve the critical hydrogen-bonds with the enzyme and also orient the  $P_3$  side chain while missing a  $P_4$  residue. The syntheses, stereochemical requirements, and properties of inhibitors 1 and 2 are discussed.

# Chemistry

The two syn-diols (1a and 1b) in the 4,5-dihydroxyhexanamide series bearing a cyclopropylmethyl at position 2 were first made to test the viability of this type of  $P_{2^-}$  $P_3$  replacements (Scheme 1). Asymmetric alkylation<sup>23</sup> of 3 with allylic bromide 4 followed by the cleavage of the chiral auxiliary with LiOOH<sup>24</sup> provided  $\gamma$ , $\delta$ -unsaturated acid 6. The 2-substituted hexenoic acid possesses the *R* configuration corresponding to that of the natural



Figure 1. Renin-angiotensin system.



Figure 2. 4,5- and 3,5-Dihydroxy-6-phenylhexanamide derivatives.

amino acid. Coupling of the acid **6** with 2(S)-amino-1cyclohexyl-6-methyl-3(R),4(S)-heptanediol (7)<sup>25</sup> afforded unsaturated amide **8**. Catalytic osmylation of **8** led to a 7/3 mixture of syn-isomers **1a** and **1b**, which were separated by reverse-phase HPLC. Isomer **1a** was also prepared starting with S-phenyllactic acid to establish the absolute configuration of the two carbinol centers on the P<sub>2</sub>-P<sub>3</sub> replacement. (S)-Phenyllactic acid was transformed to aldehyde **9** by first benzylation of the hydroxyl followed by successive reduction of the acid with LAH and oxidation of the resulting primary



Scheme 1. Reagents and conditions: (a) LDA, THF,  $-78 \,^{\circ}$ C then DMPU, 4,  $-78 \,^{\circ}$ C to 0 °C, 56%; (b) LiOOH, THF-H<sub>2</sub>O, 0 °C to 25 °C, 92%; (c) *i*-Pr<sub>2</sub>NEt, BOP·PF<sub>6</sub>, 7, MeCN, 40%; (d) OsO<sub>4</sub>, NMMO, THF, 60%; (e) CH<sub>2</sub>=CHCH<sub>2</sub>CH<sub>2</sub>MgBr, Et<sub>2</sub>O,  $-78 \,^{\circ}$ C, 76%; (f) (i) O<sub>3</sub>, MeOH, then DMS,  $-78 \,^{\circ}$ C to 25 °C; (ii) Jones' reagent, 0 °C, 73%; (g) LDA, CH<sub>2</sub>=CHCH<sub>2</sub>Br, THF,  $-78 \,^{\circ}$ C, 76%; (h) CH<sub>2</sub>N<sub>2</sub>, Pd(OAc)<sub>2</sub>, Et<sub>2</sub>O, 0 °C, 88%; (i) (i) 2 N NaOH, MeOH, 25 °C; (ii) TBSOTf, 2,6-lutidine, CH<sub>2</sub>Cl<sub>2</sub>, 4 °C; (iii) *i*-Pr<sub>2</sub>NEt, HOBT, BOP·PF<sub>6</sub>, 7, CH<sub>2</sub>Cl<sub>2</sub>, 64%; (j) Bu<sub>4</sub>NF, THF, 25 °C to  $\Delta$ , 87%; (k) H<sub>2</sub>, Pd(OH)<sub>2</sub>/C, EtOH, 91%.

alcohol using Swern protocol. The chelation-controlled addition of 3-butenylmagnesium bromide to the aldehyde 9 gave an inseparable mixture (ca. 8/1) of epimers of alcohol 10. Cleavage of the terminal double bond of 10 with  $O_3/Me_2S$  followed by the oxidation of the resulting lactol gave lactones 11a and 11b (ratio ca. 8/1), which were easily separated by flash chromatography. Alkylation<sup>26</sup> of 11a with allyl bromide gave predominantly the trans disubstituted lactone 12. This lactone was treated with  $CH_2N_2$  in presence of  $Pd(OAc)_2$ to give the cyclopropylmethyl derivative 13. Saponification of the lactone 13 followed by silulation of the resulting hydroxyacid salt, hydrolysis of the silyl ester and finally coupling of the acid with amine 7 gave amide 14. Cleavage of the silyl ether and hydrogenolysis of the benzyl ether led to a compound identical to the major component of the osmylation of 8, inhibitor 1a. The corresponding anti diols (1c and 1d) were prepared starting with unsaturated acid 6 (Scheme 2). Treatment of 6 with MCPBA followed by silvlation of the resulting hydroxylactones afforded a 1/1 mixture of lactones 16 and 17, which were easily separated by flash chromatography. The absolute configuration of the two newly formed stereogenic centers in lactones 16 and 17 was determined easily by chemical correlation using minor lactone 11b obtained earlier. The minor cis and major trans 3,5-disubstituted lactones obtained by allylation of the enolate of 11b were respectively transformed into 17 and the enantiomer of 16 after cyclopropanation and

protective group manipulation (Bn to TBS). From lactones 16 and 17, inhibitors 1d and 1c were obtained respectively using the series of steps described for 14 followed by the cleavage of the two silyl protective groups.

The corresponding P<sub>2</sub> 2-thienylmethyl and 4-imidazolylmethyl analogues of 1a were prepared using similar approaches. For the thienylmethyl analogue, the  $P_2$  side chain was introduced by alkylation of lactone 21 with 2-(chloromethyl)thiophene<sup>27</sup> (Scheme 3). The resulting lactone 22 was then transformed to inhibitor 1e as it was described above. In the case of the imidazolyl derivative (Scheme 4), the Evans' alkylation of 26, readily available from 24,<sup>28</sup> afforded 27. Catalytic osmylation of 27 followed by the cleavage of the chiral auxiliary and lactonization gave a 1/1 mixture of hydroxylactones 28a.b. which were separated as their benzoate derivatives 29a and 29b. The stereochemical correlation of the trans and cis-3,5-disubstituted lactones, 29a and 29b, respectively, was first based on <sup>1</sup>H NMR  $(J_{4,5}, \Delta \delta_{4gem})$ .<sup>29-31</sup> The trans isomer 29a is characterized by  $J_{4,5}$  of 4.1 and 8.9 Hz and  $\Delta \delta_{4gem}$  of 0.14 ppm compared to  $J_{4,5}$  of 6.4 and 9.9 Hz and  $\Delta \delta_{4gem}$  of 0.43 ppm for the *cis* isomer 29b. These results were confirmed by NOE and ROESY experiments that clearly established the proximity in space for  $H_3$  and  $H_5$  for the *cis* isomer **29b**. Inhibitor **1f** was obtained from 29a using the sequence described previously with the additional hydrogenolysis of the trityl protective group.





Scheme 2. Reagents and conditions: (a) (i) MCPBA,  $CH_2Cl_2$ , 0°C to 25°C, 80%; (ii) TBSOTf, 2,6-lutidine,  $CH_2Cl_2$ , 0°C to 25°C; (iii) separation of diastereoisomers, 88%; (b) (i) LiOH, THF-H<sub>2</sub>O, 25°C; (ii) TBSOTf, 2,6-lutidine, DMF, 25°C; (iii) K<sub>2</sub>CO<sub>3</sub>, MeOH-THF-H<sub>2</sub>O, 25°C; (iv) BOP·PF<sub>6</sub>, *i*-Pr<sub>2</sub>NEt, 7, 71% from 16, 67% from 17; (c) 5% HF in McCN, 25°C, 38% from 18, 56% from 19.

Scheme 3. Reagents and conditions: (a)  $H_2$ ,  $Pd(OH)_2/C$ , EtOH, 84%; (b) TBSOTf, 2,6-lutidine,  $CH_2Cl_2$ , 25°C, 87%; (c) LDA, HMPA, 2-(ClCH<sub>2</sub>)thiophene, THF, -78°C to -50°C, 44%; (d) (i) 1 N NaOH, THF-MeOH, 0°C; (ii) TBSOTf, 2,6-lutidine, DMF, 0°C to 25°C; (iii) K<sub>2</sub>CO<sub>3</sub>, MeOH-THF, H<sub>2</sub>O, 25°C; (iv) BOP·PF<sub>6</sub>, *i*-Pr<sub>2</sub>NEt, 7, CH<sub>2</sub>Cl<sub>2</sub>, 52%; (e) 5% HF in MeCN, 25°C, 62%.



Scheme 4. Reagents and conditions: (a) (i) Et<sub>3</sub>N, TrCl, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C; (ii) LiOH, THF-H<sub>2</sub>O, 25 °C, 96%; (b) Et<sub>3</sub>N, PivCl, THF, -78 °C to 0 °C then  $X_c$ -Li, -78 °C, 84%; (c) NaHMDS, 4, THF, -78 °C, 48%; (d) (i) OsO<sub>4</sub>, NMMO, THF-H<sub>2</sub>O, 25 °C; (ii) LiOOH, THF-H<sub>2</sub>O, 0 °C; (iii) TFA, THF, 0 °C, 60%; (e) (i) BzCl, Et<sub>3</sub>N, DMAP, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 91%; (ii) separation of isomers; (f) (i) LiOH, THF-H<sub>2</sub>O, 25 °C; (iii) TBSOTf, 2,6-lutidine, DMF, 0 °C; (iii) 1 N NaOH, THF, 0 °C; (iv) BOP·PF<sub>6</sub>, *i*-Pr<sub>2</sub>NEt, 7, CH<sub>2</sub>Cl<sub>2</sub>, 60%; (g) 10% HF in MeCN, 79%; (h) H<sub>2</sub>, Pd(OH)<sub>2</sub>/C, 88%.

The four isomers in the 3,5-dihydroxyhexanamide series bearing a cyclopropyl substituent at position 2 were prepared from  $\beta$ -ketoimide 32, which was obtained by acylation<sup>32</sup> of 3 (Scheme 5). The aldol reaction<sup>33</sup> of the titanium enolate of 32 with phenylacetaldehyde gave a mixture of 33 and 34 in a 2/1 ratio. The poor selectivity reflects the absence of substituent on the enolate. Selective reduction of these two diastereomeric  $\beta$ -hydroxyketones afforded the four possible diol diastereomers. Reduction of  $\beta$ -hydroxyketone 33 by NaBH(OAc)<sub>3</sub><sup>34</sup> gave preferentially the expected *anti* diol, which was isolated as the acetonide 35. The configuration of stereocenters at positions 2, 3, and 5 of 35 and the three other diastereomers was confirmed by the <sup>13</sup>C NMR of the acetonides<sup>35</sup> and the <sup>1</sup>H NMR (J<sub>3,4</sub>) of the corresponding  $\delta$ -lactones. Upon removal of the chiral auxiliary of **35** using LiOOH, the resulting acid was coupled with amine **7** to give **37** with low yield. Inhibitor **2a** was obtained by simple hydrolysis of acetonide **37** in the presence of acidic resin. Starting with  $\beta$ -hydroxyketone **33** but using DIBAL<sup>36</sup> as reducing agent, the *syn* diol was selectively obtained and purified as its acetonide derivative **38**. Using the same sequence of steps described above for the *anti* isomer, **38** was transformed into inhibitor **2b**. Similarly, isomeric  $\beta$ -hydroxyketone **34** was converted into inhibitors **2c** and **2d**.

#### **Results and discussion**

A small lipophilic side chain such as the cyclopropylmethyl group was selected for the P2 position since it was found to be a good replacement for the histidine side chain in many of our peptidic renin inhibitors. To our surprise, the four 4,5-dihydroxyhexanamide diastereomers, 1a-d, showed a good level of potency, having IC<sub>50</sub> values of 23-59 nM (Table 1). The most potent inhibitor is syn 4,5-diol 1a with an  $IC_{50}$  of 23 nM. The configuration of the carbinol centers appears not to be very crucial for potency, since a twofold loss of potency is observed when the configuration at C-4 is inverted (cf. 1a and 1c, 1b and 1d) compared to a maximum of threefold loss with the inversion of C-5 (cf. 1a and 1d, 1b and 1c). The X-ray analysis of crystal structures of renin complexed with 1a and 1d<sup>37</sup> showed, in each case, that the 4S hydroxyl interacts with Ser-219 in a fashion similar to that of the amide carbonyl normally found in this position. The C-5 hydroxyl of 1a and 1d, although of opposite configuration, are also hydrogen-bonded to the side chain hydroxyl group of Ser-219. Although the conformation of the  $P_3$  benzyl is different in these two compounds, the aromatic rings occupy more or less the same position in the  $S_3$  pocket. Clearly, for the four diastereomers, the C-4 and C-5 hydroxyls are able to maintain the critical hydrogen-bonds with the enzyme. In the case of related renin inhibitors having a hydroxyethylene isostere at the  $P_2-P_3$  sites,<sup>9</sup> it was also observed that the configuration at C-4 had little impact on potency.

Although the level of potency was very interesting for such small inhibitors, compounds 1a-d could not be evaluated in an animal model because of their very low solubility in water ( $\ll 1 \mu g/mL$  at pH 7.4). The P<sub>2</sub> side chain appeared to be the only site available for modifications that may improve the water solubility of this series of compounds. The most potent inhibitor 1a was selected as the starting point for this exercise. The imidazolylmethyl derivative 1f was made first, since it possesses the histidine side chain present at P<sub>2</sub> in the renin substrate. Inhibitor 1f was, as expected, significantly



Scheme 5. Reagents and conditions: (a) LDA, MeCOCl, THF,  $-78 \,^{\circ}$ C, 51%; (b) TiCl<sub>4</sub>, *i*-Pr<sub>2</sub>NEt, CH<sub>2</sub>Cl<sub>2</sub>,  $-15 \,^{\circ}$ C to  $-78 \,^{\circ}$ C then PhCHO, 33/34, 2/1 mixture, 82%; (c) (i) NaBH(OAc)<sub>3</sub>, MeCN-AcOH, 25  $^{\circ}$ C; (ii) Me<sub>2</sub>C(OMe)<sub>2</sub>, *p*-TsOH, DMF, 25  $^{\circ}$ C, 69% from 33, 41% from 34; (d) (i) DIBAL,  $-78 \,^{\circ}$ C, CH<sub>2</sub>Cl<sub>2</sub>,  $-78 \,^{\circ}$ C; (ii) Me<sub>2</sub>C(OMe)<sub>2</sub>-DMF, *p*-TsOH, 25  $^{\circ}$ C, 23% from 33, 35% from 34; (e) LiOOH, THF-H<sub>2</sub>O, 0  $^{\circ}$ C to 25  $^{\circ}$ C; (f) *i*-Pr<sub>2</sub>NEt, BOP-PF<sub>6</sub>, 7, MeCN, 27% from 35, 68% from 38, 70% from 41, 22% from 44; (g) Amberlite\* H<sup>+</sup>, MeOH, H<sub>2</sub>O, 66% from 37, 100% from 40, 95% from 43, 84% from 46.

Table 1. In vitro potencies of 2-substituted dihydroxyphenylhexanamide derivatives



| Compound | Configuration  | <b>R</b> <sub>3</sub> | R <sub>2</sub> | <b>R</b> <sub>1</sub> | IC <sub>50</sub> (nM) <sup>a</sup> |
|----------|----------------|-----------------------|----------------|-----------------------|------------------------------------|
| 1a       | syn (4S,5S)    | OH                    | Н              | cyclopropyl           | 23                                 |
| 16       | syn (4R,5R)    | OH                    | н              | cyclopropyl           | 41                                 |
| 1c       | anti (4R,5S)   | OH                    | Н              | cyclopropyl           | 49                                 |
| 1d       | anti $(4S,5R)$ | OH                    | Н              | cyclopropyl           | 59                                 |
| 1e       | syn (4S,5S)    | OH                    | Н              | 2-thienyl             | 320                                |
| lf       | syn (4S,5S)    | OH                    | Н              | 1H-imidazol-4-yl      | 1010                               |
| 2a       | anti (3R,5S)   | Н                     | OH             | cyclopropyl           | 590                                |
| 2b       | syn (3S,5S)    | Н                     | OH             | cyclopropyl           | 96                                 |
| 2c       | anti (3S,5R)   | Н                     | ОН             | cyclopropyl           | 20                                 |
| 2d       | syn (3R,5R)    | Н                     | OH             | cyclopropyl           | 260                                |

<sup>a</sup>Determined using a human plasma renin assay at pH 6.0.

more soluble in water  $(9 \mu g/mL \text{ at } pH 7.4)$  than the cyclopropylmethyl derivative. To our surprise, with an IC<sub>50</sub> of 1010 nM, 1f was found to be 40-fold less potent than 1a. Similarly, the thienylmethyl analogue 1e had an IC<sub>50</sub> of 320 nM, a 14-fold loss in this case. It appears that 5-membered heterocycles are not well tolerated at  $P_2$  for this series of inhibitors. The same observation was reported for renin inhibitors possessing a P<sub>2</sub>-P<sub>3</sub> hydroxyethylene isostere when P2 alkyl and 1-triazolylmethyl side chains were compared.9 The authors noted that "this may in part be a further manifestation of the conformational differences between the hydroxyethylene isostere and the native dipeptide". Moreover, it is also interesting to note a 50-fold difference in potency between the hydroxyethylene isostere 1f and a  $P_2-P_3$  peptidic inhibitor reported earlier by Abbott  $(IC_{50} = 20 \text{ nM}, \text{ ex. } 25, \text{ EP-229667}).^{38}$  The crystal structure overlap  $^{37}$  of the  $1a\mbox{-renin complex}\mbox{}^{37}$  and that of a  $P_2-P_3$  peptidic inhibitor such as CGP 38'560<sup>39</sup> and renin clearly highlights these conformational differences. As noted earlier, the backbone atoms of the P<sub>3</sub> residue are positioned differently in 1a and CGP 38'560 with the result that the phenyl group of 1a is inserted deeper into the  $S_3$  pocket. In addition, the orientation of the  $P_2$  side chain, the point of interest here, is also different in 1a and CGP 38'560 (Fig. 3). In 1a, the point of attachment of the cyclopropyl group to the methylene is an  $sp^3$  carbon. Therefore, the cyclopropyl ring can reach the S<sub>2</sub> pocket and adopt a position close to the one occupied by the imidazolyl ring in CGP 38'560 and this, despite a different orientation given by the methylene linker. In the case of imidazolyl analogue 1f, the fact that the point of attachment is an sp<sup>2</sup> carbon should orient the 5membered ring away from the S<sub>2</sub> pocket, a position clearly different from the imidazolyl group in CGP 38'560. Therefore, the introduction of a 5-membered



heterocycle at position 2 in inhibitor 1 greatly perturbs the interaction between the inhibitor and the enzyme.



