

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 2779-2794

Aza-Wittig reaction of fluoroalkylated *N*-vinylic phosphazenes with carbonyl compounds. Usefulness of 2-azadienes for the preparation of fluoroalkyl pyridine derivatives

Francisco Palacios,* Concepción Alonso, Gloria Rubiales and Maite Villegas

Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del País Vasco, Apartado 450, 01080, Spain

Received 25 November 2004; revised 18 January 2005; accepted 20 January 2005

Abstract—A method for the preparation of 3-fluoroalkyl substituted 2-aza-butadienes 6 by aza-Wittig reaction of 3-fluoroalkyl-N-vinylic phosphazenes 4 and aldehydes 5 is reported. [4+2] Cycloaddition reaction of these heterodienes 6 with enamines 9 gives fluoroalkyl substituted pyridine 15, 16, 24–27 and isoquinoline 12–14, 20 derivatives. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Functionalized 2-azabutadiene systems have proved to be efficient key intermediates in organic synthesis for the preparation of heterocycles^{1,2} although the great majority of 2-azadienes studied are substituted with electron-donating groups and are excellent reagents in normal Diels–Alder reactions with electron-poor dienophiles.^{1–3} In this context, we have described new methods for the preparation of heterocycles,⁴ as well as for the synthesis of neutral azadienes **I** (Fig. 1)⁵ and of electron-poor 2-aza-1,3-butadienes derived from α - and β -amino esters **II** (Fig. 1)⁶ and we have also reported their use in the preparation of nitrogen heterocyclic compounds.^{4–6}

Moreover, special interest has been focused on developing synthetic methods for the preparation of fluorinated building

blocks since they are used for the efficient and/or selective preparation of fluorine-containing molecules with biological activity⁷ and commercial applications.⁸ Direct fluorination is the simplest way to prepare fluorinated heterocyclic compounds,⁹ but usually the use of fluorinated precursors has been of more interest due to the easy formation of the products and to the regioselectivity of the fluorine substituents on the heterocyclic ring.¹⁰ In this context, fluoroalkyl substituted 2-aza-1,3-butadienes III ($R_F = CF_3$, C_2F_5 , ... Fig. 1), despite their potential interest as synthons in organic synthesis for the construction of more complex fluoro-containing acyclic and cyclic compounds, have not received much attention, probably owing to the lack of general methods of synthesis of these compounds. Moreover, the presence of carboxylic groups in position 1 and 4 in compounds III (Fig. 1) may open new entries to the formation of heterodienes derived from α- and β-aminoacids. However, as far as we know, there has only been synthesis of 4-alkoxy-1,4-disilyloxy-1-trifluoromethyl-,^{11a} 1,1-bis-(trifluoromethyl-),^{11b} 4,4-difluoro- and 3-trifluoromethyl-2-aza-1,3-butadienes^{11c} and reactions of 4-alkoxy-1,4-disilyloxy-1-trifluoromethyl-2-aza-1,3-butadienes with carbonyl compounds^{12a} and 1,1-bis-(trifluoromethyl)-2-aza-1,3-butadiene with bromide, amines, mercaptans,¹²⁶ diazomethane^{12c} and phosphines^{12d} have been described. As a continuation of our work on the design of new building blocks, we report herein an easy and versatile method for the synthesis of fluoroalkyl substituted 2-azadienes III involving aza-Wittig reaction¹³ of *N*-vinylic phosphazenes IV with aldehydes and the use of these substrates as starting materials for the construction of fluoroalkyl functionalized heterocycles (Fig. 2).¹⁴

Keywords: *N*-vinylic phosphazenes; Aza-Wittig reaction; 2-Aza-1; 3-butadienes; Fluoroalkyl derivatives; Heterocycles.

^{*} Corresponding author. Tel.: +34 945013103; fax: +34 945013049; e-mail: qoppagaf@vc.ehu.es

^{0040–4020/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2005.01.080

Figure 2.

2. Results and discussion

2.1. Synthesis of N-vinylic phosphazenes

Fluoroalkyl substituted *N*-vinylic phosphazenes **4** were prepared by reaction of phosphorus ylides and perfluoroalkyl nitriles.¹⁵ Gas nitriles **2a** ($R_F = C_3$) and **2b** ($R_F = C_2F_5$) were freshly generated¹⁶ and bubbled through a solution of phosphorus ylides **1** ($R^2 = Ph$, CO₂Me, CN),¹⁷ affording the corresponding *N*-vinylic phosphazenes **4a**, **4b**, **4d**, **4e**, **4g**, **4i**, **4l** and **4m** (Scheme 1) in good yields (Table 1, entries 1, 2, 4, 5, 7, 9, 12 and 13). Commercially available nitrile **2c** ($R_F = C_7F_{15}$) was also used for the synthesis of phosphazenes **4c**, **4f**, **4h**, **4j**, **4k**, **4n** (Table 1, entries 3, 6, 8, 10, 11 and 14). Inorganic salts were eliminated by filtration and some phosphazenes were crystallized from ethyl acetate and isolated. However, other phosphazenes were less stable

 Table 1. N-Vinylic phosphazenes 4 obtained

and, for this reason, were used without isolation (Table 1, entries 6-11) from the crude mixtures.

