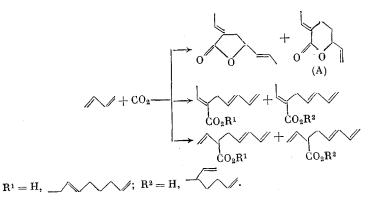
LITERATURE CITED

- 1. P. I. Valov, E. A. Blyumberg, and N. M. Émanuél', Izv. Akad. Nauk SSSR, Ser. Khim., 583 (1966).
- P. I. Valov, É. A. Blyumberg, and N. M. Émanuél', Izv. Akad. Nauk SSSR, Ser. Khim., 791 (1969).
- 3. Pat. No. 2752920 (FRG); Chem. Abs., 91, 107880 (1979).
- 4. Pat. No. 3379737 (USA).
- 5. Pat. No. 3699133 (USA).
- 6. M. G. Vinogradov, I. P. Kovalev, and G. I. Nikishin, Inventor's Certificate No. 1051086 (USSR); Byull. Izobret., No. 40, 94 (1983).
- 7. S. A. Maslov, S. A. Vasil'chenko, É. A. Blyumberg, and V. G. Dryuk, Izv. Akad. Nauk SSSR, Ser. Khim., 2467 (1972).
- 8. M. G. Vinogradov, I. P. Kovalev, and G. I. Nikishin, Izv. Akad. Nauk SSSR, Ser. Khim., 1569 (1981).
- 9. M. G. Vinogradov, R. V. Kereselidze, and G. I. Nikishin, Izv. Akad. Nauk SSSR, Ser. Khim., 1195 (1971).
- 10. G. Ferrandi, Inorg. Chem., <u>17</u>, 2506 (1978).
- 11. M. Freiberg and D. Meyerstein, Chem. Comm., 127 (1977).
- 12. B. A. Dolgopolosk and E. I. Tinyakova, Redox Systems as Sources of Free Radicals [in Russian], Nauka, Moscow (1972), Chap. 3.
- 13. N. M. Émanuél', E. T. Denisov, and Z. K. Maizus, Chain Reactions of the Oxidation of Hydrocarbons in the Liquid Phase [in Russian], Nauka, Moscow (1965), p. 218.


ACTIVATION OF CO2 IN REACTION WITH BUTADIENE

CATALYZED BY PALLADIUM COMPLEXES

U. M. Dzhemilev, R. V. Kunakova, and V. V. Sidorova

UDC 542.97:546.264-31:547.315.2

Studies on the fixation of CO_2 by transition-metal complexes [1-5] stimulated the development of research on the catalytic activation of CO_2 in reactions with monoolefins [6-7], alkynes [8, 9], allene [10], butadiene [11-17], and isoprene [18]. The reaction of CO_2 with butadiene [11] leads to a mixture of linear unsaturated C_9 acids and cyclic lactones in low yields [14]

However, in the presence of $Pd(acac)_2$ -PPh₃ in MeCN solution, practically only the lactone (A) can be obtained in a yield of ~40% [17].

To develop highly efficient and selectively acting catalysts, capable of activating CO_2 under mild conditions, we studied the reaction of CO_2 with butadiene in a DMFA solution by the

Institute of Chemistry, Bashkir Branch, Academy of Sciences of the USSR, Ufa. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2273-2276, October, 1985. Original article submitted March 15, 1984.

2102

action of the catalytic system $Pd(acac)_2 - PPh_3$, widely used in telomerization of 1,3-dienes with H₂O [19]. From the literature data, we assumed that the low yields of the products of the reaction of CO₂ with butadiene [11-17] are due to the deactivation of the Pd catalyst as the result of of oxidation of Ph₃P to Ph₃P=0.

$$Ph_{3}P + CO_{2} \xrightarrow{[Pd]} Ph_{3}P = O + CO$$

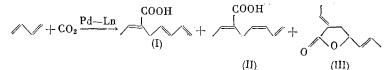
In a solution of $(Ph_3P)_3PhC1$ in boiling decalin (~185°C), this reaction leads in the course of a few days to $Ph_3P=0$ in a yield of ~60% [20].

It was found by preliminary experiments that under the catalytic activation conditions of CO_2 (70 and $120^{\circ}C$), the action of palladium complexes reduces CO_2 to CO, and Ph_3P becomes practically quantitatively oxidized to $Ph_3P=0$. It is clear that under the conditions of cooligomerization of CO_2 with butadiene, $Ph_3P=0$ does not form catalytically active complexes with Pd, able to promote the formation of molecules of lactones and acids, when $Ph_3P=0$ is used as the activating ligand, it is impossible to obtain even traces of oligomerization products of CO_2 with butadiene. A similar result was obtained in the cooligomerization of butadiene with SO_2 catalyzed by palladium complexes [21].