For the 3,5-dihydroxyhexanamide series, the four diastereomers were made in order to identify the optimal configuration of the carbinols for potency. In contrast to the potencies of the 4,5-dihydroxyhexanamide series, the range of  $IC_{50}$  values exhibited by the 3,5-dihydroxyhexanamides was broader (20 to 590 nM). Inhibitor 2c, the anti-3S,5R diastereomer, constitutes the most potent of the four at 20 nM. Its syn-3S,5S epimer, inhibitor 2b, is slightly less potent with an IC<sub>50</sub> of 96 nM. The two other diastereomers, 2a (anti-3R,5S) and 2d (syn-3R,5R) demonstrated poor potencies at 590 and 260 nM, respectively. A 3S configuration appears to be important for good potency. Interestingly, the inhibitors having the R configuration at C-5 produced the most potent inhibitors. This contrasts with the configurational requirements observed for the 4,5-dihydroxyhexanamide series, in which the S configuration conferred a twofold increase in potency. In the crystal structure of the renin-2b complex,<sup>37</sup> the C-3 hydroxyl can form a hydrogen-bond with the Ser-219, as can the C-4 hydroxvl in 1a. It seems that this critical hydrogen-bond is possible without major perturbations to other sites, only for the 3S configuration in 2b. The  $P_2$  side chain of 2b overlaps also very well with those of inhibitors 1a and 1d. Unfortunately, inhibitors 2 also suffer from poor aqueous solubility, precluding their evaluation in vivo.

# Conclusion

**Figure 3.** P<sub>2</sub> segment view of the overlap<sup>37</sup> of the crystal structures of inhibitor **1a** (gray lines) and CGP 38'560<sup>39</sup> (black lines) in complex with renin.

This exercise led to the identification of two small and potent renin inhibitors, **1a** and **2c**. They have  $IC_{50}$  values of ca. 20 nM and a polecular weight of 503. Unfortunately, the potency and the water solubility of



Figure 4. 4,5- and 3,5-Dihydroxyhexanamide as N-terminal dipeptide replacements.

these two inhibitors could not be further improved. Nevertheless, the substituted 4,5- and 3,5-dihydroxyhexanamide fragments **A** and **B** which possess the optimal configuration for potency shown in **1a** and **2c** could be seen as novel N-terminal dipeptide replacements (Fig. 4). The efficacy of these  $P_2-P_3$  dihydroxyhexanamide dipeptide replacements is the result of their ability to maintain the important hydrogen-bonds with the enzyme. Adjustments at the  $P_2$  side chain were nevertheless necessary to compensate for the conformational differences with the dipeptide.

#### Experimental

## General methods

Melting points were determined on an electrothermal melting point apparatus and are uncorrected. NMR spectra were recorded on a Bruker AMX400 (<sup>1</sup>H, <sup>13</sup>C) and AC200 (<sup>13</sup>C) spectrometers. IR spectra were recorded on a Perkin–Elmer 781 spectrophotometer. Optical rotations were measured on a Perkin–Elmer 241 polarimeter. Analytical thin-layer chromatography (TLC) was carried out on precoated (0.25 mm) Merck silica gel F-254 plates. THF, ether and toluene were distilled from sodium/benzophenone immediately prior to use. CH<sub>2</sub>Cl<sub>2</sub>, HMPA, *i*-Pr<sub>2</sub>NEt, *i*-Pr<sub>2</sub>NH were distilled from CaH<sub>2</sub>. MeOH was distilled from Mg.

**3-(3-Cyclopropyl-1-oxopropyl)-4(S)-(phenylmethyl)-2-oxazolidinone (3).** To a cold (0 °C), stirred ethereal solution of CH<sub>2</sub>N<sub>2</sub> (100 mL, 0.6 M) containing 3-(1-oxo-4-pentenyl)-4(S)-phenylmethyl-2-oxazolidinone<sup>40</sup> (5.56 g, 21.4 mmol), was added Pd(OAc)<sub>2</sub> (240 mg, 1.07 mmol) in small portions. The reaction mixture was stirred at 0 °C for 30 min. Subsequently, the catalyst was removed by filtration through Celite<sup>\*</sup> and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (Hex/EtOAc, 6/1) to give **3** (5.57 g, 95%) as a white solid: mp 44–45 °C;  $[\alpha]_{26}^{26}$ 

+102.7° (*c* 1.09, MeOH); IR (KBr)  $v_{max}$  1780, 1695 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.36–7.21 (m, 5H), 4.71–4.65 (m, 1H), 4.23–4.16 (m, 2H), 3.31 (dd, *J*=3.5, 13.4 Hz, 1H), 3.13–2.98 (m, 2H), 2.77 (dd, *J*=9.5, 13.4 Hz, 1H), 1.63–1.56 (m, 2H), 0.85–0.75 (m, 1H), 0.52–0.40 (m, 2H), 0.15–0.08 (m, 2H); MS (CI) *m/z* 274 (MH<sup>+</sup>); Anal. calcd for C<sub>16</sub>H<sub>19</sub>NO<sub>3</sub>: C, 70.29; H, 7.01; N, 5.12. Found: C, 70.46; H, 7.05; N, 5.10.

(E)-1-Bromo-4-phenyl-2-butene (4). To an ice-cold solution of 1-phenyl-3-buten-2-ol prepared by addition of vinylmagnesium bromide to phenylacetaldehyde<sup>41</sup> at -10°C (6.3 g, 42.5 mmol) and 1,5-hexadiene (4.0 mL, 34.0 mmol) in 1,2-dichloroethane (50 mL), was added SOBr<sub>2</sub> (4.9 mL, 63.8 mmol). After the mixture was stirred at  $0^{\circ}$ C for 1.5 h, H<sub>2</sub>O (25 mL) was added and the mixture was extracted with Et<sub>2</sub>O. The organic layer was washed successively with water, saturated aq NaHCO<sub>3</sub> and brine, dried (MgSO<sub>4</sub>) and concentrated. The residue was purified by flash chromatography (Hex) followed by bulb-to-bulb distillation (94 °C, 0.07 mm) to give a colorless oil (5.6 g, 75%) that consisted of 15% of the isomeric 2-bromo-1-phenyl-3-butene and 85% of 4: IR (neat)  $v_{max}$  1655 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.33–7.17 (m, 5H), 5.94 (dt, J = 6.7, 15.1 Hz, 1H), 5.77 (dtt, J = 1.3, 7.6, 15.1 Hz, 1H), 3.97 (d, J = 7.6 Hz, 2H), 3.41 (d, J = 6.7 Hz, 2H); MS (EI) m/z 210/212 (M<sup>+</sup>).

3-[(E)-2(R)-(Cyclopropylmethyl)-1-oxo-6-phenyl-4-hexenyl]-4(S)-(phenylmethyl)-2-oxazolidinone (5). A 1.6 M hexane solution of n-BuLi (10.8 mL, 17.3 mmol) was added dropwise to a cold (0 °C), stirred solution of *i*-Pr<sub>2</sub>NH (2.53 mL, 18.1 mmol) in THF (50 mL), and the resultant mixture was stirred at 0 °C for 15 min. After the reaction mixture was cooled to -78 °C, a solution of 3 (4.50 g, 16.5 mmol) in THF (10 mL) was added. This mixture was stirred for 1 h at -78 °C, and successive additions of DMPU (3.98 mL, 33.0 mmol) and a solution of 4 (5.21 g, 24.7 mmol) in THF (10 mL) were made. After the reaction mixture was stirred at -78 °C for 15 min, it was allowed to warm slowly to 0 °C (1.5 h) and stirred at that temperature for 1 h. A saturated ag NH<sub>4</sub>Cl solution was added and the mixture was extracted with Et<sub>2</sub>O (300 mL). The organic layer was washed successively with 1 N HCl (50 mL), saturated aq NaHCO<sub>3</sub> (50 mL) and brine (50 mL), then dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (Hex/EtOAc, 9/1) gave 5 (3.75 g, 56%), of which the diastereomeric ratio (49/1) was determined by HPLC on Chiracel-OD column (UV detection 215 nm) using 10% EtOH in Hexanes:  $[\alpha]_{D}^{25} + 89.5^{\circ}$  (c 1.23 MeOH); IR (neat)  $v_{max}$  1780, 1695 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.35– 7.12 (m, 5H), 5.68 (dt, J = 6.6, 15.3 Hz, 1H), 5.55 (dt, J = 6.9, 15.3 Hz, 1 H), 4.67–4.62 (m, 1 H), 4.16–4.05 (m, 3H), 3.33 (d, J = 6.6 Hz, 1H), 3.19 (dd, J = 3.2, 13.4 Hz, 1H), 2.50 (dt, J = 6.7, 14.0 Hz, 1H), 2.44 (dd, J = 10.2,

13.4 Hz, 1H), 2.35 (dt, J=6.3, 14.0 Hz, 1H), 1.56–1.52 (m, 2H), 0.75–0.69 (m, 1H), 0.45–0.36 (m, 2H), 0.10–0.03 (m, 2H); MS (FAB) m/z 404 (MH<sup>+</sup>); Anal. calcd for C<sub>26</sub>H<sub>29</sub>NO<sub>3</sub>: C, 77.37; H, 7.24; N, 3.47. Found: C, 77.40, H, 7.29; N, 3.53.

(E)-2(R)-(Cyclopropylmethyl)-6-phenyl-4-hexenoic acid (6). To a cold  $(0^{\circ}C)$ , stirred solution of 5 (3.30 g, 8.18 mmol) in THF/H<sub>2</sub>O (4/1; 40 mL) was added successively a 30% solution of  $H_2O_2$  (2.32 mL, 20.5 mmol) and LiOH·H<sub>2</sub>O (412 mg, 9.82 mmol). When the additions were completed, the ice bath was removed and the mixture was stirred at room temperature for 1h. Additional aliquots of H<sub>2</sub>O<sub>2</sub> (2.32 mL) and LiOH·H<sub>2</sub>O (412 mg) were added after 1 and 2 h, and the mixture was then stirred for 15h. H<sub>2</sub>O (25mL) was added and the mixture was concentrated. To the cold (0 °C) agueous layer was added solid Na<sub>2</sub>SO<sub>3</sub> until no peroxide was detected. The aqueous solution was washed with  $CH_2Cl_2$  (3×100 mL), acidified with solid citric acid and extracted with EtOAc  $(2 \times 100 \text{ mL})$ . The combined organic layers were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (Hex/EtOAc, 4/1) gave 6 (1.85 g, 92%) as a light-yellow oil, which was then subjected to Kugelrohr distillation  $(250 \degree C, 0.7 \text{ mm})$  to afford a colorless oil:  $[\alpha]_{D}^{25} + 5.6^{\circ}$  (c 2.02, MeOH); IR (neat)  $v_{max}$  3600–2400, 1710 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.31–7.16 (m, 5H), 5.67 (dt, J=6.7, 15.1 Hz, 1H), 5.50 (dt, J = 7.0, 15.1 Hz, 1H), 3.34 (d, J = 6.7 Hz, 1H), 2.62–2.55 (m, 1H), 2.41 (dt, J = 7.2, 14.0 Hz, 1H), 2.30 (dt, J = 6.7, 14.0 Hz, 1H), 1.59 (dt, J = 7.6, 14.0 Hz, 1 H), 1.44 (dt, J = 6.4, 14.0 Hz, 1 H), 0.76-0.69 (m, 1H), 0.50-0.42 (m, 2H), 0.12-0.01 (m, 2H); MS (FAB) m/z 245 (MH<sup>+</sup>).

(E)-N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5methylhexyl]-2(R)-(cyclopropylmethyl)-6-phenyl-4-hexenamide (8). To a solution of acid 6 (160 mg, 0.66 mmol) in MeCN (10 mL) was added successively 725 (160 mg, 0.66 mmol), *i*-Pr<sub>2</sub>NEt (0.34 mL, 1.98 mmol) and BOP·PF<sub>6</sub> (320 mg, 0.73 mmol). The reaction mixture was stirred for 1 h at room temperature, and was then diluted with EtOAc. The organic phase was washed with 0.5 N HCl and brine, and then dried (MgSO<sub>4</sub>) and concentrated. After purification by flash chromatography (Hex/EtOAc, 5/1), the desired olefin 8 (123 mg, 40% from 5) was obtained:  $[\alpha]_{D}^{25} - 41.8^{\circ}$  (*c* 0.75, MeOH); IR (CHCl<sub>3</sub>) v<sub>max</sub> 3430, 2920, 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.29 (t, J=7.3 Hz, 2H), 7.21–7.15 (m, 3H), 5.65 (dt, J = 6.9, 14.9 Hz, 1H), 5.55 (d, J = 9.2 Hz, 1H), 5.50–5.42 (m, 1H), 4.54–4.38 (br s, 1H), 4.38 (td, J = 4.9, 9.4 Hz, 1H), 3.34 (d, J = 6.7 Hz, 2H), 3.29–3.20 (m, 2H), 2.38– 2.33 (m, 1H), 2.30-2.18 (m, 2H), 1.95-1.51 (m, 10H), 1.43-1.09 (m, 8H), 0.97-0.80 (m, 2H), 0.93 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H), 0.72–0.65 (m, 1H), 0.48-0.42 (m, 2H), 0.13-0.05 (m, 1H), 0.03-0.01

(m, 1H); MS (FAB) m/z 470 (MH<sup>+</sup>); Anal. calcd for C<sub>30</sub>H<sub>47</sub>NO<sub>3</sub>: C, 76.71; H, 10.09; N, 2.98. Found: C, 76.49; H, 10.22; N, 2.97.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-4(R),5(R)-dihydroxy-6phenylhexanamide (1b) and 4(S),5(S) isomer (1a). A solution of alkene 8 (79 mg, 0.17 mmol), NMMO (40 mg, 0.34 mmol) and a catalytic amount of OsO<sub>4</sub> (0.1 mL of a 2.5 w/v% solution in t-butanol) in THF (50 mL) was stirred at 25 °C for 4 h. After the addition of a 10% aq Na<sub>2</sub>SO<sub>3</sub> solution, the mixture was diluted with EtOAc. The organic layer was washed with 0.1 M H<sub>3</sub>PO<sub>4</sub> and brine, and dried (MgSO<sub>4</sub>). Filtration and concentration of the organic phase gave a residue that was purified by flash chromatography (2% MeOH in CHCl<sub>3</sub>) to give a 30/70 mixture (51 mg, 60%) of 1b and 1a. Subsequently, this mixture was resolved by reversephase HPLC (Whatman Magnum column,  $0.94 \times 50$  cm; MeCN/water solvent system containing 0.06% TFA; spectrophotometric detection at 220 nm) to give pure fractions of 1b (first to elute) and 1a. Compound 1b was obtained as an amorphous white solid:  $[\alpha]_{\rm p}^{25} - 12.8^{\circ}$  (c 0.58, MeOH); IR (KBr) v<sub>max</sub> 3280-3400 (broad), 1615 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  7.67 (d, J = 9.0 Hz, 1H), 7.27-7.22 (m, 4H), 7.18-7.14 (m 1H), 4.76 (d, J = 3.0 Hz, 1H, 4.71 (d, J = 6.3 Hz, 1H), 4.29 (d, J = 6.0 Hz, 1 H), 4.21 (d, J = 7.2 Hz, 1 H), 4.14 (td, J = 4.2, 9.4 Hz, 1H, 3.62–3.56 (m, 1H), 3.35–3.22 (m, 1H), 3.11 (br t, J = 8.7 Hz, 1H), 2.93 (br t, J = 7.6 Hz, 1H), 2.71 (dd, J = 3.0, 13.8 Hz, 1H), 2.59 (dd, J = 9.6, 13.8 Hz, 1H), 2.55–2.50 (m, 1H), 1.82–1.53 (m, 10H), 1.45 (br t, J = 11.8 Hz, 1H), 1.39–1.26 (m, 1H), 1.24–1.06 (m, 5H), 1.00 (ddd, J = 4.7, 8.4, 13.4 Hz, 1H), 0.95–0.78 (m, 2H), 0.86 (d, J = 6.6 Hz, 3H), 0.73 (d, J = 6.6 Hz, 3H), 0.67–0.59 (m, 1H), 0.36–0.29 (m, 2H), 0.05–0.04 (m, 2H); HRMS calcd for  $C_{30}H_{50}NO_5$  (MH<sup>+</sup>): 504.3689. Found: 504.3709; Anal. calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub>: C, 71.53; H, 9.81; N, 2.78. Found: C, 71.04; H, 9.88; N, 2.90. 1a was identical to compound obtained from 15 (see below).

