Cite this: Green Chem., 2011, 13, 570

www.rsc.org/greenchem

COMMUNICATION

An effective medium of H_2O and low-pressure CO_2 for the selective hydrogenation of aromatic nitro compounds to anilines[†]

Xiangchun Meng,[‡]^a Haiyang Cheng,^b Shin-ichiro Fujita,^a Yancun Yu,^b Fengyu Zhao^{*b} and Masahiko Arai^{*a}

Received 22nd June 2010, Accepted 24th December 2010 DOI: 10.1039/c0gc00246a

Chemoselective hydrogenation of water-insoluble aromatic nitro compounds can be achieved over Ni catalysts in a H_2O -compressed CO_2 system at 35–50 °C without using any environmentally harmful solvent. The effective CO_2 pressure is much lower than the critical pressure of CO_2 . The hydrogenation of nitro group should be the ratedetermining step.

The selective hydrogenation of aromatic nitro compounds to the corresponding anilines is an industrially important reaction.¹ The proposed reaction pathways (Scheme 1) include direct (I–II–III and IV–III) and indirect (VI–VII–VIII–IX) routes.² The reduction of PHA to AN is the common rate-determining step in the direct route.² The authors studied the hydrogenation of nitrobenzene (NB) and chloronitrobenzene (CNB) over supported Ni catalysts in compressed CO_2 .³ The use of compressed CO_2 and supported Ni catalysts is effective for producing the aniline compounds with almost 100% selectivity in the whole range of

Scheme 1 Possible reaction pathways for the reduction of nitrobenzene. NB: nitrobenzene, NSB: nitrosobenzene, PHA: *N*phenylhydroxylamine, AN: aniline, AOB: azoxybenzene, AB: azobenzene, HAB: hydrazobenzene.

^aDivision of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan. E-mail: marai@eng.hokudai.ac.jp; Fax: +81 11 706 6594; Tel: +81 11 706 6594

^bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. E-mail: zhaofy@ciac.jl.cn; Fax: +86 431 8526 2410; Tel: +86 431 8526 2410

† Electronic supplementary information (ESI) available: Experimental procedures, phase behavior observations, and hydrogenation data. See DOI: 10.1039/c0gc00246a

[‡]X. Meng is currently with School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China. conversion. The rate of hydrogenation depends on CO_2 pressure and is maximized at high pressures of *ca.* 9–12 MPa.³ Here, we report that the combination of H₂O and CO₂ is more beneficial for these selective hydrogenation reactions and the effectiveness of CO₂ pressurization can appear at a lower pressure of 0.8 MPa. The rate-determining step is the transformation of NB in the present reaction instead of the hydrogenation of PHA.

Fig. 1 gives the results of NB hydrogenation in different reaction media using a 41 wt% Ni/Al₂O₃ catalyst (the details of catalyst preparation and hydrogenation run are given in ESI[†]). The influence of CO₂ pressure on the conversion of NB depends on the medium used (Fig. 1a). In the absence of CO₂, the conversion was larger in ethanol and *n*-hexane (66% and 29%) than that in H₂O and solvent-less NB (6% and 3%). However,

Fig. 1 (a) Influence of CO₂ pressure on the conversion of NB after 30 min reaction and (b) the yield of AN against the conversion of NB in different reaction systems. (Ni/Al₂O₃ 0.1 g, NB 19.5 mmol, H₂ 6 MPa, 50 °C).

Table 1 Hydrogenation of NB, NSB, and PHA^a

Entry	Medium	Substrate	Conv. (%)	Selectivity $(\%)^b$		
				AN	NSB	PHA
1	H ₂ O	NB	21	61.9	9.0	1.9
2		NSB ^c	8	20.4		d
3		PHA	100 ^e	94.6	d	
4	H_2O-CO_2 (3 MPa)	NB	55	95.1	2.4	2.4
5		NSB	13	36.9		d
6		PHA	100 ^e	95.3	d	