In contrast, in the reaction of CO_2 (50 atm) with butadiene (molar ratio CO_2 :diene = 1:2) in the presence of Pd(acac)_2 in PPh₃ in a DMFA solution (120°C, 20 h), a mixture of unsaturated acids (I) and (II) and lactone (III) is formed (Table 1). In these experiments, excess butadiene converts into 1,3,7-octatriene. Increase in the proportion of PPh₃ in the composition of the catalytic system leads to an appreciable increase in the selectivity of the process and to an increase in the yield of products of cooligomerization of CO_2 with the diene. At ratios of Pd:PPh₃ = 1:20 and CO_2 :diene = 1:10, compounds (I)-(III) are exclusively formed in a total yield of 90%, based on the CO_2 used.

Table 1 shows that the diene concentration has a fairly strong influence on the yield of (I)-(III). Even in experiments where the Pd:PPh₃ molar ratio is 1:1 and diene:CO₂ = 10:1, the yield of (I)-(III) is not less than 30%. In these experiments, the deficiency of PPh₃ is most probably compensated by an excess of the diene, which is, like triphenylphosphone, a very strong π -donor, and coordinates with the central atom of the catalyst, promoting stabilization of the active particles in the catalyst. It should be noted that in all the experiments, the ratio of (I + II) and (III) is 80:20 on the average.

In the course of the study of the cotelomerization of butadiene with CO_2 , it was found that the selectivity of the process and also the yield of the reaction products noticeably depend on the degree of purity of the initial reagents, for example, DMFA and CO_2 . When DMFA and CO_2 are thoroughly purified and the process is carried out in a solution of Pd(acac)₂ and PPh₃ (1:20), at a ratio of CO_2 :diene = 1:10 (70°C, 20 h), compounds (I) and (II) are exclusively formed in yield of 80% (Table 2). Under the same conditions, but at a ratio of Pd(acac)₂:PPh₃ = 1:1, only (III) was obtained from CO_2 and butadiene in a yield of $\sim 30\%$.


By studying the reaction of CO_2 with butadiene, for the first time a preparatively convenient method could be developed for synthesizing the difficult-to-obtain 2E,5E,7- and 2E, 5Z,7-octratriene-3-carboxylic acids [content of (I) not less than 80%] and 3-ethylidene-5-isopropenylbutyrolactone in high yields.

EXPERIMENTAL

Butadiene 99% pure was used. Carbon dioxide was purified by recondensation, by passing through H_2SO_4 , CaCl₂, and cooling with liquid N_2 . Dimethylformamide was purified by distillation of water in the form of an azeotrope with benzene, then was dried over CaH₂ for 24 h, and distilled over fresh CaH₂ [22].

The products were analyzed on a Chrom-4 chromatograph, using a flame-ionization detector, 1.5-m column with SE-20, and helium as the carrier gas. The PMR spectra were obtained on a Tesla-487 spectrometer for solutions in CDCl₃, using HMDS as the internal standard. The ¹³C NMR spectra were recorded on a Jeol FX-900 spectrometer (22.5 MHz) with a broad band and partial suppression of protons, using CDCl₃ as solvent and TMS as standard. Width of field decoupling 4000 Hz; ADC resolution 0.48 Hz. The IR spectra were run on a UR-20 spectrophotometer (in a thin layer or in mineral oil). The UV spectra were obtained on a Specord UV-VIS apparatus (alcoholic solutions). The mass spectra were run on an MKh-13-06 apparatus with an ionizing-electron energy of 70 eV, and ionization chamber temperature of 200°C.

TABLE 1. Influence of Ratio of Reagents and Catalyst Components on Yield of Products in Reaction of CO_2 with Butadiene $[pCO_2 = 50 \text{ atm}, 120^{\circ}\text{C}, 20 \text{ h} [Pd(acac)_2]:[CO_2] = 1:1000, \text{ solvent} - DMFA (25 ml)]$

Ratio CO ₂ (molar)	Ratio Pd(acac) ₂ : PPh ₃ (molar)	Total yield of compounds (I)- (III), on CO_2 , η_0
1:1	1:1	5~7
2:1	1:1	16
10:1 10:1	1:1	30
10.1 10:1	1:5	50 80
10:1	1:20	90
5:1	1:20	80
1:1 10:1*	1 : 20 1 : 20	5-7 1-5

*70°C.