(2S,3S)- and (2S,3R)-2-Benzyloxy-1-phenyl-6-hepten-3ol (10). To a stirred solution of (S)-hydroxy-3-phenylpropionic acid 9 (15.0 g, 90.4 mmol) in THF (450 mL) was added NaH (60% dispersion in oil, 9.00 g, 226 mmol). Upon completion of gas evolution, benzyl bromide (10.8 mL, 181 mmol) was added and the reaction mixture was stirred for 7 days. The mixture was diluted with water and  $Et_2O$ , and the phases were separated. After the aqueous solution was acidified by the addition of dilute HCl, it was extracted twice with EtOAc. The combined EtOAc extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Subsequently, the crude residue was dissolved in THF (300 mL) and to the resultant solution was added LiAlH<sub>4</sub> (8.54g, 225 mmol). After the reaction mixture was stirred for 60 h, successive additions of Celite\* (25.6g), H<sub>2</sub>O (26 mL), 2 N aq NaOH (12.8 mL) and H<sub>2</sub>O (230 mL) were made. The resultant mixture was well-agitated and filtered, and the aqueous filtrate phase was washed with EtOAc. Concentration of the combined organic layers gave a residue which was coevaporated with benzene. Purification of this material by flash chromatography (Hex/EtOAc, 3/1) afforded (*S*)-2-benzyloxy-3-phenylpropanol (16.3 g, 75%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.37–7.20 (m, 10H), 4.56 (d, *J*=11.6 Hz, 1H), 4.50 (d, *J*=11.6 Hz, 1H), 3.74–3.69 (m, 1H), 3.67 (dd, *J*=3.5, 11.5 Hz, 1H), 3.51 (dd, *J*=5.9, 11.5 Hz, 1H), 2.95 (dd, *J*=6.0, 13.8 Hz, 1H), 2.81 (dd, *J*=6.8, 13.8 Hz, 1H), 1.81 (br s, 1H); MS (EI) *m/z* 242 (M<sup>+</sup>).

Dimethyl sulfoxide (3.23 mL, 45.5 mmol) was added dropwise to a stirred, cold  $(-78 \,^{\circ}\text{C})$  solution of oxalyl chloride (2.52 mL, 28.9 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (155 mL). After the resultant solution was stirred for 10 min, a solution of (S)-2-benzyloxy-3-phenylpropanol (5.00 g, 20.7 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (52 mL) was added dropwise over 20 min. The reaction mixture was stirred at  $-78 \,^{\circ}\text{C}$  for 30 min before the rapid addition of Et<sub>3</sub>N (14.41 mL, 103.3 mmol). The resultant suspension was diluted with water and extracted with EtOAc. The combined organic extracts were washed successively with saturated aq NH<sub>4</sub>Cl, water and brine, dried (MgSO<sub>4</sub>) and concentrated to give aldehyde **9** which was immediately dissolved in Et<sub>2</sub>O (20 mL).

This solution was then added dropwise over 15 min to a cold (-78 °C), stirred solution of 3-butenylmagnesium bromide (0.64 M in Et<sub>2</sub>O, 71.0 mL, 45.5 mmol) in Et<sub>2</sub>O (155 mL). After 1 h, the mixture was diluted with Et<sub>2</sub>O (100 mL) and the resultant mixture was washed successively with saturated aq NH<sub>4</sub>Cl and brine. The organic phase was dried (MgSO<sub>4</sub>) and concentrated. Purification of the residue by flash chromatography (Hex/EtOAc, 10/1) gave a 8/1 mixture of 3S and 3R epimers (4.82 g, 76%) 10: IR (neat)  $v_{max}$  3620–3220, 1640, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.36–7.20 (m, 10H), 5.84–5.74 (m, 1H), 5.08–4.92 (m, 2H), 4.46 (d, J = 11.1 Hz, 1H), 4.43 (d, J = 11.1 Hz, 1H), 3.53 - 3.48 (m, 2H), 3.0 - 2.88 (m, 2H), 2.21-2.06 (m, 3H), 1.65-1.56 (m, 2H); MS (EI) m/z 296 (M<sup>+</sup>); Anal. calcd for  $C_{20}H_{24}O_2$ : C, 81.04; H, 8.16. Found: C, 81.03; H, 8.22.

5(S) and 5(R)-[1(S)-Benzyloxy-2-phenylethyl]dihydrofuran-2(3H)-one (11a and 11b). A stream of  $O_3$  was bubbled through a cold (-78 °C), stirred solution of the 8/1 mixture (533 mg, 1.80 mmol) of 10 in MeOH (20 mL) until the reaction mixture became persistently blue. After the system was flushed with a slow stream of nitrogen to remove excess  $O_3$ , Me<sub>2</sub>S (1.5 mL) was added. The resultant solution was warmed gradually to

room temperature, at which stirring was continued for an additional 4h. After the mixture was concentrated, the residue was dissolved in acetone (2mL), and the resultant solution was cooled to 0°C prior to being titrated with Jones' reagent (1 equiv). The mixture was stirred at room temperature for 15 min and then concentrated under reduced pressure. The residue was dissolved in EtOAc and the resulting solution was washed successively with saturated ag solution of NaHCO<sub>3</sub>,  $H_2O$ , and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (Hex/ EtOAc, 10/1 then 3/1) gave the monosubstituted lactone **11a** (390 mg, 73%) as a white amorphous solid:  $R_f 0.27$ (Hex/EtOAc, 3/1);  $[\alpha]_{D}^{25} + 54.5^{\circ}$  (c 1.00, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>) ν<sub>max</sub> 1770 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.39–7.23 (m, 10H), 4.61 (d, J = 11.8 Hz, 1H), 4.51 (d, J = 11.8 Hz, 1H) 4.46 (ddd, J = 3.2, 5.3, 8.1 Hz, 1H), 3.61 (td, J = 3.2,6.7, 7.6 Hz, 1H), 3.03 (dd, J = 6.7, 13.7 Hz, 1H), 2.95 (dd, J = 7.6, 13.7 Hz, 1H), 2.68-2.59 (m, 1H), 1.47-2.38(m, 1H), 2.25–2.11 (m, 1H), 2.05–1.97 (m, 1H); MS (EI) m/z 296 (M<sup>+</sup>); Anal. calcd for C<sub>19</sub>H<sub>20</sub>O<sub>3</sub>: C, 77.00; H, 6.80. Found: C, 76.77; H, 6.89. The pure minor 5R diastereomer was also obtained from repurification of mixed fractions of a few runs. 11b:  $R_f 0.32$  (Hex/EtOAc, 2/1)  $[\alpha]_{10}^{26}$  -43.5° (c 1.64, MeOH); IR (neat) v<sub>max</sub> 1775 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.34–7.20 (m, 10H), 4.50 (d, J = 11.1 Hz, 1H), 4.49–4.44 (m, 1H), 4.42 (d, J = 11.1 Hz, 1H, 3.95 (td, J = 3.5, 6.5 Hz, 1H), 2.90 (dd,  $J = \sim 6.5, 13.9 \text{ Hz}, 1 \text{H}$ ), 2.80 (dd, J = 6.5, 13.9 Hz, 1 H), 2.60 (ddd, J = 6.7, 10.2, 17.8 Hz, 1H), 2.46 (ddd, J = 6.8, 10.2, 17.8 Hz, 1H), 2.35–2.27 (m, 1H), 2.23–2.14 (m, 1H); HRMS (EI) calcd for C<sub>16</sub>H<sub>20</sub>O<sub>3</sub> (M<sup>+</sup>): 296.1412. Found: 296.1419.

5(S)-[1(S)-Benzyloxy-2-phenylethyl]-3(R)-(2-propenyl)dihydrofuran-2(3H)-one (12). To a cold  $(-78 \degree C)$ , stirred solution of *i*-Pr<sub>2</sub>NH (340 mL, 2.44 mmol) in THF (10 mL) was added a 1.5 M solution of BuLi in hexanes (1.42 mL, 2.13 mmol). After the resultant solution was stirred for 20 min at -78 °C, a solution of  $\gamma$ -lactone 11a (450 mg, 1.52 mmol) in THF (1 mL) was added at a rate to maintain the internal temperature below -65°C (5 min). The reaction mixture was stirred for an additional 20 min at -78 °C prior to the dropwise addition of allyl bromide (200 µL, 2.28 mmol). Subsequently, the mixture was stirred for 2h and then quenched by the addition of saturated aq NH<sub>4</sub>Cl (2mL). The resultant mixture was diluted with EtOAc (20 mL) and the aqueous phase extracted with EtOAc. The combined organic layers were washed successively with water and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. Subjection of the residue to flash chromatography (Hex/ EtOAc, 10/1) gave the desired  $\gamma$ -lactone 12 (386 mg, 76%) as a white amorphous solid and small amounts of the 3S isomer (63 mg) and substrate 11a (23 mg). 12:  $R_f$ 0.68 (Hex/EtOAc, 3/1);  $[\alpha]_{D}^{25}$  + 56.4° (c 1.22, CHCl<sub>3</sub>);

IR (CHCl<sub>3</sub>)  $v_{max}$  1770 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.38– 7.22 (m, 1H), 5.78–5.67 (m, 1H), 5.09–5.05 (m, 1H), 4.63 (d, J=11.4 Hz, 1H), 4.47 (d, J=11.4 Hz, 1H), 4.37 (td, J=3.2, 8.6 Hz, 1H), 3.57 (ddd, J=2.5, 6.0, 8.6 Hz, 1H), 2.58–2.51 (m, 1H), 2.24–2.16 (m, 1H), 2.08 (ddd, J=3.2, 9.5, 13.0 Hz, 1H), 1.96–1.89 (m, <sup>-1</sup>H); MS (CI) m/z 337 (MH<sup>+</sup>); Anal. calcd for C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.54; H, 7.19. Found: C, 78.89; H 7.27.

5(S)-[1(S)-Benzyloxy-2-phenylethyl]-3(R)-(cyclopropylmethyl)dihydrofuran-2(3H)-one (13). To a cold  $(0^{\circ}C)$ , stirred 0.68 M solution of CH<sub>2</sub>N<sub>2</sub> in Et<sub>2</sub>O (25 mL) containing lactone 12 (147 mg, 0.44 mmol) was added Pd(OAc)<sub>2</sub> (3.0 mg, 0.01 mmol). After 10 min, the reaction mixture was quenched by the addition of acetic acid and then concentrated under reduced pressure. The residue was subjected to flash chromatography (Hex/ EtOAc, 10/1) to give the desired product 13 (136 mg, 88%) as white needles:  $[\alpha]_D^{25} + 38.1^\circ$  (c 1.05, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>)  $v_{max}$  1765 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.37–7.23 (m, 10H), 4.63 (d, J=11.5 Hz, 1H), 4.47 (d, J=11.8 Hz, 1H), 4.41 (dt, J=3.2, 8.6 Hz, 1H), 3.59 (ddd, J=2.9, 6.4, 8.3 Hz, 1H), 3.05 (dd, J=6.0, 13.4 Hz,1H), 2.97 (dd, J=8.3, 13.4 Hz, 1H), 2.97 (dd, J=8.3, 13.4 Hz, 1H), 2.93–2.85 (m, 1H), 2.17 (ddd, J=3.5, 9.5, 13.0 Hz, 1H), 2.05–1.96 (m, 1H), 1.65–1.58 (m, 1H), 1.45– 1.38 (m, 1H), 0.76–0.64 (m, 1H), 0.53–0.40 (m, 2H), 0.15– 0.00 (m, 2H); MS (CI) m/z 351 (MH<sup>+</sup>); Anal. calcd for C<sub>23</sub>H<sub>26</sub>O<sub>3</sub>: C, 78.82; H, 7.48. Found: C, 78.34; H, 7.50.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-5(S)-benzyloxy-4(S)-[(tert-butyldimethylsilyl)oxyl-2(R)-(cyclopropylmethyl)-6-phenylhexamide (14). An aq 2 N NaOH solution (178 mL) was added to a vigorously stirred solution of lactone 13 (41.5 mg, 0.12 mmol) in methanol (3.5 mL) and H<sub>2</sub>O (190 mL). After the reaction mixture was stirred for 2h, the solvent was removed under reduced pressure and the residue was taken in  $CH_2Cl_2$  (2 mL). To this cold (4 °C), stirred solution was added sequentially TBSOTf (407 µL, 1.77 mmol) and 2,6-lutidine (275 µL, 2.36 mmol), and the resultant mixture was stirred for 18h at 4°C. Subsequently, the mixture was diluted with EtOAc (10 mL) and the organic phase was separated. The combined organic extracts were washed successively with water, saturated aq NaHCO<sub>3</sub>, a 10% (w/v) aq solution of citric acid, and brine. After being dried (MgSO<sub>4</sub>), the organic layer was concentrated to give a residue that was immediately dissolved in CH<sub>2</sub>Cl<sub>2</sub> (2mL). To this soluwas added tion successively i-Pr<sub>2</sub>NEt  $(41 \, \mu L,$ 0.23 mmol), HOBt (32 mg, 0.24 mmol) and BOP·PF<sub>6</sub> (63 mg, 0.14 mmol). The resultant mixture was stirred at 25°C for 5 min prior to the addition of 7 (43 mg, 0.18 mmol). After the pH of the reaction mixture was adjusted to 8.0-8.5 with i-Pr2NEt, the reaction mixture was stirred for 3h. The reaction mixture was then

extracted with EtOAc and the combined organic extracts were washed successively with 0.5 N aq HCl, saturated aq NaHCO<sub>3</sub>, H<sub>2</sub>O and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. Purification of the residue by flash chromatography (Hex/EtOAc, 10/1) gave amide 14 (53.3 mg, 64%) as a white foam:  $[\alpha]_{D}^{25}$  -53.7° (c 1.00, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>)  $v_{max}$  3600–3100, 1650 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.34–7.09 (m, 10H), 5.66 (d, J = 9.2 Hz, 1H), 4.67 (d, J = 3.2 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.43–4.35 (m, 1H), 4.27 (d, J = 11.5 Hz, 1H), 3.95–3.86 (m, 1H), 3.62–3.54 (m, 1H), 3.34–3.19 (m, 2H), 3.07– 2.99 (m, 1H), 2.74-2.64 (m, 1H), 2.60-2.50 (m, 1H), 2.35-2.17 (m, 2H), 2.02-1.88 (m, 1H), 1.85-0.69 (m, 25H), 0.97 (s, 9H), 0.87 (d, J = 6.7 Hz, 3H), 0.54–0.44 (m, 1H), 0.13 (s, 3H), 0.07 (s, 3H); MS (FAB) m/z 708  $(MH^+)$ ; Anal. calcd for C<sub>43</sub>H<sub>69</sub>NO<sub>5</sub>Si: C, 72.94; H, 9.82; N, 1.98. Found: C, 72.87; H, 10.06; N, 1.81.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-5(S)-benzyloxy-4(S)-hydroxy-6-phenylhexanamide (15). To a solution of 14 (49.5 mg, 0.07 mmol) in THF (1 mL) was added a 1 M solution of TBAF in THF (77 µL, 0.08 mmol). The mixture was briefly heated at reflux (10 min) and then allowed to stand at room temperature for 18 h. After the addition of EtOAc (5mL), the organic phase was washed successively with H2O and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. Purification of the residue by flash chromatography (Hex/EtOAc, 7/3) gave the desired  $\gamma$ -hydroxyamide 15 (36.5 mg, 87%) as a white solid:  $[\alpha]_{D}^{25} - 54.0^{\circ}$  (c 0.50, MeOH); IR (KBr)  $v_{max}$ 3550-3100, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>) δ 7.59 (d, J = 8.7 Hz, 1H), 7.29–7.09 (m, 10H), 4.77 (d, J = 6.3 Hz, 1H), 4.68 (d, J = 3.6 Hz, 1H), 4.59 (d, J = 5.4 Hz, 1H), 4.42 (d, J=11.4 Hz, 1H), 4.22-4.10 (m, 2H), 3.62-3.54 (m, 1H), 3.53-3.45 (m, 1H), 3.16-3.06 (m, 1H), 2.98-2.84 (m, 2H), 2.70-2.59 (m, 2H), 1.9-0.5 (m, 21H), 0.85 (d, J = 6.9 Hz, 3H), 0.73 (d, J = 6.3 Hz, 3H), 0.40–0.25 (m, 2H), 0.10–0.05 (m, 2H); MS (FAB) m/z 594 (MH<sup>+</sup>); Anal. calcd for C<sub>37</sub>H<sub>55</sub>NO<sub>5</sub>: C, 74.83; H, 9.34; N, 2.36. Found: C, 74.78; H, 9.55; N, 2.30.