^{*a*} Conditions: H₂O 10 cm³, Ni/Al₂O₃ 0.1 g, substrate 9.75 mmol, H₂ 6 MPa, 50 °C, 10 min. ^{*b*} The other byproduct was AOB. ^{*c*} 30 min. ^{*d*} Not detected. ^{*e*} PHA decomposed partly into NSB, AN, and AOB during GC analysis (Fig. S4 in ESI⁺). Both PHA and NSB were not detected during GC analysis of the product, indicating PHA is consumed completely after 10 min of reaction. The total pressure in the reactor dropped to a constant value in 6–8 min, further confirming the complete conversion of PHA.

the conversion was significantly enhanced when the H₂O-NB mixture was compressed by CO_2 at a low pressure such as 0.8 MPa; the conversion was comparable to that obtained in the supercritical 12 MPa CO₂–NB mixture. For the H₂O–NB, the conversion gradually increased with CO₂ pressure up to 17 MPa. The pressurization with CO₂ had a drastically negative impact and a slightly positive effect on the conversion of NB in ethanol and in *n*-hexane, respectively. Note that the selectivity to AN was almost 100% in the whole range of conversion for the reactions in scCO₂, CO₂-n-hexane, and CO₂-H₂O systems. In ethanol and n-hexane, undesired PHA and AOB were formed in large quantities, resulting in small yields of the desired product of AN (Fig. 1b and Fig. S1 in ESI[†]). Hence, the combination of H₂O- CO_2 medium and Ni catalyst is a better reaction system for the selective hydrogenation of NB to AN under mild conditions (low temperature and CO₂ pressure) without any organic solvent.

To examine the features of our H₂O-CO₂ reaction media, hydrogenation runs were conducted with NB, NSB, and PHA in H_2O and H_2O-CO_2 systems (Table 1). In both systems, the rate of hydrogenation followed the order PHA > NB > NSB. For NB hydrogenation in pure H_2O , the selectivity to AN was *ca*. 62% and NSB and AOB were the main byproducts (entry 1). In the H_2O-CO_2 system, however, the selectivity to AN was 95%; NSB and AOB were little formed in the hydrogenation of NB (entry 4) although the conversion of NSB was very slow (entry 5). It is likely, therefore, that in this H_2O-CO_2 system the NB transforms directly to PHA and this step is the rate-determining one. The couping of NSB and PHA should be suppressed due to their low concentrations. In pure H₂O, in contrast, the NB should also change to PHA via NSB in addition to the direct transformation to PHA. The coupling reaction bewteen NSB and PHA is also possible to occur.

The molecular interactions of H_2O with a hydrophilic intermediate of PHA were examined by FTIR (experimental details are in the ESI[†]). Fig. 2 shows a slight red-shift of v(NO) in the H_2O compared to that in the gas phase. The N–O bond of PHA is weakened through interactions with H_2O , possibly *via* OH···O and OH···N bonding.⁴ Several authors reported the promotion effects of H_2O on the hydrogenation of aromatic nitro compounds in organic solvents, but the reasons are still unclear.⁵ Now, the results of Table 1 and Fig. 2 allow us to

Fig. 2 FTIR spectra of PHA in the v(NO) region.

propose that H_2O can promote the reaction step III accepted as the rate-determining step in organic solvents, enhancing the reaction rate and the selectivity to aniline.

To further inspect the features of the present H_2O-CO_2 system, NB was hydrogenated in a H_2O -compressed N_2 (7 MPa) medium, but no positive effects on the conversion and the selectivity to AN were observed. It is known that CO may be formed *via* the reverse water gas shift reaction during hydrogenation reactions in the presence of H_2 and CO_2 .⁶ Although no CO was detected for the gas phase by GC analysis in our reaction, an attempt was made to add 0.2 MPa 9.9% CO/He into the reaction mixture of NB-H₂O-CO₂ (3 MPa). This was found to cause a significant decrease in the conversion from 62% to 15%. Thus, in the present hydrogenation reactions, the formation of CO was unlikely.