TABLE 2. Influence of Ratio of Reagents and Catalyst Components on Yield of Products in Reactions of CO_2* with Butadiene [70°C, 20 h, [Pd(acac)_2]/[CO_2] = 1:1000, solvent - DMFA (25 m1)]

Ratio	Ratio	Total yield of
/// : CO ₂	Pd(acac) ₂ :	compounds
(molar)	PPh ₃ (molar)	(I)-(II), %
1:1 2:1 2:1 10:1 10:1 10:1	$\begin{array}{c} 1 : 20 \\ 1 : 4 \\ 1 : 20 \\ 1 : 20 \\ 1 : 1 \\ 1 : 20 \end{array}$	$ \begin{array}{c} 30 \\ 45 \\ 80-90 \\ - + \\ 46 \\ \pm \end{array} $

*Purified by recondensation. +Only lactone (III) is formed, yield ~30%. \$120°C, higher oligomers are formed.

<u>Reaction of Triphenylphosphine with CO₂ in Presence of Pd(acac)₂-PPh₃ Catalyst. A 2.6g portion (10 mmoles) of PPh₃ was added to a solution of 0.157 g (0.5 mmole) of Pd(acac)₂ in 25 ml of absolute DMFA, and the mixture was stirred for 10-15 min, at 20°C in an Ar atmosphere. The catalyst was transferred into a steel autoclave (V = 100 ml), and CO₂ was pumped in $(pCO_2 = 50 \text{ atm})$. The content of the autoclave were heated for 20 h at 120°C and cooled. Then, 50 ml of benzene was added to the reaction mixture, which was then washed several times with water to remove DMFA. The benzene layer was dried over Na₂SO₄, and the solvent was distilled off. The residue was crystallized from alcohol. Yield, 2.74 g (98%) of Ph₃P-O, mp 150-151°C [21]. The CO content was determined according to [23]. At 70°C, the yield of Ph₃PO was 70%.</u>

Reaction of Butadiene with Solid CO₂. A 2.6-portion (10 mmoles) of PPh₃ was added to a solution of 0.157 g (0.5 mmole) of Pd(acac)₂ in 25 ml of absolute DMFA, and the mixture was stirred for 10-15 min in an Ar atmosphere at 20°C. The catalyst was transferred into a steel autoclave (V = 100 ml) cooled to -30 to -40°C, into which 2.2 g (0.05 mole) of solid CO₂, purified as described above, was placed, and then 27 g (0.5 mole) of butadiene was added.

The contents of the autoclave were heated for 20 h at 70°C, and then cooled. The reaction mixture was diluted with 50 ml of benzene, and washed 2-3 times with H₂O to remove DMFA. The benzene solution was dried over Na₂SO₄, the solvent was removed, and 1,3,7-octatriene was distilled off in a jet-pump vacuum. Yield, 6.9 g (90% based on CO₂ used) of a mixture of acids (I) and (II) in a 1:1 ratio. The mixture was distilled in vacuo [bp of mixture of (I) and (II) 85-90°C (1 mm)], and chromatographed through a brand L40/100 silica gel (eluent — hexane:ethyl acetate = 7:3). A mixture of acids (I) and (II) was obtained in a ratio of 80:20, from which after repeated chromatography, acid (I) was isolated in the individual state.

2E,5E,7-Octatriene-3-carboxylic Acid (I). IR spectrum (v, cm⁻¹): 900, 1005, 1635, 1680, 2400-3200. PMR spectrum (δ, ppm): 1.84 d (3H, CH₃, J = 7.5 Hz), 3.1 d (2H, CH₂, J = 7 Hz), 5.0 m (2H, CH₂=), 5.6-6.4 m (3H, CH=), 7.1 q (1H, CH₃CH=), 11.6 s (1H, COOH). UV spectrum (EtOH): λ 210 nm (ε 5000), m/z 152. ¹³C NMR spectrum (δ , ppm): 173.24 s (COOH), 141.52 d (C²), 136.88 (C⁷), 131.6, 130.42, and 130.1 d (C³, C⁵, C⁶), 115.54 t (C⁸), 28.42 t (C⁴) and 14.49 q (C¹).