*N*-[1(*S*)-(Cyclohexylmethyl)-2(*R*),3(*S*)-dihydroxy-5-methylhexyl]-2(*R*)-(cyclopropylmethyl)-4(*S*),5(*S*)-dihydroxy-6phenylhexanamide (1a). A solution of benzyl ether 15 (1.63 g, 2.75 mmol) in EtOH/MeOH 1/1 (20 mL) containing 20% Pd(OH)<sub>2</sub>/C (327 mg) was stirred under an atmosphere of H<sub>2</sub> for 18 h. The reaction mixture was then filtered through a pad of Celite<sup>®</sup> and the pad washed with EtOH. The combined filtrate and washings were evaporated to dryness and the residue was triturated with Et<sub>2</sub>O to afford the title compound 9 (1.27 g, 91%) as a white solid:  $[\alpha]_D^{25}$  -29.5° (*c* 0.50, MeOH); IR (KBr) v<sub>max</sub> 3700-3120, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSOd<sub>6</sub>)  $\delta$  7.54 (d, *J*=9.0 Hz, 1H), 7.3-7.1 (m, 5H), 4.76 (d, *J*=6.3 Hz, 1H), 4.69-4.61 (m, 1H), 4.37 (d, *J*=5.4 Hz, 1H), 4.30 (d, J = 6.3 Hz, 1H), 4.20–4.10 (m, 1H), 3.47– 3.36 (m, 1H), 3.17–3.04 (m, 1H), 2.98–2.88 (m, 1H), 2.76–2.50 (m, 4H), 1.85–0.55 (m, 21H), 0.85 (d, J = 6.6 Hz, 3H), 0.72 (d, J = 6.6 Hz, 3H), 0.40–0.35 (m, 2H), 0.01–0.05 (m, 2H); MS (FAB) m/z 504 (MH<sup>+</sup>); Anal. calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub>: C, 71.53; H, 9.81; N, 2.78. Found: C, 71.45; H, 10.04; N, 2.70.

5(S)-[1-(R)-[(tert-Butyldimethylsilyl)oxy]-2-phenylethyl]-3(R)-(cyclopropylmethyl)dihydrofuran-2(3H)-one (16) and 5(R)-[1-(S)-[(tert-butyldimethylsilyl)oxy]-2-phenylethyl]-3(R)-(cyclopropylmethyl)dihydrofuran-2(3H)-one (17). To an ice-cold solution of 6 (1.28 g, 5.24 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added MCPBA (1.17 g, 6.81 mmol). The reaction mixture was stirred at 0°C for 15 min then at 25°C for 15h. The mixture was taken up in EtOAc (300 mL), washed with 5% Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 1 N HCl (50 mL), saturated NaHCO<sub>3</sub> (50 mL) and brine, dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc, 2/1) provided a 1/1 mixture of hydroxylactones (1.10 g, 80%) as a colorless oil: IR (neat)  $v_{max}$  3420, 1765 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ 7.36-7.23 (m, 10H), 4.43 (dt, J=4.2, 8.3 Hz, 1H), 4.32 (ddd, J = 4.5, 5.8, 10.1 Hz, 1H), 4.14 (dt, J = 4.8, 8.3 Hz)1H), 4.07 (dt, J = 4.4, 8.6 Hz, 1H), 2.93–2.69 (m, 6H), 2.59 (ddd, J = 4.4, 9.6, 13.1 Hz, 1H), 2.47 (ddd, J = 6.0, 8.9, 12.4 Hz, 1H), 2.16-2.05 (m,2H), 1.88 (br s, 1H), 1.77-1.65 (m, 2H), 1.58 (br s, 1H), 1.53-1.46 (m, 2H), 0.80-0.77 (m, 2H), 0.52-0.47 (m, 4H), 0.18-0.08 (m, 4H); MS (FAB) m/z 261 (MH<sup>+</sup>). To an ice-cold solution of hydroxylactones (0.96 g, 3.69 mmol) and 2,6-lutidine (1.29 mL, 11.13 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added TBSOTf (1.69 mL, 7.38 mmol). The reaction mixture was stirred at 0 °C for 15 min, then at room temperature for 15 min. The solution was acidified by the addition of 10% HCl and extracted with EtOAc. The combined organic extracts were washed with saturated NaHCO<sub>3</sub> and brine, then dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc, 9/1 then 6/1) gave 16 ( $R_f$  0.77; Hex/EtOAc, 2/1) as a colorless oil (605 mg, 44%) and 17  $(R_f 0.66; \text{Hex/EtOAc}, 2/1)$  as a colorless oil (608 mg, 44%). 16:  $[\alpha]_{D}^{25}$  +12.0° (c 1.41 MeOH); IR (film)  $v_{max}$ 1775 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.33–7.16 (m, 5H), 4.34 (ddd, J=2.5, 4.4, 8.2 Hz, 1H), 4.21 (ddd, J=2.5, 6.0,8.0 Hz, 1H), 2.86 (dd, J = 6.0, 13.7 Hz, 1H), 2.82–2.76 (m, 1H), 2.72 (dd, J=8.0, 13.7 Hz, 1H), 2.60 (ddd, J = 4.4, 10.0, 12.6 Hz, 1H), 1.95 (td, J = 8.2, 12.6 Hz, 1H), 1.64 (ddd, J = 4.9, 7.7, 14.0 Hz, 1H), 1.46 (ddd, J = 6.6, 8.5, 14.0 Hz, 1 H), 0.89 (s, 9H), 0.91–0.73 (m, 1H), 0.53–0.44 (m, 2H), 0.16–0.06 (m, 2H), 0.06 (s, 3H), -0.08 (s, 3H); MS (FAB) m/z 375 (MH<sup>+</sup>); Anal. calcd for C<sub>22</sub>H<sub>34</sub>O<sub>3</sub>Si: C, 70.54; H, 9.15. Found: C, 70.55; H, 9.38. 17:  $[\alpha]_{D}^{25} - 23.6^{\circ}$  (c 1.01 MeOH); IR (film)  $v_{max}$ 1775 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.32–7.19 (m, 5H), 4.29-4.24 (m, 2H), 2.80 (dd, J=6.7, 13.7 Hz, 1H), 2.72

(dd, J = 6.5, 13.7 Hz, 1H), 2.71–2.62 (m, 1H), 2.30 (ddd, J = 5.6, 9.0, 12.3 Hz, 1H), 2.20–2.12 (m, 1H), 1.69 (ddd, J = 4.4, 7.9, 14.1 Hz, 1H), 1.46 (ddd, J = 6.4, 9.1, 14.1 Hz, 1H), 0.85 (s, 9H), 0.84–0.74 (m, 1H), 0.54–0.46 (m, 2H), 0.18–0.10 (m, 1H), 0.10–0.04 (m, 1H), 0.04 (s, 3H), -0.15 (s, 3H); MS (FAB) m/z 375 (MH<sup>+</sup>); Anal. calcd for C<sub>22</sub>H<sub>34</sub>O<sub>3</sub>Si: C, 70.54, H, 9.15. Found: C, 70.75, H, 9.34.

4(S),5(R)-Bis[(tert-butyldimethylsilyl)oxy]-N-[1(S)-(cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-6-phenylhexanamide (18). A solution of 16 (458.5 mg, 1.22 mmol) and LiOH·H<sub>2</sub>O (205.6 mg, 4.90 mmol) in THF (6.6 mL) and  $H_2O$ (1.65 mL) was stirred at room temperature overnight. The mixture was concentrated and the residue was azeotropically distilled with benzene  $(3 \times 10 \text{ mL})$  using a rotary evaporator to remove traces of water. To an icecold solution of the white residue and 2,6-lutidine (2.85 mL, 24.50 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4.8 mL) and DMF (1.6 mL) was added TBSOTf (4.22 mL, 18.37 mmol). The mixture was stirred at room temperature overnight. The mixture was diluted with EtOAc (50 mL) and washed with cold 10% citric acid (2×15 mL), saturated NaHCO<sub>3</sub> (20 mL) and brine, then dried (MgSO<sub>4</sub>) and concentrated. The silvl ester was treated with  $K_2CO_3$ (254 mg, 1.83 mmol) in a mixture of MeOH/THF/H<sub>2</sub>O (3/1/1) (10/3.3/3.3 mL) at room temperature overnight. EtOAc (250 mL) and brine (10 mL) were then added and the mixture acidified with cold 10% citric acid. The phases were separated and the organic layer was washed with brine, dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. Purification by flash chromatography (Hex/ EtOAc, 4/1) gave the corresponding acid (550 mg, 88%) as a colorless oil. To a solution of this acid (444 mg, 0.87 mmol) and  $BOP \cdot PF_6$  (426.4 mg, 0.96 mmol) in DMF (4.4 mL), was added 7 (235 mg, 0.96 mmol) and i- $Pr_2NEt (0.53 \text{ mL}, 3.06 \text{ mmol})$ . The reaction mixture was stirred at room temperature for 1h. The maxture was diluted with EtOAc (150 mL), washed with 1 N HCl  $(2 \times 25 \text{ mL})$ , saturated NaHCO<sub>3</sub>  $(2 \times 25 \text{ mL})$  and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. Purification of the residue by the flash chromatography (Hex/ EtOAc, 6/1) gave 18 (518 mg, 81%) as a white foam: mp 61-62 °C;  $[\alpha]_{D}^{26}$  -20.5° (c 1.01 MeOH); IR (KBr)  $v_{max}$ 3390, 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.26–7.17 (m, 5H), 5.38 (d, J = 8.9 Hz, 1H), 4.41–4.35 (m, 1H), 3.81 (t, J = 6.7 Hz, 1 H), 3.56 (d, J = 8.9 Hz, 1 H), 3.31–3.22 (m, 2H), 2.77 (dd, J = 6.0, 13.6 Hz, 1H), 2.69 (dd, J = 7.3, 13.6 Hz, 1H), 2.42 (m, 1H), 2.00–1.94 (m, 2H), 1.79–1.19 (m, 17H), 0.95 (d, J = 6.7 Hz, 3H), 0.91 (s, 9H), 0.85 (d, J = 6.7 Hz, 3H, 0.83 (s, 9H), 0.95–0.83 (m, 2H), 0.79– 0.69 (m, 1H), 0.48–0.46 (m, 2H), 0.10–0.02 (m, 2H), 0.06 (s, 3H), 0.00 (s, 6H), -0.03 (s, 3H); MS (FAB) m/z 732 (MH<sup>+</sup>); Anal. calcd for  $C_{42}H_{77}NO_5Si_2$ : C, 68.87; H, 10.60; N, 1.91. Found: C, 68.69; H, 10.85; N, 1.92.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-4(S),5(R)-dihydroxy-6phenylhexanamide (1d). A 5% solution of aqueous HF 40% in MeCN (3mL) was added to 18 (164 mg, 0.22 mmol) and the resulting solution was stirred at room temperature for 1 h. EtOAc (50 mL) was added and the solution washed with saturated NaHCO<sub>3</sub> (15 mL) and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (Hex/ EtOAc/EtOH, 15/10/1) followed by trituration of the solid with hot ether gave 1d (43 mg, 38%) as a white solid: mp 202–203 °C; [a]<sub>D</sub><sup>25</sup> –16.3° (c 0.52, MeOH); IR (KBr)  $v_{max}$  3340, 1615 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$ 7.56 (d, J = 9.0 Hz, 1H), 7.26–7.12 (m, 5H), 4.77–4.70 (m, 1H), 4.44–4.42 (m, 1H), 4.16 (br s, 1H), 3.37 (br s, 1H), 3.26-3.20 (m, 1H), 3.12-3.07 (m, 1H), 2.95-2.84 (m, 2H), 2.68–2.60 (m, 1H), 2.43 (dd, J=9.6, 13.8 Hz, 1H), 1.86 (t, J = 12.1 Hz, 1H), 1.81–1.51 (m, 8H), 1.45 (t, J = 11.7 Hz, 1 H), 1.36–0.93 (m, 8H), 0.93–0.72 (m, 2H), 0.86 (d, J = 6.6 Hz, 3H), 0.72 (d, J = 6.6 Hz, 3H) 0.67-0.63 (m, 1H), 0.36–0.34 (m, 2H), 0.06–0.00 (m, 2H); MS (FAB) m/z 504 (MH<sup>+</sup>); Anal. calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub>: C, 71.51; H, 9.81; N, 2.78. Found: C, 71.18; H, 9.94; N, 2.76.

4(R),5(S)-Bis[(tert-butyldimethylsilyl)oxy]-N-[1(S)-(cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-6-phenylhexanamide (19). Using conditions similar to those described for the preparation of 18, 17 (501 mg, 1.33 mmol) was transformed to the corresponding acid in quantitative yield. From this acid (397 mg, 0.78 mmol), 19 (385 mg, 67%) was obtained as a white solid: mp 134–135 °C;  $[\alpha]_{D}^{25}$  –13.9° (c 1.01 MeOH); IR (KBr)  $v_{max}$  3390, 1645 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3)$   $\delta$  7.18–7.11 (m, 5H), 5.42 (d, J = 8.9 Hz, 1H), 4.37 (td, J = 4.3, 9.5 Hz, 1H), 3.78 (t, J = 6.8 Hz, 1H), 3.62 (dd, J=1.9, 8.9 Hz, 1H), 3.30 (td, J=3.2, 8.6 Hz)1H), 3.24 (d, J = 8.3 Hz, 1H), 2.74 (dd, J = 8.0, 13.7 Hz, 1H), 2.65 (dd, J = 5.4, 13.7 Hz, 1H), 2.36 (tt, J = 3.4, 10.0 Hz, 1H), 1.97-1.03 (m, 20H), 0.95 (d, J=7 Hz, 3H), 0.94 (s, 9H), 0.84 (d, J = 6.4 Hz, 3H), 0.83 (s, 9H), 1.01-0.82 (m, 2H), 0.71-0.64 (m, 1H), 0.51-0.39 (m, 2H), 0.17-0.11 (m, 1H), 0.12 (s, 3H), 0.03-0.00 (m, 1H), -0.03 (s, 3H), -0.08 (s, 3H), -0.33 (s, 3H); MS (FAB) m/z 732 (MH<sup>+</sup>); Anal. calcd for C<sub>42</sub>H<sub>77</sub>NO<sub>5</sub>Si<sub>2</sub>: C, 68.82; H, 10.60; N, 1.91. Found: C, 68.66; H, 10.79; N, 1.95.

*N*-[1(*S*)-(Cyclohexylmethyl)-2(*R*),3(*S*)-dihydroxy-5-methylhexyl]-2(*R*)-(cyclopropylmethyl)-4(*R*),5(*S*)-dihydroxy-6phenylhexamide (1c). Compound 1c (63 mg, 56%) was obtained from 19 (164 mg, 0.22 mmol) as a white solid using a method identical to that employed for 1c: mp 134–135 °C;  $[\alpha]_D^{25}$  – 30.5° (*c* 0.51 MeOH); IR (KBr) v<sub>max</sub> 3360 (br), 1615 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  7.56 (d, *J*=8.4 Hz, 1H), 7.26–7.16 (m, 5H), 4.74–4.71 (m, 1H), 4.43–4.39 (m, 1H), 4.14 (br s, 1H), 3.41 (br s, 1H), 3.30 (m, 1H), 3.11 (br s, 1H), 2.94–2.86 (m, 2H), 2.59 (br s, 1H), 2.45 (br s, 1H), 1.83–1.41 (m, 12H), 1.41–1.00 (m, 8H), 0.95–0.70 (m, 2H), 0.87 (d, J=6.3 Hz, 3H), 0.74 (d, J=6.3 Hz, 3H), 0.69–0.58 (m, 1H), 0.35–0.33 (m, 2H), 0.05–0.01 (m, 2H); MS (FAB) m/z 504 (MH<sup>+</sup>); Anal. calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub>: C, 71.51; H, 9.81; N, 2.78. Found: C, 71.15; H, 9.97; N, 2.74.

5(S)-[1(S)-Hydroxy-2-phenylethyl]dihydrofuran-2(3H)-one (20). A solution of benzyl ether 11a (2.08 g, 7.03 mmol) in EtOH (30 mL) containing Pd(OH)<sub>2</sub>/C (820 mg) was stirred under an atmosphere of H<sub>2</sub> for 48 h. The reaction mixture was then filtered through a pad of Celite<sup>®</sup> and the pad washed with EtOH. The combined filtrate and washings were evaporated and the residue so obtained was purified by flash chromatography (Hex/EtOAc, 4/1 then 1/1) to afford alcohol **20** (1.22 g, 84%) as a colorless oil:  $[\alpha]_{D}^{25}$  + 50.8° (c 1.00, CHCl<sub>3</sub>); IR (neat) v<sub>max</sub> 3700-3120, 1850-1680 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.40-7.20 (m, 5H), 4.43 (dt, J = 3.2, 7.3 Hz, 1H), 3.87–3.75 (m, 1H), 3.00-2.85 (m, 2H), 2.80-2.56 (m, 2H), 2.55-2.40 (m, 1H), 2.30–2.14 (m, 2H); MS (EI) m/z 206 (M<sup>+</sup>); Anal. calcd for C<sub>12</sub>H<sub>14</sub>O<sub>3</sub>: C, 69.89; H, 6.84. Found: C, 69.78; H, 7.09.