The enhancement of NB conversion in NB-H₂O-CO₂ system can be explained by a few different factors. CO_2 is soluble in H₂O, its mole fraction being 0.25% and 2.0% at 0.8 and 9.4 MPa, respectively, at 50 °C.⁷ The dissolution of CO₂ enhances the solubility of a gaseous reactant H₂ in the H₂O and NB phases. The H₂O phase of H₂O-CO₂ mixture was acidic (ca. pH 3⁸). A reaction run was also conducted in a 0.8 mol dm^{-3} NaHCO₃ buffered H₂O solution at 3 MPa CO₂ (pH > 6^{8b}); the conversion (48%) was slightly lower than that in the unbuffered system (62%), while the high selectivity to AN did not change. NaHCO₃ can also be hydrogenated to NaHCO₂ with Ru complex or supported Pd catalyst;9 but supported Ni catalysts do not give significant NaHCO₂ concentrations.^{9a} When the concentration of NaHCO3 was changed from 0.8 to 0.2 mol dm⁻³, the hydrogenation of NB gave the same conversion, indicating that the influence of NaHCO₃ hydrogenation on the reaction of NB is marginal in our systems. Thus, the acidic nature of the H₂O phase might be one of positive factors, but its effect is small. Our previous in situ FTIR show that compressed CO₂ interacts with the reacting species, NB, NSB, and PHA, decreasing the reactivity of NB but increasing the reactivity of NSB and PHA.3 These molecular interactions should also be important in the H₂O-CO₂-NB reaction system. In addition, the solid catalyst granules were well dispersed in the H_2O phase but not in the NB phase, due to hydrophilic nature of the oxide support materials (Fig. S2 in ESI[†]). NB is sparingly soluble (ca. 17 mmol dm⁻³ at 25 °C) and PHA is soluble in H_2O (ca. 82 mmol dm⁻³ in saturated salt solution at 0 °C¹⁰). Therefore, the hydrogenation of NB and PHA is likely to occur at the NB-H₂O

interfacial layer and in the H₂O phase. In the H₂O-CO₂ system, the rate of AN formation is controlled by the conversion of NB into PHA. Interfacial H₂O and NB molecules form hydrogen bonding, OH \cdots ONO,¹¹ which may weaken the N–O bond of NB. Previously, a striking rate increase was observed in some reactions on water and this was ascribed to the hydrogen bonds between interfacial water molecules and reactants or transition state.¹² In addition, da Rocha *et al.* studied the molecular structure of the H₂O–compressed CO₂ interface and observed excess accumulation of the fluids on both sides of the interface.¹³ The local density enhancements can have a large impact on the chemical reactions.¹⁴

After the reaction, the H_2O phase was easily separated from the organic product phase. This H_2O phase containing 0.35 mol dm⁻³ AN was further used for the second reaction, giving the same results as that using pure H_2O . Hence, the H_2O phase can be recyclable without any post-purification, which is of practical significance.

Furthermore, the potential of the H_2O-CO_2 medium was examined for the hydrogenation of CNB at 35 °C, which is less soluble in H_2O than NB. A 9 wt% or 16 wt% Ni/TiO₂ catalyst was used since the selectivity to chloroaniline (CAN) was slightly better than that obtained with the Ni/Al₂O₃ (Table S1 in ESI†). Fig. 3a shows the conversion of *o*-CNB over 9 wt% Ni/TiO₂ as a function of CO₂ pressure for the reaction mixtures in the presence and absence of H_2O . One can see again that the H_2O significantly promoted the hydrogenation of

Fig. 3 (a) Influence of CO₂ pressure on the conversion of *o*-CNB over 9 wt% Ni/TiO₂ after 50 min of hydrogenation in the systems of H₂O-CO₂ and compressed CO₂ alone; (b) CAN yield against CNB conversion during the hydrogenation of CNB isomers in the H₂O-CO₂ (6 MPa) system. (CNB 9.52 mmol, Ni/TiO₂ 0.15 g, H₂ 4 MPa, 35 °C).

o-CNB similar to NB but the conversion increased with CO_2 pressure through to 13 MPa. The positive effect of H_2O was also observed in the hydrogenation of *m*- and *p*-CNB over 16 wt% Ni/TiO₂. In Fig. 3b the yield of CAN is plotted against the total conversion of *o*-, *m*-, and *p*-CNB substrates (the change of conversion and selectivity with reaction time is shown in ESI Fig. S3†). For all the isomers, no dehalogenation and coupling occurred and so the selectivity to CAN was almost 100% at any conversion, confirming the effectiveness of the present reaction system including H₂O and low-pressure CO₂ for the selective hydrogenation of aromatic nitro compounds to anilines.