 $\frac{2E,5Z,7-Octatriene-3-carboxylic Acid (II). PMR spectrum (<math>\delta$, ppm): 1.86 d (3H, CH₃, J = 7.5 Hz), 3.2 d (2H, CH₂, J = 7 Hz), 5.14 d (H, cis-H, CH=CH₂, J = 10.56 Hz), 5.20 d (1 H, trans-H, CH=CH₂, J = 16.5 Hz), 5.33 d (CH₂CH= J = 7 and 10 Hz), 6.02 t (CH=CHCH=), 6.75 t (CH=CH₂), 7.04 q (MeCH, J = 7.5 Hz). ¹³C NMR spectrum (δ , ppm): 173,24 s (COOH), 141.13 d (C²), 131.01 (C⁷), 129.70 and 128.72 d (C³, C⁵, C⁶), 117.69 t (C⁸), 24.87 t (C⁴), 14.7 q (C¹).

<u>3-Ethylidene-5-propenylbutyrolactone (III)</u>. In the reaction of 27 g (0.5 mole) of butadiene and 2.2 g (0.05 mole) of solid CO₂ on a catalyst prepared from 0.157 g (0.5 mmole) of Pd(acac)₂ and 0.13 g (0.5 mmole) of PPh₃ in 25 ml of absolute DMFA, 2.3 g (30% based on CO₂ used) of (III) was obtained. The product was chromatographed through L40/100 silica gel (eluent — hexane:ethyl acetate = 7:3), $n_D^{2^\circ}$ = 1.4960. IR spectrum (ν , cm⁻¹): 1755 (CO), 970, 1660 (trans-CH=CH). UV spectrum (EtOH): λ 218 nm (ε 16500), m/z 152. PMR spectrum (δ , ppm): 1.7 d (3H, CH₃CH=CH, J = 6 Hz), 1.8 d (3H, CH₃CH=C, J = 7 Hz), 2.5-3.1 m (2H, CH₂), 4.70-5.0 m (1H, CH), 5.5-5.8 m (CHCH=, CH=CHCH₃), 6.7 m (CH₃CH=C), ¹³C NMR spectrum (δ , ppm): 170.15 (C=O), 134.91 (C⁹), 129.60 and 129.24 (C⁶, C⁷), 126.93 (C³), 77.38 (C⁵), 17.16 (C⁸), 15.20 (C¹⁰).

<u>Reaction of Butadiene with Gaseous CO_2 .</u> A 0.157-g portion (0.5 mmole) of Pd(acac)₂ and 0.52 g (2 mmoles) of PPh₃ were dissolved, with stirring (10-15 min at 20°C), in an Ar atmosphere in 25 ml of DMFA. The catalyst was transferred into a steel autoclave (V = 100 ml), cooled to -10 to -5°C, into which 27 g (0.5 mole) of butadiene had been placed, and then CO_2 was pumped in (pCO₂ = 50 atm) (or ~0.05 mole of CO_2). The contents of the autoclave were heated for 20 h at 120°C. After the usual treatment, 0.8-1 g (13%, based on CO_2) of a mixture of acids (I) and (II) and lactone (III) was obtained in a ratio of 80:20.

From 27 g (0.5 mole) of butadiene and 0.05 mole of CO_2 (pCO₂ = 50 atm) on a catalyst prepared from 0.157 d (0.5 mmole) of Pd(acac)₂ and 2.6 g (10 mmoles) of PPh₃ in 25 ml of DMFA, under the above conditions (120°C, 20 h), 6.9-7.0 (90%) of a mixture of acids (I) and (II) and lactone (III) was obtained in a ratio of 80:20.

CONCLUSIONS

1. By using a catalyst containing palladium bis(acetylacetonate) and triphenylphosphine linear unsaturated C₉ acids and 3-ethylidene-5-propenylbutyrolactone can be obtained in a high yield from CO_2 and butadiene in dimethylformamide.

2. Under the reaction conditions, low-valence phosphonic complexes of palladium catalyze the oxidation of triphenylphosphine to triphenylphosphine oxide and the reduction of CO_2 to CO_2 .

LITERATURE CITED

- 1. M. E. Vol'pin, Pure Appl. Chem., 30, 607 (1972).
- M. E. Vol'pin, I. S. Kolomnikov, and T. S. Loboeva, Izv. Akad. Nauk SSSR, Ser. Khim., 2084 (1969).
- 3. I. S. Kolomnikov, T. S. Loveeva, and M. E. Vol'pin, Izv. Akad. Nauk SSSR, Ser. Khim., 2650 (1970).