5(S)-[1(S)-[(tert-Butyldimethylsilyl)oxy]-2-phenylethyl]dihydrofuran-2(3H)-one (21). To a cooled (0°C) solution of hydroxylactone 20 (1.12 g, 5.43 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (25 mL) was added TBSOTf (1.40 mL, 5.98 mmol) and 2,6-lutidine (950 µL, 8.15 mmol). The mixture was stirred at room temperature for 45 min and was then diluted with CH<sub>2</sub>Cl<sub>2</sub>. The organic phase was washed sequentially with a saturated aqueous solution of NaHCO<sub>3</sub> (2 $\times$ ) and brine (2 $\times$ ), dried (MgSO<sub>4</sub>), filtered and evaporated to dryness. The residue was purified by flash chromatography (Hex/EtOAc, 7/3) to give the silvlated derivative 21 (1.50 g, 87%) as a colorless oil:  $[\alpha]_{D}^{25} + 60.8^{\circ}$  (c 1.00, CHCl<sub>3</sub>); IR (film)  $v_{max}$  1780 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.35–7.20 (m, 5H), 4.41–4.34 (m, 1H), 3.92-3.85 (m, 1H), 3.30 (dd, J=8.3, 13.4 Hz, 1H), 2.79 (dd, J = 6.4, 13.4 Hz, 1H), 2.61 (ddd, J = 6.4, 10.2, 17.6 Hz, 1H), 2.45 (ddd, J = 6.4, 10.2, 17.6 Hz, 1H), 2.25-2.00 (m, 2H), 0.90 (s, 9H), 0.09 (s, 3H), -0.01 (s, 3H); MS (EI) m/z 263 (M+t-Bu)<sup>+</sup>; Anal. calcd for C<sub>18</sub>H<sub>28</sub>O<sub>3</sub>Si: C, 67.46; H, 8.81. Found: C, 67.79; H, 9.14.

5(S)-[2-Phenyl-1(S)-[(tert-butyldimethylsilyl)oxy]ethyl]-3(S)-(2-thienylmethyl)dihydrofuran-2(3H)-one (22). A solution of lactone 21 (888 mg, 2.77 mmol) in THF (4 ml) was added (5 min) to a cold solution of LDA in THF (16 mL) [prepared from *i*-Pr<sub>2</sub>NH (322 mg, 3.19 mmol) and a 1.6 M solution of *n*-BuLi in hexanes (2.0 mL, 3.19 mmol)]. The reaction mixture was stirred at -78 °C for 30 min. HMPA (496 mg, 2.77 mmol) was

added dropwise to the mixture followed 10 min later by a solution of 2-(chloromethyl)thiophene<sup>27</sup> (735 mg, 5.54 mmol) in THF (2 mL). The reaction mixture was stirred at -78 °C for 1 h, allowed to warm (45 min) to -50 °C and stirred at that temperature for 1.2 h. MeOH  $(300 \,\mu\text{L})$  and saturated NH<sub>4</sub>Cl  $(10 \,\text{mL})$  were successively added to the mixture. The reaction mixture was diluted with EtOAc (150 mL), washed with  $H_2O(2 \times 50 \text{ mL})$  and brine (50 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. Purification and separation by flash chromatography (Hex/EtOAc, 10/1 then 5/1) gave **22** (512 mg, 44%) as a colorless oil ( $R_{\ell}$  0.43; Hex/EtOAc, 5/1) along with a small amount of the minor diastereomer (43 mg, 4%;  $R_f$ 0.36, Hex/EtOAc, 5/1) and some starting material (204 mg, 23%). **22**:  $[\alpha]_{D}^{25}$  +17.2° (*c* 0.95, MeOH); IR (KBr)  $v_{max}$  1775 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.31–7.19 (m, 5H), 7.14 (dd, J = 1.0, 5.2 Hz, 1H), 6.91 (dd, J = 3.5, 5.2 Hz, 1H), 6.81 (dd, J = 1.0, 3.5 Hz, 1H), 4.22 (dt, J = 2.6, 8.9 Hz, 5-H), 3.81 (ddd, J = 2.6, 5.5, 9.1 Hz, 1'-H), 3.38 (dd, J = 4.1, 14.9 Hz, 1H), 3.10 (qd, J = 4.1, 9.5 Hz, 1H), 2.99 (dd, J=9.1, 13.2 Hz, 1H), 2.94 (dd, J = 9.5, 14.9 Hz, 1H), 2.78 (dd, J = 5.5, 13.2 Hz, 1H), 2.16 (ddd,  $J = 2.6, 9.5, 13.0 \,\text{Hz}, 4\text{-H}$ ), 2.00 (dt, J = 8.9, 9.5, 13.0 Hz, 4-H), 0.89 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H); MS (FAB) m/z 417 (MH<sup>+</sup>); Anal. calcd for C<sub>23</sub>H<sub>32</sub>O<sub>3</sub>SiS: C, 66.30; H, 7.74. Found: C, 66.21; H, 7.83.

4(S),5(S)-Bis[(tert-butyldimethylsilyl)oxy]-N-[1(S)-(cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-6-phenyl-2(S)-(2-thienylmethyl)hexanamide (23). A solution of 22 (599 mg, 1.44 mmol), 1 N NaOH (2.9 mL, 2.9 mmol) in THF (4.0 mL) and MeOH (4.2 mL) was stirred at 0 °C for 3.2 h. 1 N HCl (1.2 mL) was added and the mixture was concentrated under reduced pressure. The residue was suspended in benzene and concentrated  $(4\times)$ . TBSOTf (5.70 g, 21.6 mmol) was added to an ice-cold solution of the residue and 2,6-lutidine (4.62 g, 43.1 mmol) in DMF (7.2 mL). The mixture was stirred at 0°C for 1h and ambient temperature for 14h. The mixture was poured into a cold 10% citric acid solution (150 mL) and extracted with EtOAc (3×75 mL). The combined organic layers were washed with brine (25 mL), dried (MgSO<sub>4</sub>) and concentrated. A mixture of the residue and K<sub>2</sub>CO<sub>3</sub> (796 mg, 5.76 mmol) in MeOH (6.0 mL), H<sub>2</sub>O (7.7 mL) and THF (20 mL) was stirred at room temperature for 2.5h. The mixture was poured into H<sub>2</sub>O (175 mL), acidified by addition of 10% citric acid solution (pH < 3) and extracted with EtOAc  $(3 \times 75 \text{ mL})$ . The combined organic layers were washed with brine (40 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. The residue was partially purified by flash chromatography (Hex/EtOAc, 4/1) to give the acid (649 mg). BOP·PF<sub>6</sub> (575 mg, 1.30 mmol) was added to a solution of the acid, *i*-Pr<sub>2</sub>NEt (382 mg, 2.95 mmol) and 7.HCl (364 mg, 1.30 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6.5 mL). The

mixture was stirred at room temperature for 3h, then diluted with EtOAc (125 mL) and washed with 1 N HCl solution (30 mL), saturated NaHCO<sub>3</sub> solution (30 mL), H<sub>2</sub>O (30 mL) and brine (30 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (Hex/EtOAc, 6/1) gave 23 (582 mg, 52%) as a white solid:  $[\alpha]_{D}^{25}$  -67.0° (c 0.54, MeOH); IR (KBr)  $v_{max}$  3410 (br), 1655 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.27–7.14 (m, 6H), 6.93 (dd, J = 3.5, 5.1 Hz, 1H), 6.86 (br d, J = 3.5 Hz, 1H),5.13 (d, J = 8.6 Hz, 1H), 4.20 (q, J = 7.8 Hz, 1H), 3.74 (ddd, J=1.6, 4.1, 10.3 Hz, 1H), 3.63 (ddd, J=1.9, 4.1, 10.3 Hz, 1H)9.7 Hz, 1H), 3.21 (dd, J = 10.8, 15.0 Hz, 1H), 2.98–3.08 (m, 3H), 2.89 (td, J=3.1, 9.0 Hz, 1H), 2.71–2.66 (m, 1H), 2.47–2.41 (m, 2H), 1.90–1.87 (m, 1H), 1.72–1.11 (m, 14H), 1.00 (s, 9H), 0.95 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H, 0.96–0.79 (m, 2H), 0.78 (s, 9H), 0.19 (s, 3H), 0.16 (s, 3H), -0.19 (s, 3H), -0.60 (s, 3H); MS (FAB) m/z 774 (MH<sup>+</sup>); Anal. calcd for C<sub>43</sub>H<sub>75</sub>NO<sub>5</sub>SSi<sub>2</sub>: C, 66.70; H, 9.76; N, 1.81. Found: C, 66.45; H, 9.97; N, 1.74.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-4(S),5(S)-dihydroxy-6-phenyl-2(S)-(2-thienylmethyl)hexanamide (1e). Compound 23 (577 mg, 0.74 mmol) was dissolved in acetonitrile containing 5% of aqueous HF 40% solution (total volume of 15 mL). After stirring at room temperature for 4h, the reaction mixture was poured into a saturated NaHCO<sub>3</sub> solution (125 mL) and extracted with EtOAc  $(3 \times 75 \text{ mL})$ . The combined organic layers were washed with brine (40 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (Hex/EtOAc, 3/2 then 1/1) gave 1e (254 mg, 62%) as a white solid ( $R_f$  0.41; EtOAc/Hex, 1/ 1) along with a small amount of the corresponding hydroxylactone (55 mg, 25%) ( $R_f$  0.6; EtOAc/Hex, 1/1):  $[\alpha]_{10}^{25} - 35.3^{\circ}$  (c 1.03, MeOH); IR (KBr)  $\nu_{max}$  3390 (br), 1625 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.34–7.20 (m, 5H), 7.16 (dd, J=1.0, 5.1 Hz, 1H), 6.91 (dd, J=3.5, 5.1 Hz, 1H),6.84 (br d, J = 3.5 Hz, 1H), 5.69 (d, J = 8.6 Hz, 1H), 4.32 (d, J = 4.4 Hz, 1H), 4.24 (td, J = 3.6, 9.1 Hz, 1H), 3.643.59 (m, 1H), 3.49–3.47 (m, 1H), 3.26–3.20 (m, 1H), 3.05 (t, J=8.4 Hz, 1 H), 2.96-2.84 (m, 5H), 2.81 (d,J = 5.1 Hz, 1 H), 2.70 (dd, J = 9.2, 13.7 Hz, 1 H), 1.98– 1.60 (m, 9H), 1.53-1.48 (m, 1H), 1.38-1.11 (m, 8H), 0.93 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H), 0.94–0.79 (m, 2H); MS (FAB) m/z 546 (MH<sup>+</sup>); Anal. calcd for C<sub>31</sub>H<sub>47</sub>NO<sub>5</sub>S: C, 68.22; H, 8.68; N, 2.57. Found: C, 67.92; H, 8.82; N, 2.51.

1-(Triphenylmethyl)-1*H*-imidazole-4-propanoic acid (25). Et<sub>3</sub>N (26.73 g, 36.8 mL, 0.26 mol) was added dropwise (12 min) to a solution of  $24^{28}$  (32.58 g, 0.21 mol) and triphenylmethyl chloride (64.80 g, 0.23 mol) in CH<sub>2</sub>Cl<sub>2</sub> (350 mL) and the reaction mixture was then stirred at room temperature for 63 h. After dilution with CH<sub>2</sub>Cl<sub>2</sub> (total volume of 900 mL), the solution was washed with

 $H_2O$  (2×200 mL), saturated NaHCO<sub>3</sub> solution (200 mL) and brine (150 mL), then dried (MgSO<sub>4</sub>), filtered and concentrated. To the oily residue so obtained (102.0 g) in a mixture of THF and H<sub>2</sub>O (630 mL, 210 ml) was added LiOH·H<sub>2</sub>O (22.03 g, 0.52 mol). The reaction mixture was stirred at ambient temperature for 3 h after which time most of the THF was removed in vacuo. The residue was poured into water (1 L) and the solution acidified to pH 2-3 by addition of 10% citric acid solution. The mixture was extracted with  $CH_2Cl_2$  (3×500 mL) and the combined organic extracts were washed with 10% citric acid solution (250 mL), and brine (250 mL), then dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. The residue was triturated with ether (300 mL). Upon filtration 25 was obtained as a white solid (77.14g, 96%): IR (KBr)  $v_{max}$  3400, 3130–2460, 1715 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSOd<sub>6</sub>) δ 7.58 (s, 1H), 7.45-7.36 (m, 9H), 7.10-7.07 (m, 6H), 6.77 (s, 1H), 2.69 (t, J=7.3 Hz, 2H), 2.51 (t, J = 7.3 Hz, 2H); MS (CI) m/z 383 (MH<sup>+</sup>); Anal. calcd for C<sub>25</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>: C, 78.51; H, 5.80; N, 7.32. Found: C, 78.19; H, 5.85; N, 7.39.

4(S)-(1-Methylethyl)-3-[[1-oxo-3-(1-triphenylmethyl)-1Himidazol-4-yl]propyl]-2-oxazolidinone (26). To mechanically stirred suspension of 25 (11.5 g, 30.1 mmol) in THF (120 mL) was added  $Et_3N$  (3.59 g, 35.5 mmol). The solution was cooled to -78°C and pivaloyl chloride (3.79 g, 31.4 mmol) was added dropwise (4 min). The reaction mixture was allowed to warm to 0°C and maintained at this temperature for 75 min before being re-cooled to -78°C. Meanwhile, a 1.6 M solution of n-BuLi in hexane (17.1 mL, 27.3 mmol) was added over a 10 min period to a cold  $(-78 \,^{\circ}\text{C})$  solution of 4(S)-(1methylethyl)-2-oxazolidinone (3.53 g, 27.3 mmol) in THF (110 mL). After 30 min at -78 °C, the solution was quickly added via cannula to the cold  $(-78 \,^{\circ}\text{C})$  solution of the mixed anhydride prepared previously. The reaction mixture was stirred at  $-78 \,^{\circ}$ C for 40 min, then allowed to warm to 0 °C (25 min) and stirred at 0 °C for 30 min. A saturated NH<sub>4</sub>Cl solution (50 mL) was added. The mixture was poured into  $H_2O$  (500 mL) and extracted with EtOAc (3×250 mL). The combined organic extracts were washed with NaHCO<sub>3</sub> solution (125 mL), and brine (125 mL), then dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc, 3/1) gave 26 (11.38 g, 84%) as a pale yellow solid:  $[\alpha]_{D}^{25} + 44.8^{\circ}$  (c 1.04, MeOH); IR (KBr)  $v_{max}$  1780, 1700 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ 7.34-7.30 (m, 10H), 7.15-7.10 (m, 6H), 6.58 (s, 1H), 4.40 (dt, J = 3.6, 8.7 Hz, 1H), 4.23 (t, J = 8.7 Hz, 1H), 4.17 (dd, J=3.6, 8.7 Hz, 1H), 3.34-3.20 (m, 2H), 2.98-2.86(m, 2H), 2.33 (td, J=3.6, 7.0 Hz, 1H), 0.89 (d, J = 7.3 Hz, 3H), 0.82 (d, J = 7.0 Hz, 3H); MS (FAB) m/z494 (MH<sup>+</sup>); Anal. calcd for C<sub>31</sub>H<sub>31</sub>N<sub>3</sub>O<sub>3</sub>: C, 75.43; H, 6.33; N, 8.51. Found: C, 75.45; H, 6.46; N, 8.45.

4(S)-(1-Methylethyl)-3-[1-oxo-6-phenyl-2(S)-[[(1-triphenylmethyl)-1H-imidazol-4-yl]methyl]-4-hexenyl]-2-oxazolidinone (27). A solution of 26 (9.52 g, 19.3 mmol) in THF (20 mL) was added (10 min) to a cold  $(-78 \degree \text{C})$  solution of NaHMDS (19.5 mL of 1.09 M solution in THF, 21.2 mmol) in THF (85 mL). The mixture was stirred at -78 °C for 1 h, before a solution of 4 (6.11 g, 28.9 mmol) in THF (5mL) was added (10min). After stirring at -78 °C for 3.5 h, a saturated NH<sub>4</sub>Cl solution (25 mL) was introduced and the mixture allowed to warm to  $0^{\circ}$ C. The mixture was poured into H<sub>2</sub>O (600 mL) and extracted with EtOAc (3×200 mL). The combined organic extracts were washed with saturated NaHCO<sub>3</sub> solution (150 mL) and brine (150 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (Hex/EtOAc, 1/1) gave 27 (5.75 g, 48%) contaminated with traces of chiral auxiliary (77 mg) as well as starting material 26 (3.44 g, 36%). An analytical sample of 27 was obtained by flash chromatography  $(CHCl_3/EtOH, 15/1): [\alpha]_D^{25} + 27.4^{\circ} (c \ 1.00, MeOH); IR$ (KBr)  $v_{max}$  1780, 1700, 1670 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ 8.20 (d, J = 1.4 Hz, 1H), 7.42–7.36 (m, 9H), 7.21 (t, J = 7.3 Hz, 1H), 7.14–7.06 (m, 10H), 6.61 (d, J = 1.4 Hz, 1H), 5.50–5.36 (m, 2H), 4.45–4.41 (m, 1H), 4.31 (t, J=8.9 Hz, 1H), 4.21–4.17 (m, 1H), 4.13 (dd, J=2.9, 8.9 Hz, 1H), 3.25 (d, J = 6.0 Hz, 2H), 3.08 (dd, J = 6.8, 15.3 Hz, 1H), 3.0 (dd, J = 5.4, 15.3 Hz, 1H), 2.44–2.37 (m, 1H), 2.26-2.18 (m, 2H), 0.85 (d, J = 7.0 Hz, 3H), 0.77 (d, J = 7.0 Hz, 3H); MS (FAB) m/z 624 (MH<sup>+</sup>); Anal. calcd for C<sub>41</sub>H<sub>41</sub>N<sub>3</sub>O<sub>3</sub>: C, 78.94; H, 6.62; N, 6.74. Found: C, 78.58; H, 6.64; N, 6.65.