In conclusion, the interactions of CO_2 and H_2O with the reacting species, the *in situ* formed acidity, and the better dispersion of Ni catalyst in the H_2O phase are responsible for the fast and selective hydrogenation of NB in the H_2O-CO_2 system, in which the conversion of NB into PHA may be the rate-determining step.

Acknowledgements

We thank the financial support from the One Hundred Talent Program of CAS, NSFC 20873139, KJCX2, YW.H16, Japan Society for the Promotion of Science with Grant-in-Aid for Scientific Research (B) 18360378, and the CAS-JSPS international joint project GJHZ05.

Notes

- 1 A. S. Travis, in *The Chemistry of Anilines*, ed. Z. Rappoport, John Wiley & Sons, Ltd, Chichester, England, 2007, pp. 715-782.
- (a) F. Haber, Z. Elektrochem., 1898, 22, 506; (b) H. U. Blaser, Science, 2006, 313, 312–313; (c) A. Corma, P. Concepcion and P. Serna, Angew. Chem., Int. Ed., 2007, 46, 7266–7269.
- 3 (a) X. Meng, H. Cheng, Y. Akiyama, Y. Hao, W. Qiao, Y. Yu, F. Zhao, S. Fujita and M. Arai, *J. Catal.*, 2009, **264**, 1–10; (b) X. Meng, H. Cheng, S. Fujita, Y. Hao, Y. Shang, Y. Yu, S. Cai, F. Zhao and M. Arai, *J. Catal.*, 2010, **269**, 131–139.
- 4 (a) G. A. Yeo and T. A. Ford, J. Mol. Struct.: Theochem, 1991, 235, 123–136; (b) P. Politzer, J. S. Murray and M. C. Concha, J. Phys. Org. Chem., 2008, 21, 155–162.
- 5 (a) S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, John Wiley & Sons, New York, 2001, pp. 334–336; (b) J. Ning, J. Xu, J. Liu, H. Miao, H. Ma, C. Chen, X. Li, L. Zhou and W. Yu, Catal. Commun., 2007, 8, 1763–1766; (c) P. Maity, S. Basu, S. Bhaduri and G. K. Lahiri, Adv. Synth. Catal., 2007, 349, 1955–1962.
- 6 M. Burgener, D. Ferri, J.-D. Grunwaldt, T. Mallat and A. Baiker, J. Phys. Chem. B, 2005, 109, 16794–16800.
- 7 L. W. Diamond and N. N. Akinfiev, *Fluid Phase Equilib.*, 2003, 208, 265–290.
- 8 (a) K. L. Toews, R. M. Shroll, C. M. Wai and N. G. Smart, *Anal. Chem.*, 1995, **67**, 4040–4043; (b) C. Roosen, M. Ansorge-Schumacher, T. Mang, W. Leitner and L. Greiner, *Green Chem.*, 2007, **9**, 455–458.
- 9 (a) C. J. Stalder, S. Chao, D. P. Summers and M. S. Wrighton, J. Am. Chem. Soc., 1983, **105**, 6318–6320; (b) J. Elek, L. Nádasdi, G. Papp, G. Laurenczy and F. Joó, Appl. Catal., A, 2003, **255**, 59–67.
- 10 O. Kamm and C. S. Marvel, Org. Synth., 1925, 4, 57-59.
- 11 M. Jorge, M. Natália and D. S. Cordeiro, J. Phys. Chem. C, 2007, 111, 17612–17626.
- 12 Y. S. Jung and R. A. Marcus, J. Am. Chem. Soc., 2007, 129, 5492– 5502.
- 13 S. R. P. da Rocha, K. P. Johnston, R. E. Westacott and P. J. Rossky, J. Phys. Chem. B, 2001, 105, 12092–12104.
- 14 I. Benjamin, Acc. Chem. Res., 1995, 28, 233-239.