- 4. M. E. Vol'pin and I. S. Kolomnikov, Organomet. React., 5, 313 (1975).
- 5. M. E. Vol'pin, Z. Chem., 12, 361 (1972).
- 6. Y. Inoue, T. Hibi, M. Satake, and H. Hashimoto, J. Chem. Soc. Chem. Commun., 982 (1978).
- 7. A. Lapidus, S. D. Pirozhkov, and A. A. Koryakin, Izv. Akad. Nauk SSSR, Ser. Khim., 2814 (1978).
- 8. Y. Inoue, Y. Iton, and H. Hashimoto, Chem. Lett., 633 (1978).
- 9. Y. Inoue, Y. Iton, H. Kazama, and H. Hashimoto, Bull. Chem. Soc. Jpn., 53, 3329 (1980).
- 10. A. Döring and P. W. Jolly, Tetrahedron Lett., 21, 3021 (1980).
- 11. Y. Sasaki, Y. Inoue, and H. Hashimoto, J. Chem. Soc. Chem. Commun., 605 (1976).
- 12. Y. Inoue, Y. Sasaki, and H. Hashimoto, Bull. Chem. Soc. Jpn., <u>51</u>, 2375 (1978).
- 13. A. Musco, C. Perego, and V. Tartiary, Inorg. Chim. Acta, 28, 147 (1978).
- 14. A. Musco, J. Chem. Soc., Perkin Trans. <u>1</u>, 693 (1980).
- 15. I. A. Daniels, Eur. Pat. Appl. EP 50445 (1982).
- 16. A. Behr, K.-D. Juszak, and W. Keim, Synthesis 7, 574 (1983).
- 17. A. Behr and K.-D. Juszak, J. Organomet. Chem., 255, 263 (1983).
- Y. Onoue, S. Sekiya, Y. Sasaki, and H. Hashimoto, J. Synth. Org. Chem. Jpn., <u>36</u>, 328 (1978); Chem. Abstr., <u>89</u>, 42280 (1978).
- Y. M. Dzhemilev, V. V. Sidorova, and R. V. Kunakova, Izv. Akad. Nauk SSSR, Ser. Khim., 584 (1983).
- 20. K. M. Nickolas, J. Organomet. Chem., <u>188</u> C10 (1980).
- 21. U. M. Dzhemilev, L. G. Kunakova, Yu. T. Struchkov, G. A. Tolstikov, F. V. Sharipova,
- L. G. Kuz'mina, and S. R. Rafikov, Dokl. Akad. Nauk SSSR, 250, 105 (1980).
- 22. F. M. Rapoport and A. A. Il'inskaya, Laboratory Methods for Preparation of Pure Gases [in Russian], Goskhimizdat, Moscow (1963).
- Yu. M. Kargin, V. Z. Kondranina, and G. M. Semakhina, Izv. Akad. Nauk SSSR, Ser. Khim., 278 (1971).

REGIOSELECTIVE ADDITION OF C-ELECTROPHILES AND

C-NUCLEOPHILES TO A DOUBLE BOND OF VINYLACETYLENE -

AN EXAMPLE OF A TWO-STAGE Ade REACTION WITH

FORMATION OF TWO NEW CARBON-CARBON BONDS

G. S. Mikaelyan, A. S. Gybin, and V. A. Smit

UDC 542.955:541.571.3:547.316.4

The development of methods of chemistry of carbanions made it possible to carry out AdN reactions at multiple bonds as sequences of time-separated addition of nucleophile and electrophile. In a modern directed synthesis, this scheme is widely used, since it ensures the possibility of producing two new C-C bonds, and varying the structure of the attached C-nucleophiles (C_{Nu}) and C-electrophiles (CE) [1]

 $>C = C < \xrightarrow{C_{Nu}} >C \xrightarrow{C_{-} C_{-} EAG} \xrightarrow{C_{E^{+}}} >C \xrightarrow{I} C \xrightarrow{I} C_{-} EAG \xrightarrow{C_{E^{+}}} >C \xrightarrow{I} C_{-} EAG \xrightarrow{I} EAG \xrightarrow{I} C_{-} EAG \xrightarrow{I} EAG \xrightarrow{I}$

where EAG is an electron-acceptor group.

For the synthesis, an analogous (but with a reversed sequence of stages) scheme of carrying out the AdE reaction at the multiple bonds is just as promising, but in such a

2106

Institute of Organic Chemistry, Academy of Sciences of the Armenian SSR, Erevan. N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2277-2284, October, 1985. Original article submitted May 28, 1984.