5(S)-[1(S)- and 5(R)-[1(R)-Hydroxy-2-phenylethyl]-3(R)-[[1-(triphenylmethyl)-1H-imidazol-4-yl]methyl]dihydrofuran-2(3H)-one (28a,b). A solution of OsO<sub>4</sub> (109 mg, 0.43 mmol) in THF (2.2 mL) was added to a solution of 27 (5.41 g, 8.67 mmol) and NMMO $\cdot$ H<sub>2</sub>O (1.47 g, 10.8 mmol) in THF (87 mL) and  $H_2O$  (3.5 mL). The reaction mixture was stirred at room temperature for 60 min. 10% NaHSO<sub>3</sub> solution (10 mL) was added and the mixture stirred for 15 min. The mixture was poured into  $H_2O(600 \text{ mL})$  and extracted with EtOAc ( $3 \times 200 \text{ mL}$ ). The combined organic extracts were washed with brine (150 mL), dried (MgSO<sub>4</sub>), filtered and concentrated to afford a gummy residue. To a solution of this residue (6.1 g) in THF (130 mL) and  $H_2O$  (43 mL) at 0 °C was added a 30% H<sub>2</sub>O<sub>2</sub> solution (4.9 mL, 43.3 mmol) followed by LiOH  $H_2O$  (728 mg, 17.3 mmol). The reaction mixture was stirred at 0 °C for 45 min. Water (5 mL) and solid Na<sub>2</sub>SO<sub>3</sub> were added until complete disappearance of peroxide (monitored with KI paper). Most of the THF was then removed under reduced pressure. The residual aqueous solution was diluted with H<sub>2</sub>O (250 mL) and a 10% citric acid solution (~150 mL) and the resulting was extracted with EtOAc (3×200 mL). The combined organic extracts were washed with brine (75 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. A solution of the residue (6.5g) in THF (175mL) was treated with TFA (5.2 mL) at 0 °C for 3.75 h. The reaction mixture was then poured into H<sub>2</sub>O (1.2 L) and extracted with EtOAc (2×300 mL). The combined organic extracts were washed with saturated NaHCO<sub>3</sub> solution (2×200 mL), brine (150 mL) then dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (EtOAc/Hex, 4/1) gave 28 (1/1 mixture of diastereomers) as a white solid (2.74 g, 60%): IR (KBr)  $v_{max}$  3150 (br), 1765 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.35–7.19 (m, 30H), 7.12–7.10 (m, 12H), 6.61 (s, 1H), 6.60 (s, 1H), 4.33 (ddd, J = 3.5, 6.7, 9.8 Hz, 1H), 4.23 (ddd, J = 3.5, 4.8)8.3 Hz, 1H), 3.78–3.71 (m, 2H), 3.18–2.97, 2.90–2.82 (m, 9H), 2.77 (dd, J = 7.9, 14.6 Hz, 1H), 2.32–2.12 (m, 4H), 1.76 (br, 2H); MS (FAB) m/z 529 (MH<sup>+</sup>).

5(S)-[1(S)-(Benzoyloxy)-2-phenylethyl]-3(R)-[[1-(triphenylmethyl)-1H-imidazol-4-yl]methyl|dihydrofuran-2(3H)-one (29a) and 5(R)-[1(R)-(benzoyloxy)-2-phenylethyl]-3-(R)-[[1-(triphenylmethyl)-1H-imidazol-4-yl]methyl]dihydrofuran-2(3H)-one (29b). Benzovl chloride (1.02 g, 7.26 mmol) was added (10 min) to an ice-cold solution of 28a,b  $(2.56 g, 4.84 \text{ mmol}), \text{ Et}_3 N$  (1.96 g, 19.4 mmol) and DMAP (296 mg, 2.42 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (81 mL). The reaction mixture was stirred at 0 °C for 2 h. H<sub>2</sub>O (5 mL) was added, the mixture was taken up in EtOAc (400 mL) and washed successively with 1 N HCl solution (100 mL), NaHCO<sub>3</sub> solution (100 mL) and brine (100 mL) then dried (MgSO<sub>4</sub>), filtered and concentrated. Purification and separation by flash chromatography (Hex/EtOAc, 1/1 then 1/3) afforded a mixture of 29a  $(R_f 0.21; \text{ EtOAc/Hex, 1/1})$  and **29b**  $(R_f 0.14; \text{ EtOAc/})$ Hex, 1/1). A second purification by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/EtOAc, 4/1) delivered pure 29a (1.04 g, 34%) and 29b (1.17g, 38%) both as white solids along with a small mixed fraction (0.44 g). **29a**:  $[\alpha]_{D}^{25} + 4.4^{\circ}$  (c 1.01, MeOH); IR (KBr)  $v_{max}$  1775, 1720 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3) \delta 7.98 (dd_J J = 1.3, 7.8 Hz, 2H), 7.57 (tt, J = 1.$ 7.8 Hz, 1H), 7.43 (t, J=7.8 Hz, 2H), 7.31-7.20 (m, 15H), 7.10–7.06 (m, 6H), 6.53 (d, J = 1.3 Hz, 1H), 5.31 (td, J = 2.2, 7.3 Hz, 1'-H), 4.45 (ddd, J = 2.2, 4.1, 8.9 Hz, 5-H), 3.12 (d, J = 7.3 Hz, 2H), 3.02-2.94 (m, 1H), 2.94 (dd, J=4.5, 14.4 Hz, 1H), 2.80 (dd, J=7.5, 14.4 Hz, 1H), 2.25 (d~t, J = 8.0, 8.9, 13.5 Hz, 4-H), 2.11 (ddd, J = 4.1,9.6, 13.5 Hz, 4-H); MS (FAB) m/z 633 (MH<sup>+</sup>); Anal. calcd for  $C_{42}H_{36}N_2O_4$ : C, 79.72; H, 5.73; N, 4.43. Found: C, 80.13; H, 5.81; N, 4.39. **29b**:  $[\alpha]_{D}^{25} - 8.8^{\circ}$  (c 1.01 MeOH); IR (KBr)  $v_{max}$  1775, 1720 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3)$   $\delta$  7.97 (dd, J = 1.3, 7.8 Hz, 2H), 7.51 (tt, J = 1.3, 7.8 Hz, 1H), 7.35 (t, J=7.8 Hz, 2H), 7.32-7.19 (m, 15H), 7.09–7.04 (m, 6H), 6.47 (d, J = 1.3 Hz, 1H), 5.34 (td, J = 3.4, 7.1 Hz, 1'-H), 4.50 (ddd, J = 3.4, 6.4, 9.9 Hz, 5-H), 3.19-3.03 (m, 4H), 2.60 (dd, J=8.6, 14.0 Hz, 1H), 2.31 (ddd, J = 6.4, 8.9, 12.7 Hz, 4-H), 1.92–1.83 (m, 4-H); MS (FAB) m/z 633 (MH<sup>+</sup>); Anal. calcd for  $C_{42}H_{36}N_2O_4$ : C, 79.72; H, 5.73; N, 4.43. Found: C, 79.40; H, 5.82; N, 4.44.

4(S),5(S)-Bisl(tert-butyldimethylsilyl)oxy]-N-[1(S)-(cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-6-phenyl-2(R)-[[1-(triphenylmethyl)-1H-imidazol-4-yl]methyl]hexanamide (30). A solution of 29a (0.80g, 1.26 mmol) and LiOH·H<sub>2</sub>O (318 mg, 7.59 mmol) in THF and H<sub>2</sub>O (19 mL and 6.3 mL) was stirred at ambient temperature for 15h. The mixture was concentrated under reduced pressure, and residual solvent removed by azeotropic distillation with benzene. TBSOTf (4.05g, 37.8 mmol) was added to an ice-cold solution of the residue and 2,6lutidine (6.66 g, 25.2 mmol) in DMF (12.6 mL). The mixture was stirred at 0 °C for 1.5 h before being poured into a saturated NaHCO3 solution (250 mL) and extracted with ether (3×125 mL). The combined organic extracts were successively washed with 1 N HCl solution  $(2 \times 125 \text{ mL})$ , H<sub>2</sub>O  $(2 \times 125 \text{ mL})$ , brine (125 mL), then dried (MgSO<sub>4</sub>), filtered and concentrated. A mixture of the residue and 1 N NaOH solution (5mL) in THF (25 mL) was stirred at 0 °C for 1 h. Thereafter, the mixture was poured into a 0.1 N HCl solution (250 mL) and extracted with ether  $(3 \times 125 \text{ mL})$ . The combined etherial layers were washed with a saturated NaHCO<sub>3</sub> solution (70 mL), 0.1 N HCl (100 mL), brine (100 mL), then dried (MgSO<sub>4</sub>), filtered and concentrated. The residue was partially purified by flash chromatography (Hex/EtOAc, 1/1) to give the desired acid (0.80 g). BOP PF<sub>6</sub> (479 mg, 1.08 mmol) was added to a solution of this acid, i-Pr<sub>2</sub>NEt (227 mg, 1.75 mmol) and 7 (264 mg, 1.08 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5.2 mL). The mixture was stirred at room temperature for 1.7 h. The reaction mixture was diluted with EtOAc (150 mL) and the solution washed successively with a 1 N HCl solution (50 mL), a saturated NaHCO<sub>3</sub> solution (50 mL) and brine (50 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. The residue was purified by flash chromatography (Hex/EtOAc, 2/1) to give **30** (0.76 g, 60%) as a white solid:  $[\alpha]_D^{25} - 43.5^\circ$  (c 1.02, MeOH); IR (KBr) v<sub>max</sub> 3400 (br), 1675, 1655 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.15 (d, J=1.6 Hz, 1H), 7.41–7.37 (m, 9H), 7.29 (t, J = 7.2 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1 H), 7.14 (d, J = 7.2 Hz, 2 H), 7.11–7.08 (m, 6H), 7.03 (d, J = 9.5 Hz, 1H), 6.84 (d, J = 1.6 Hz, 1H), 4.35 (br q, J = 8.0 Hz, 1H), 3.69 (dd, J = 4.1, 9.2 Hz, 1H), 3.53 (dd, J = 4.4, 10.2 Hz, 1H), 3.33 - 3.23 (m, 3H), 2.79 - 3.532.73 (m, 2H), 2.40–2.34 (m, 1H), 2.23 (dd, J=10.8, 13.0 Hz, 1H), 1.87–1.05 (m, 15H), 0.92 (d, J = 6.7 Hz, 3H), 0.84 (s, 9H), 0.83 (d, J = 6.4 Hz, 3H), 0.93–0.82 (m, 2H), 0.74 (s, 9H), 0.15, 0.10, -0.21, -0.63 (4s, 12H); MS (FAB) m/z 1000 (MH<sup>+</sup>).

*N*-[1(*S*)-(Cyclohexylmethyl)-2(*R*),3(*S*)-dihydroxy-5-methylhexyl]-4(*S*),5(*S*)-dihydroxy-6-phenyl-2(*R*)-{{1-(triphenylmethyl)-1*H*-imidazol-4-yl]methyl]hexanamide (31). Compound 30 (0.52 g, 0.52 mmol) was dissolved in acetonitrile containing 10% of aqueous solution of HF 40% (total volume of 10 mL). The reaction mixture was stirred at room temperature for 1.8 h then quenched by addition of a saturated NaHCO<sub>3</sub> solution (100 mL). The mixture was extracted with EtOAc (150 mL). The organic layer was washed with brine (50 mL), dried (MgSO<sub>4</sub>), filtered and concentrated. Purification by flash chromatography (CHCl<sub>3</sub>/EtOH, 15/1) gave 31 (316 mg, 79%) as a white solid:  $[\alpha]_{D}^{25} - 26.9^{\circ}$  (c 0.90, MeOH); IR (KBr)  $v_{max}$  3380 (br), 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.39 (d, J = 7.3 Hz, 1H), 7.35–7.30 (m, 9H), 7.27 (t, J = 7.3 Hz, 2H), 7.21–7.17 (m, 3H), 7.11–7.07 (m, 6H), 6.68 (d, J=9.4 Hz, 1H), 6.57 (d, J=1.3 Hz, 1H), 4.38 (br td, J = 5.3, 9.4 Hz, 1H), 3.60 (dt, J = 4.3, 8.9 Hz, 1H), 3.53 (dt, J=3.7, 10.2 Hz, 1H), 3.30 (td, J = 1.9, 9.1 Hz, 1H), 3.15 (d, J = 8.3 Hz, 1H), 2.96–2.89 (m, 2H), 2.85 (dd, J=4.3, 13.8 Hz, 1H), 2.74 (dd, J = 8.8, 13.8 Hz, 1H), 2.62 (dd, J = 3.2, 14.6 Hz, 1H), 2.01-1.94 (m, 1H), 1.87-1.13 (m, 15H), 0.97-0.80 (m, 2H), 0.87 (d, J = 6.7 Hz, 3H), 0.71 (d, J = 6.7 Hz, 3H); MS (FAB) m/z 772 (MH<sup>+</sup>); Anal. calcd for C49H61N3O5: C, 76.23; H, 7.96; N, 5.44. Found: C, 76.32; H, 8.04; N, 5.45.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-4(S),5(S)-dihydroxy-2(R)-[(1H-imidazol-4-yl)methyl]-6-phenylhexanamide (1f). A solution of 31 (257 mg, 0.33 mmol) in MeOH (6.6 mL) was stirred under an atmosphere of H<sub>2</sub> in presence of moist 20% Pd(OH)<sub>2</sub>/C (103 mg) at room temperature for 54 h. The reaction mixture was filtered through a pad of Celite® and the resulting solution was concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/MeOH, 4/1) to give 1f (154 mg, 88%) as a white solid:  $[\alpha]_D^{25}$  –39.6° (c 0.83, MeOH); IR (KBr)  $\nu_{max}$  3350 (br),  $1630 \text{ cm}^{-1}$ ; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  7.54 (d, J = 8.7 Hz, 1 H, 7.45 (s, 1 H), 7.24–7.15 (m, 5 H), 6.76 (br s, 1H), 4.70 (d, J = 6.9 Hz, 1H), 4.38 (d, J = 6.0 Hz, 1H), 4.30 (d, J = 5.4 Hz, 1H), 4.11 (dt, J = 4.8, 9.0 Hz, 1H), 3.44-3.39 (m, 1H), 3.02-2.74 (m, 4H), 2.70 (dd, J=3.6, 13.4 Hz, 1H), 2.55 (dd, J = 8.8, 13.4 Hz, 1H), 1.77–1.06 (m, 17H), 0.94-0.70 (m, 2H), 0.85 (d, J=6.6 Hz, 3H), 0.74 (d, J = 6.6 Hz, 3H); MS (FAB) m/z 530 (MH<sup>+</sup>); Anal. calcd for C<sub>30</sub>H<sub>47</sub>N<sub>3</sub>O<sub>5</sub>: C, 68.02; H, 8.94; N, 7.93. Found: C, 67.11; H, 8.98; N, 7.82.

3-[2(R)-(Cyclopropylmethyl)-1,3-dioxobutyl]-4(S)-(phenylmethyl)-2-oxazolidinone (32). To a solution of *i*-Pr<sub>2</sub>NH (1.24 mL, 9.43 mmol) in THF (15 mL) at 0 °C was added 1.1 M *n*-BuLi in hexanes (8.57 mL, 9.43 mmol). The solution so obtained was stirred for 30 min at 0 °C and then cooled to -78 °C before being transferred via cannula to a cooled (-78 °C) solution of oxazolidinone 3 (2.35 g, 8.58 mmol) in THF (10 mL). The resulting enolate was stirred for 45 min at that temperature and was then cannulated into acetyl chloride (0.73 mL,

10.3 mmol). This solution was then allowed to warm to room temperature and stirred 15 min. The reaction was quenched by the addition of a saturated aqueous solution of NH<sub>4</sub>Cl. EtOAc was added, the organic phase was separated, washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (Hex/EtOAc, 4/1) afforded the desired product 32 (1.386 g, 51%) as a 49/1 mixture of diastereomers:  $[\alpha]_{D}^{25}$  $-19.2^{\circ}$  (c 1.54, CHCl<sub>3</sub>); IR (neat)  $v_{max}$  3000, 1775, 1720, 1700 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.39–7.20 (m, 5H), 4.68 (m, 2H), 4.19 (m, 2H), 3.42 (dd, J = 3.2, 13.5 Hz, 1H), 2.77 (dd, J = 9.9, 13.3 Hz, 1H), 2.35 (s, 3H), 2.08 (m, 1H), 1.55 (m, 1H), 0.88 (m, 1H), 0.52 (m, 2H), 0.24-0.08 (m, 2H); MS (CI) m/z 333 (MNH<sub>4</sub><sup>+</sup>), 316 (MH<sup>+</sup>); Anal. calcd for C<sub>18</sub>H<sub>21</sub>NO<sub>4</sub>: C, 68.55; H, 6.71, N, 4.44. Found: C, 68.69; H, 6.72; N, 4.47.

3-[2(R)-(Cyclopropylmethyl)-1,3-dioxo-5(S and R)-hydroxy-6-phenylhexyl]-4(S)-(phenylmethyl)-2-oxazolidinone (33 and 34). To a cooled  $(-15^{\circ}C)$  solution of the  $\beta$ -ketoimide 32 (1.00 g, 3.17 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (25 mL) were added a 1.0 M solution of TiCl<sub>4</sub> (4.2 mL, 4.19 mmol) followed by *i*-Pr<sub>2</sub>NEt (0.73 mL, 4.19 mmol). The solution was stirred 1 h at -15 °C then cooled to -78 °C. Phenylacetaldehyde (0.50 mL, 4.19 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was then added and the mixture was warmed to -10 °C and stirred for 1 h. The reaction was quenched by the addition of a saturated aqueous solution of NH<sub>4</sub>Cl. The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic extracts were washed with brine and then dried (MgSO<sub>4</sub>). Removal of the solvent gave the  $\beta$ -hydroxyketones 33 and 34 (1.13 g, 82%) as a 2/1 mixture of isomers after purification by flash chromatography (Hex/EtOAc, 4/1). Analytical samples of 33 and 34 were obtained from a second chromatographic separation. 33 (3*S*, major):  $[\alpha]_{D}^{25}$  + 30.8° (c 1.28, MeOH); IR (film)  $v_{max}$  3540 (br), 3040, 1775, 1725,  $1690 \text{ cm}^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.39–7.18 (m, 10H), 4.69 (m, 1H), 4.59 (dd, J = 4.4, 9.0 Hz, 1H), 4.41 (m, 1H), 4.20 (m, 2H), 3.39 (dd, J = 3.5, 13.5 Hz, 1H), 2.92 (dd, J=2.9, 17.5 Hz, 1H), 2.82-2.71 (m, 4H), 2.08 (m, 4H), 2.08 (m, 4H))1H), 1.51 (m, 1H), 0.85 (m, 1H), 0.55-0.41 (m, 2H), 0.22–0.05 (m, 2H); MS (CI) m/z 436 (MH<sup>+</sup>); HRMS (EI) calcd for  $C_{26}H_{27}NO_4$  (MH<sup>+</sup>-H<sub>2</sub>O) 417.1940. Found: 417.1935. 34 (3R, minor): IR (film) v<sub>max</sub> 3530, 1775, 1715, 1690, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.35– 7.17 (m, 10H), 4.70–4.65 (m, 1H), 4.63 (dd, J=8.6, 4.8 Hz, 1H), 4.35-4.31 (m, 1H), 4.20-4.16 (m, 2H), 3.37 (dd, J = 13.7, 3.2 Hz, 1H), 2.99 (d, J = 2.9 Hz, 1H), 2.90(dd, J=13.7, 7.0 Hz, 1H), 2.88 (dd, J=17.2, 8.6 Hz,1H), 2.78 (dd, J=4.1, 3.2 Hz, 1H), 2.75-2.72 (m, 2H), 2.03-1.96 (m, 1H), 1.50 (ddd, J = 14.0, 7.6, 4.8 Hz, 1H), 0.76-0.72 (m, 1H), 0.44-0.37 (m, 2H), 0.13-0.07 (m, 1H), 0.05–0.01 (m, 1H); MS (FAB) m/z 436 (MH<sup>+</sup>); Anal. calcd for C<sub>26</sub>H<sub>29</sub>NO<sub>5</sub>: C, 71.70; H, 6.71; N, 3.22. Found: C, 71.90; H, 6.79; N, 3.30.

3-[2(R)-(Cyclopropylmethyl)-3(R),5(S)-dihydroxy-3,5-Oisopropylidene-6-phenyl-1-oxohexyl]-4(S)-(phenylmethyl)-2-oxazolidinone (35). A solution of 33 (110 mg, 0.25 mmol) and NaBH(OAc)<sub>3</sub> (80.5 mg, 0.38 mmol) in AcOH (3 mL) was stirred at room temperature for 1 h. The reaction was quenched by addition of saturated NaHCO<sub>3</sub> and extracted with EtOAc. The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>), filtered and concentrated. The crude diol obtained was dissolved in DMF (1mL) and 2,2-dimethoxypropane (1 mL), a catalytic amount of p-TsOH was added and the mixture was stirred at room temperature for 1 h. 0.5 N HCl was added and the solution was extracted with ether. The organic phase was washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography (Hex/EtOAc, 9/1) gave the desired acetonide **35** (81 mg, 69%):  $[\alpha]_{D}^{25}$  +125.3° (c 0.81, MeOH); IR (CCl<sub>4</sub>)  $v_{max}$  1785, 1695 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) & 7.38–7.18 (m, 10H), 4.78 (m, 1H), 4.28 (dt, J = 3.7, 10.1 Hz, 1H), 4.21–4.07 (m, 4H), 3.15 (dd, J = 3.2, 13.6 Hz, 1H), 2.94 (dd, J = 7.2, 13.9 Hz, 1H), 2.85 (dd, J = 8.3, 13.6 Hz, 1H), 2.70 (dd, J = 6.3, 13.9 Hz, 1H), 1.80-1.60 (m, 3H), 1.21 (s, 3H), 1.28 (s, 3H), 0.71 (m, 1H), 0.41–0.29 (m, 2H), 0.00 (m, 2H); MS (FAB) m/ z 478 (MH<sup>+</sup>); Anal. calcd for C<sub>29</sub>H<sub>35</sub>NO<sub>5</sub>: C, 72.93; H, 7.39; N, 2.93. Found: C, 73.23; H, 7.49; N, 2.84.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexvll-2(R)-(cvclopropylmethyl)-3(R),5(S)-dihvdroxy-3,5-O-isopropylidene-6-phenylhexanamide (37). Oxazolidinone 35 (686 mg, 1.43 mmol) was dissolved in a cooled (0 °C) mixture of THF/H<sub>2</sub>O (3/1, 28 mL) and was treated with 30% H<sub>2</sub>O<sub>2</sub> (1.30 mL, 11.5 mmol) followed by LiOH (70 mg, 2.92 mmol). The reaction was stirred at 0°C for 7h then at room temperature overnight.  $Na_2SO_3$  was added to destroy the excess peroxide. The THF was removed and the solution was acidified with 0.1 N HCl and quickly extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated to give 36 in quantitative yield. To a solution of a portion of the crude acid 36 (389 mg, 1.22 mmol) and *i*-Pr<sub>2</sub>NEt (0.64 mL, 3.7 mmol) in CH<sub>3</sub>CN (30 mL) at 25 °C was added a solution of 7 (HCl 374 mg, 1.34 mmol) in CH<sub>3</sub>CN salt,  $(10 \text{ mL} + 0.1 \text{ mL} \text{ i-} Pr_2 \text{NEt} \text{ to aid dissolution})$  and BOP·PF<sub>6</sub> (600 mg, 1.34 mmol). After 1 h of stirring at room temperature, the solution was filtered and the resulting solid was purified by flash chromatography (Hex/EtOAc, 3/1) to give the desired pure product 37 (180 mg, 27% from **35**) as a white solid:  $[\alpha]_{p}^{25} + 2.8^{\circ}$  (c 0.50, MeOH); IR (CHCl<sub>3</sub>)  $v_{max}$  3640, 3340, 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.31–7.18 (m, 5H), 6.52 (d, J = 9.2 Hz, 1H), 4.59 (d, J = 3.5 Hz, 1H), 4.29 (m, 1H), 4.05 (m, 2H), 3.21 (m, 2H), 2.84 (dd, J = 7.6, 14.3 Hz, 1H), 2.70 (dd, J = 5.1, 14.0 Hz, 1H), 2.36 (dd, J = 2.2, 5.4 Hz, 1H), 1.95-1.09 (m, 24H), 0.93 (d, J=6.7 Hz,

3H), 1.00–0.80 (m, 3H), 0.82 (d, J=6.7 Hz, 3H), 0.52 (m, 1H), 0.51–0.41 (m, 2H), 0.12–0.00 (m, 2H); HRMS (FAB) calcd for C<sub>33</sub>H<sub>54</sub>NO<sub>5</sub> (MH<sup>+</sup>) 544.4002. Found: 544.3985.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-3(R),5(S)-dihydroxy-6phenylhexanamide (2a). A solution of acetonide 37 (18 mg, 0.033 mmol) in MeOH (10 mL + 2 drops of)water) was treated with a trace of Amberlite\* acidic ion exchange resin (IR-120, prewashed with MeOH). The solution was stirred for 2h at room temperature and then heated for 3 h at 50 °C. The resin was removed by filtration and the filtrate stripped of solvent under reduced pressure. Flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/ MeOH, 20/1) afforded the desired product 2a (11 mg, 66%) as a white solid:  $[\alpha]_{D}^{25} - 15.9^{\circ}$  (c 0.55, MeOH); IR (KBr)  $v_{max}$  3500, 3400, 3290, 1680, 1620 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3)$   $\delta$  7.59 (d, J=9.0 Hz, 1H), 7.27–7.14 (m, 5H), 4.73 (d, J = 6.3 Hz, 1H), 4.65 (d, J = 3.9 Hz, 1H), 4.42 (d, J = 6.0 Hz, 1 H), 4.32 (d, J = 7.2 Hz, 1 H), 4.15 (m, 1 H), 3.87-3.80 (m, 2H), 3.30 (s, 2H), 3.14 (m, 1H), 2.93 (m, 1H), 2.63 (m, 2H), 2.50 (m, 1H), 2.38 (m, 1H), 1.82–1.05 (m, 20H), 0.85 (d, J = 6.6 Hz, 3H), 0.74 (d, J = 6.6 Hz, 3H), 0.96-0.70 (m, 3H), 0.70-0.60 (m, 1H), 0.40-0.30  $(m, 2H), 0.10-0.00 (m, 2H); MS (FAB) m/z 504 (MH^+);$ Anal. calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub>·H<sub>2</sub>O: C, 69.06; H, 9.85; N, 2.68. Found: C, 69.28; H, 9.67; N, 2.78.

3-[2(R)-(Cyclopropylmethyl)-3(S),5(S)-dihydroxy-3,5-Oisopropylidene-6-phenyl-1-oxohexyl]-4(S)-(phenylmethyl)-**2-oxazolidinone (38).** To a cooled  $(-78 \,^{\circ}\text{C})$  solution of β-hydroxyketone 33 (100 mg, 0.23 mmol) in THF (3 mL) was added a 1.0 M solution of DIBAL in hexane (0.25 mL, 0.25 mmol). A small amount of DIBAL (0.1 mL, 0.1 mmol) was then added every 10 min until the reaction was determined to be complete by TLC. The reaction was then stopped by the addition of MeOH and allowed to warm to room temperature. The solution was diluted with EtOAc, washed with a saturated solution of NH<sub>4</sub>Cl, and filtered through a pad of Celite<sup>\*</sup>. The filtrate was washed with brine, dried (MgSO<sub>4</sub>) and concentrated to give a residue which was dissolved in a 1/1 mixture of DMF/2,2-dimethoxypropane (4mL) and treated with a catalytic amount of *p*-TsOH. After stirring for 2h at room temperature, the reaction was stopped by the addition of NH<sub>4</sub>Cl. The solution was then extracted with ether and the combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (Hex/EtOAc, 10/1) afforded the desired syn acetonide 38 (25 mg, 23% from **33**):  $[\alpha]_{D}^{25}$  + 54.3° (*c* 0.56, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>)  $v_{max}$  1785, 1695 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ 7.38-7.09 (m, 10 H), 4.66 (m, 1H), 4.24-4.01 (m, 5H), 3.17 (dd, J = 2.5, 13.4 Hz, 1H), 2.94 (dd, J = 5.7, 13.3 Hz)1H), 2.60 (dd, J = 7.3, 13.5 Hz, 1H), 2.54 (dd, J = 10.2, 13.0 Hz, 1H), 1.80 (m, 1H), 1.55–1.41 (m, 3H), 1.43 (s, 3H), 1.41 (s, 3H), 0.72–0.61 (m, 1H), 0.41–0.30 (m, 2H), 0.10–0.00 (m, 2H); MS (FAB) m/z 500 (MNa<sup>+</sup>); Anal. calcd for C<sub>29</sub>H<sub>35</sub>NO<sub>5</sub>: C, 72.93; H, 7.39; N, 2.93. Found: C, 73.08; H, 7.58; N, 3.01.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-3(S),5(S)-dihydroxy-3,5-O-isopropylidene-6-phenylhexanamide (40). Compound 38 (430 mg, 0.90 mmol) was converted to acid 39 using a procedure similar to that described above for 36. Acid **39** (258 mg, 0.65 mmol) was then immediately coupled to 7 as described for compound 37 to give 40. Compound 40 (237 mg, 68% from 38) was isolated as a white solid after flash chromatography (Hex/EtOAc, 4/1):  $[\alpha]_{D}^{25}$  -18.7° (c 0.70, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>) v<sub>max</sub> 3400, 1645 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.31–7.14 (m, 5H), 6.21 (d, J=9.2 Hz, 1H), 4.40 (m, 2H), 3.99 (m, 2H), 3.23 (m, 2H)2H), 2.89 (dd, J = 6.7, 13.6 Hz, 1H), 2.63 (dd, J = 6.4, 13.8 Hz, 1H), 2.43 (m, 1H), 1.98-0.80 (m, 26H), 0.94 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H), 0.78–0.68 (m, 1H), 0.50-0.38 (m, 2H), 0.15-0.02 (m, 2H); MS (FAB) m/z 544 (MH<sup>+</sup>); Anal. calcd for C<sub>33</sub>H<sub>53</sub>NO<sub>5</sub>: C, 73.02; H, 9.66; N, 2.58. Found: C, 72.73; H, 10.01; N, 2.47.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-3(S),5(S)-dihydroxy-6phenylhexanamide (2b). Acetonide 40 (120 mg, 0.22 mmol) was dissolved in MeOH (8 mL) to which was added a small amount of Amberlite® acidic resin and H<sub>2</sub>O (6 drops). The solution was stirred at 60 °C overnight. After filtration to remove solids and evaporation of the solvent, the desired diol 2b (112 mg, 100%) was obtained as a white solid:  $[\alpha]_{\rm D}^{25} - 15.4^{\circ}$  (c 0.68, MeOH); IR (KBr)  $v_{max}$  3400, (br), 1620, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.39–7.18 (m, 5H), 6.14 (d, J=8.6 Hz, 1H), 4.38 (m, 2H), 4.04 (m, 2H), 3.24 (m, 2H), 2.82 (dd J = 4.5, 13.5 Hz, 1H), 2.69 (dd, J = 8.6, 13.7 Hz, 1H), 2.46 (m, 2H), 0.84–2.0 (m, 21H), 0.94 (d, J = 6.6 Hz, 3H), 0.84 (d, 3H, J = 6.7 Hz), 0.73 (m, 1H), 0.52–0.41 (m, 2H), 0.21-0.00 (m, 2H); HRMS (FAB) calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub> (MH<sup>+</sup>): 503.3611. Found: 503.3595.

3-[2(*R*)-(Cyclopropylmethyl)-3(*S*),5(*R*)-dihydroxy-3,5-*O*isopropylidene-6-phenyl-1-oxohexyl]-4(*S*)-(phenylmethyl)-2-oxazolidinone (41). The  $\beta$ -hydroxyketone 34 (208 mg, 0.48 mmol) was reduced to the desired diol 41 using similar reaction conditions to those described for 35. The crude material was immediately converted to the acetonide using the procedure described for compound 35. The desired compound 41 (93 mg, 41%) was obtained in pure form after flash chromatography (Hex/ EtOAc, 9/1): [ $\alpha$ ]<sub>p</sub><sup>25</sup> +55.5° (*c* 0.355, MeOH); IR (KBr)  $\nu_{max}$  1760, 1690, 1605 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.39– 7.15 (m, 10H), 4.67 (m, 1H), 4.25 (m, 1H), 4.13 (m, 4H), 3.22 (dd, *J* = 3.3, 13.3 Hz, 1H), 2.92 (dd, *J* = 7.6, 13.7 Hz, 1H), 2.65 (dd, J = 6.6, 13.7 Hz, 1H), 2.50 (dd, J = 10.1, 13.2 Hz, 1H), 1.81 (m, 1H), 1.69 (m, 2H), 1.50 (m, 1H), 1.38 (s, 3H), 1.31 (s, 3H), 0.70 (m, 1H), 0.42–0.32 (m, 2H), 0.11–0.00 (m, 2H); MS (FAB) m/z 478 (MH<sup>+</sup>); Anal. calcd for C<sub>29</sub>H<sub>35</sub>NO<sub>5</sub>: C, 72.93; H, 7.39; N, 2.93. Found: C, 72.89; H, 7.52; N, 2.90.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyll-2(R)-(cyclopropylmethyl)-3(R),5(S)-dihydroxy-3,5-O-isopropylidene-6-phenylhexanamide (43). Compound 41 (244 mg, 0.51 mmol) was converted to acid 42 using a procedure similar to that described above for 36. Acid 42 (20.0 mg, 0.063 mmol) was then immediately coupled to 7 as described for compound 37 to give 43. Compound 43 (24 mg, 70% from 41) was isolated as a white solid after flash chromatography (Hex/EtOAc, 4/1):  $[\alpha]_{D}^{25}$  -24.5° (c 0.103, MeOH); IR (CHCl<sub>3</sub>) 3380, 1645 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.30–7.15 (m, 5H), 6.17 (d, J=9.2 Hz, 1 H), 4.37 (m, 2H), 4.00 (m, 2H), 3.263.18 (m, 2H), 2.85 (dd, J = 7.6, 14.0 Hz, 1H), 2.68 (dd, J = 5.4, 14.0 Hz, 1H), 2.61 (d, J = 9.2 Hz, 1H), 2.44 (m, 1H), 2.20 (s, 1H, br), 1.36 (s, 3H), 1.25 (s, 3H), 1.98-0.78 (m, 20H), 0.92 (d, J = 6.7 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H), 0.78–0.68 (m, 1H), 0.50–0.39 (m, 2H), 0.17–0.01 (m, 2H); HRMS (FAB) calcd for  $C_{33}H_{54}NO_5$  (MH<sup>+</sup>): 544.4002. Found: 544.3979.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-3(R),5(S)-dihydroxy-6phenylhexanamide (2c). Acetonide 43 (30 mg, 0.055 mmol) was dissolved in MeOH (4 mL) containing a small amount of Amberlite® acidic resin and water (10 drops) and was stirred at 60 °C for 3 h. The desired diol 2c (27 mg, 95%) was obtained in pure form as a white solid after filtration and removal of solvent under reduced pressure:  $[\alpha]_{D}^{25} - 28.8^{\circ}$  (c 0.565, MeOH); IR (KBr)  $v_{max}$  3350 (broad), 1670, 1640, 1610 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  7.67 (d, J = 9.0 Hz, 1H), 7.27–7.15 (m, 5H), 4.77 (m, 1H), 4.72 (d, J = 6.3 Hz, 1H), 4.46 (d, J = 5.4 Hz, 1H), 4.38 (d, J = 5.7 Hz, 1H), 4.16 (m, 1H), 3.89 (m, 1H), 3.70 (m, 1H), 2.92 (m, 1H), 2.71-2.51 (m, 2H), 2.30 (m, 1H), 1.82-0.07 (m, 22H), 0.85 (d, J = 6.9 Hz, 3H), 0.72 (d, J = 6.3 Hz, 3H), 0.64 (m, 1H), 0.34 (m, 2H), 0.10-0.10 (m, 2H); HRMS (FAB) calcd for C<sub>30</sub>H<sub>50</sub>NO<sub>5</sub> (MH<sup>+</sup>): 504.3689. Found: 504.3699.

3-[2(*R*)-(Cyclopropylmethyl)-3(*R*),5(*R*)-dihydroxy-3,5-*O*isopropylidene-6-phenyl-1-oxohexyl]-4(*S*)-(phenylmethyl)-2-oxazolidinone (44). Using the reaction conditions described above for the preparation of **38**, **34** (131 mg, 0.30 mmol) was converted to **44** (50 mg, 35%), the major *syn* diastereomer which were each obtained in pure form after flash chromatography (Hex/EtOAc, 10/1): IR (CHCl<sub>3</sub>)  $v_{max}$  1780, 1690 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.40 (m, 10H), 4.78 (m, 1H), 4.35–4.00 (m, 5H), 3.18 (dd, J=3.3, 13.5 Hz, 1H), 2.95 (dd, J=5.8, 13.5 Hz, 1H), 2.78 (dd, J = 8.9, 13.7 Hz, 1H), 2.65 (dd, J = 7.3, 13.7 Hz, 1H), 1.68–1.20 (m, 10H), 0.69 (m, 1H), 0.35 (m, 2H), 0.00 (m, 2H); HRMS (FAB) calcd for C<sub>29</sub>H<sub>36</sub>NO<sub>5</sub>: 478.2593. Found: 478.2576.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexyl]-2(R)-(cyclopropylmethyl)-3(R),5(R)-dihydroxy-3,5-**O-isopropylidene-6-phenylhexanamide (46).** The removal of the chiral auxiliary from 43 (38.0 mg, 0.080 mmol) was done using the same reaction conditions described for the preparation of 36. The crude acid 45 (17.1 mg, 68%) so obtained was used in the next step without further purification. Acid 45 (17.1 mg, 0.054 mmol) was transformed to compound 46 using the procedure described for the preparation of 37. Purification by flash chromatography yielded the acetonide 46 (9.3 mg, 32%):  $[\alpha]_{D}^{25}$  -47.0° (c 0.455, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>) v<sub>max</sub> 3700–3040 (br), 1640, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ 7.30–7.17 (m, 5H), 6.63 (d, J=8.9 Hz, 1H), 4.55 (d, J=4.1 Hz, 1H), 4.37-4.26 (m, 1H), 4.10-4.00 (m, 2H), 3.36-3.30 (m, 1H), 3.23-3.19 (m, 1H), 2.91 (dd, J=5.7, 13.4 Hz, 1H), 2.59 (dd, J=7.3, 13.4 Hz, 1H), 2.33 (ddd, J=4.1, 7.5, 7.5 Hz, 1 H), 1.96 (ddd, J=6.7, 13.4,20.3 Hz, 1H), 1.76-1.12 (m, 18H), 1.44 (s, 3H), 1.43 (s, 3H), 0.98-0.81 (m, 2H), 0.97 (d, J = 6.7 Hz, 3H), 0.94 (d, J = 6.4 Hz, 3H, 0.71–0.61 (m, 1H), 0.51–0.38 (m, 2H), 0.09-0.03 (m, 2H); HRMS (FAB) calcd for C<sub>33</sub>H<sub>54</sub>NO<sub>5</sub> (MH<sup>+</sup>): 544.4002. Found: 544.3967.

N-[1(S)-(Cyclohexylmethyl)-2(R),3(S)-dihydroxy-5-methylhexy]-2(R)-(cyclopropylmethy])-3(R),5(R)-dihydroxy-6phenylhexanamide (2d). Diol 2d was prepared from acetonide 46 (9.0 mg, 0.017 mmol) using the reaction conditions described for the preparation of 2a. Diol 2d (7.0 mg, 84%) was obtained after purification by flash chromatography (Hex/EtOAc, 1/1) as a white solid:  $[\alpha]_{D}^{25}$  -1.15° (c 0.26, MeOH); IR (CHCl<sub>3</sub>)  $\nu_{max}$  3700– 3040 (br), 1640, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.34-7.18 (m, 5H), 6.30 (d, J = 8.9 Hz, 1H), 4.43 (d, J = 4.1 Hz, 1 H), 4.35 (d, J = 4.1 Hz, 1 H), 4.36–4.32 (m, 1H), 4.14–4.08 (m, 1H), 4.04 (ddd, J = 3.5, 7.0, 13.0 Hz, 1H), 3.33 (ddd, J = 4.5, 8.3, 12.4 Hz, 1H), 3.25–3.22 (m, 1H), 2.94 (d, J = 1.9 Hz, 1H), 2.77–2.75 (m, 2H), 2.30 (ddd, J = 3.2, 6.7, 8.3 Hz, 1H), 1.86-1.82 (m, 1H), 1.80-1.60 (m, 10H), 1.46-1.14 (m, 8H), 1.02-0.83 (m, 2H), 0.96 (d, J = 6.7 Hz, 3H), 0.90 (d, J = 6.7 Hz, 3H), 0.75– 0.69 (m, 1H), 0.51–0.44 (m, 2H), 0.15–0.05 (m, 2H); MS (CI) m/z 504 (MH<sup>+</sup>); Anal. calcd for C<sub>30</sub>H<sub>49</sub>NO<sub>5</sub>·H<sub>2</sub>O: C, 69.20; H, 9.62; N, 2.79. Found: C, 69.40, H, 9.68, N, 2.93.

# Human plasma renin assay pH 6.0

Human plasma (Biological Specialty Corporation, Lansdale, PA) was used as the source of both the enzyme, renin, and the substrate, angiotensinogen. Angiotensin I was quantified using a commercially available radioimmunoassay kit from NEN-Dupont (Cat. No. NEA-105). The assay was performed in 0.27 M MES (4-morpholineethanesulfonic acid), 1% HSA (human serum albumin), pH 5.85 containing 13 µL/mL dimercaprol solution, 13 µL/mL 8-hydroxyquinoline sulfate solution and 1% DMSO. The dimercaprol and 8-hydroxyquinoline sulfate solutions were added just before use and were provided with the radioimmunoassay kit. The assay was carried out in a final volume of 100 µL in 1.0 mL polypropylene mini tubes. To  $50\,\mu\text{L}$  of serial dilution of the test compounds in assay buffer or 50 µL of assay buffer only (37 °C and  $4^{\circ}$ C controls) was added 50 µL of human plasma to initiate the reaction. After addition of the human plasma, the assay mixture was incubated at 37 °C for 60 to 90 min in order to achieve an angiotensin I generation of 2-3 ng/mL. In 37 °C controls, no inhibitor was added in order to determine the maximum angiotensin I level generated with the human plasma pool used. In 4°C controls, no angiotensin I was generated, tubes being kept on ice-cold water during the incubation. These served to determine the background level of angiotensin I. When the incubation was completed, tubes were quickly returned to ice-cold water. The generation of angiotensin I was then quantified using the radioimmunoassay kit from NEN-Dupont according to the manufacturer instructions except that 2% PEG 8000 was added to the angiotensin I second antibody solution. IC<sub>50</sub> values were generated from the inhibition curves using the SAS statistical software system (SAS Institute Inc., Cary, NC) and a non linear curve fit using the Hill model. Diastereomers **1a-d**, **2a-d** and P<sub>2</sub> analogues le and lf were tested in parallel in the assay in order to make sure that the observed differences of IC<sub>50</sub> values were real  $(n \ge 4)$ . The variability was about 10 to 15% for  $IC_{50}$  values smaller than 100 nM and from 15 to 50% for the IC<sub>50</sub> values larger than 100 nM.

## Acknowledgements

The authors would like to thank Christian Brochu, Chantal Grand-Maître and Vida Gorys for their assistance in compound purification/characterization, Dr. Steven R. LaPlante and Norman Aubry for NMR experiments and Catherine Chabot, Josée Bordeleau and Dr. William W. Ogilvie for their help in the preparation of this manuscript.

#### **References and Notes**

- 1. Kleinert, H. D. Exp. Opin. Invest. Drugs 1994, 3, 1087.
- 2. Fletcher, A. E.; Palmer, A. J.; Bulpitt, C. J. J. Hypertens. 1994, 12, S43.
- 3. Lingren, B. R.; Andersson, R. G. G. Med. Toxicol. Adverse Drug Exp. 1989, 4, 369.

4. Raddatz, P. Exp. Opin. Ther. Patents 1994, 4, 489.

5. Raddatz, P. Exp. Opin. Ther. Patents 1994, 4, 1347.

6. Brunner, M.; Waeber, B.; Brunner, H. R. J. Hypertens. 1994, 12, S7.

7. Kaltenbronn, J. S.; Hudspeth, J. P.; Lunney, E. A.; Michniewicz, B. M.; Nicolaides, E. D.; Repine, J. T.; Roark, W. H.; Stier, M. A.; Tinney, F. J.; Woo, P. K. W.; Essenburg, A. D. J. Med. Chem. **1990**, *33*, 838.

8. Thaisrivongs, S.; Mao, B.; Pals, D. T.; Turner, S. R.; Kroll, L. T. J. Med. Chem. **1990**, *33*, 1337.

9. Kempf, D. J.; de Lara, E.; Stein, H. H.; Cohen, J.; Egan, D. A.; Plattner, J. J. J. Med. Chem. **1990**, *33*, 371.

10. Bradbury, R. H., Rivett, J. E. J. Med. Chem. 1991, 34, 151.

11. Raddatz, P.; Jonczyk, A.; Minck, K.-O.; Schmitges, C. J.; Sombroek, J. J. Med. Chem. 1991, 34, 3267.

12. Rivero, R. A.; Greenlee, W. J.; Patchett, A. A. Tetrahedron Lett. **1991**, *32*, 5263.

13. Baker, W. R.; Fung, A. K. L.; Kleinert, H. D.; Stein, H. H.; Plattner, J. J.; Armiger, Y.-L.; Condon, S. L.; Cohen, J.; Egan, D. A.; Barlow, J. L.; Verburg, K. M.; Martin, D. L.; Young, G. A.; Polakowski, J. S.; Boyd, S. A.; Perun, T. J. J. Med. Chem. 1992, 35, 1722.

 Boyd, S. A.; Fung, A. K. L.; Baker, W. R.; Mantei, R. A.; Armiger, Y.-L.; Stein, H. H.; Cohen, J.; Egan, D. A.; Barlow, J. L.; Klinghofer, V.; Verburg, K. M.; Martin, D. L.; Young, G. A.; Polakowski, J. S.; Hoffman, D. J.; Garren, K. W.; Perun, T. J.; Kleinert, H. D. J. Med. Chem. 1992, 35, 1735.

15. Smith, III A. B.; Akaishi, R.; Jones, D. R.; Keenan, T. P.; Guzman, M. C.; Holcomb, R. C.; Sprengeler, P. A.; Wood, J. L.; Hirschmann, R. *Biopolymers*, **1995**, *37*, 29.

16. Raddatz, P.; Minck, K.-O.; Rippmann, F.; Schmitges, C.-J. J. Med. Chem. 1994, 37, 486.

17. Hanson, G. J.; Clare, M.; Summers, N. L.; Lim, L. W.; Neidhart, D. J.; Shieh, H. S.; Stevens, A. M. *Bioorg. Med. Chem.* **1994**, *2*, 909.

18. Rasetti, V.; Cohen, N. C.; Rüeger, H.; Göschke, R.; Maibaum, J.; Cumin, F.; Fuhrer, W.; Wood, J. M. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1589.

19. Yamada, Y.; Ando, K.; Komiyama, K.; Shibata, S.; Nakamura, I.; Hayashi, Y.; Ikegami, K.; Uchida, I. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1863.

20. Göschke, R.; Cohen, N. C.; Wood, J. M.; Maibaum, J. Bioorg. Med. Chem. Lett. **1997**, *7*, 2735.

21. Luly, J. R.; BaMaung, N.; Soderquist, J.; Fung, A. K. L.; Stein, H.; Kleinert, H. D.; Marcotte, P. A.; Egan, D. A.; Bopp, B.; Merits, I.; Bolis, G.; Greer, J.; Perun, T. J.; Plattner, J. J. J. Med. Chem. 1988, 31, 2264.

22. Hutchins, C.; Greer, J. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 77.

23. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.

24. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141.

25. Luly, J. R.; Hsiao, C.-N.; BaMaung, N.; Plattner, J. J. J. Org. Chem. 1988, 53, 6109.

26. Takano, S.; Chiba, K.; Yonaga, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1980, 616.

27. Wiberg, K. B.; McShane, H. F. Org. Synth. Coll. Vol. III, 1955, 197.

28. Altman, J.; Shoef, N.; Wilchek, M.; Warshawsky, A. J. Chem. Soc., Perkin Trans. 1, 1984, 59.

29. Kempf, D. J. J. Org. Chem. 1986, 51, 3921.

30. Hussain, S. A. M. T.; Ollis, W. D.; Smith, C.; Stoddart, J.

F. J. Chem. Soc., Perkin. Trans. 1, 1975, 1480.

31. Johnson, R. N.; Lowry, J. B.; Riggs, N. V. Tetrahedron Lett. 1967, 5113.

32. Evans, D. A.; Ennis, M. D.; Le, T. J. Am. Chem. Soc. 1984, 106, 1154.

33. Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, 112, 866.

34. Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476.

35. Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945.

36. Kiyooka, S.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. 1986, 26, 3009.

37. Tong, L.; Pav, S.; Lamarre, D.; Pilote, L.; LaPlante, S.; Anderson, P. C.; Jung, G. J. Mol. Biol. **1995**, 250, 211. The configuration of  $C_3$ -OH for the compound **2** in Figure 1 is incorrect. The configuration of  $C_3$ -OH in **2** is actually 3S (compound **2b** here) instead of 3R.

38. Luly, J. R.; Kempf, D. J.; Plattner, J. J. European Patent Application 229667, 1987.

39. Rahuel, J.; Priestle, J. P.; Grutter, M. J. Struct. Biol. 1991, 107, 227.

40. Evans, D. A.; Britton, T. C.; Dorow, R. L.; Dellaria, Jr. J. F. *Tetrahedron* **1988**, *44*, 5525.

41. Katsumasa, N.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316.