Crystalline compounds **4** were characterized on the basis of their spectroscopic data as *E* or *Z* isomers. Phosphazenes **4a–c** with a phenyl group ($R^2=Ph$) were exclusively obtained as *E* isomers (Table 1, entries 1–3), while phosphazenes **4d–h** derived from methoxycarbonyl ylides ($R^2=CO_2Me$) afforded phosphazenes whose HOESY ¹⁹F–¹H experiments showed cross signals between fluorinated groups and vinylic protons, suggesting the formation of *Z* isomers (Table 1, entries 4–8).

However, when ylides containing a cyan substituent were employed (R^2 =CN) either only *E* isomers (Table 1, entries 10, 11 and 14) or mixtures of *E* and *Z* isomers (Table 1, entries 9, 12 and 13) with a higher proportion of *E* isomers were obtained. Formation of conjugated phosphazenes 4 can be explained through [2+2] cycloaddition of phosphorus ylides 1 and nitriles 2 followed by ring opening of the unstable four-membered cyclic compounds $3^{5b,18}$ (Scheme 1). In this context, it is noteworthy that, isomerization of *E* isomer towards *Z* isomer was observed during purification (recrystallization or column chromatography) or thermal treatment.

For instance, spectroscopic analysis confirmed the total thermal isomerization to the new Z isomers when only the E isomers (phosphazenes **4a–c** and **4n**) as well as mixtures of E- and Z-isomers (phosphazenes **4i**, **4l** and **4m**) were heated at 110 °C in toluene. For example, ¹H NMR monitoring of E-phosphazene **4a** upon heating showed a singlet at $\delta_{\rm H}$ 6.23 ppm for the vinylic proton of Z-phosphazene **4a**, instead of the doublet corresponding to the E precursor ($\delta_{\rm H}$ =5.70 ppm, ⁴J_{PH}=3.2 Hz). Configuration of vinylic double bonds was also determined on the basis of heteronuclear HOESY ¹⁹F⁻¹H experiments. Similar isomerizations have been observed previously by us¹⁹ and by others.²⁰

2.2. Aza-Wittig reaction of fluoroalkyl substituted *N*-vinylic phosphazenes 4 with carbonyl compounds 5

We then turned our attention to the preparation of

Entry	Compound	R	R^1	\mathbb{R}^2	R _E	Time (h)	Solvent	Yield (%)	Mp (°C)	E/Z (%)
1	49	Ph	Ph	Ph	CE	12	Et ₂ O	90 ^a	13/_135	100.0 ^{b,c}
2	4b	Ph	Ph	Ph	C ₂ E ₅	24	Et ₂ O Et ₂ O	81 ^a	105 - 106	100:0 ^{b,c}
3	4c	Ph	Ph	Ph	C_7F_{15}	12	Toluene	83 ^a	120-121	100:0 ^c
4	4d	Ph	Ph	CO_2Me	CF ₃	12	Et ₂ O	65 ^a	101-102	0:100
5	4e	Ph	Ph	CO_2Me	C_2F_5	24	Et ₂ O	99 ^a	93–94	0:100
6	4f	Ph	Me	CO_2Me	C_7F_{15}	48	Toluene	d	_	0:100
7	4g	Me	Me	CO_2Me	CF ₃	12	Et ₂ O	d	_	0:100
8	4h	Me	Me	CO_2Me	C_7F_{15}	12	Et ₂ O	d	_	0:100
9	4i	Ph	Ph	CN	CF ₃	24	Et ₂ O	d	_	$60:40^{\circ}$
10	4j	Ph	Ph	CN	C ₇ F ₁₅	48	Toluene	d	_	100:0
11	4k	Ph	Me	CN	C ₇ F ₁₅	48	Toluene	d	_	100:0
12	41	Me	Me	CN	CF ₃	12	THF	86 ^a	_	$80:20^{\circ}$
13	4m	Me	Me	CN	C_2F_5	12	THF	66 ^a		75:25 ^c
14	4n	Me	Me	CN	C_7F_{15}	12	THF	40^{a}	98–99	100:0 ^c

^a Yield of isolated compounds.

^b Isomerization towards Z isomer was observed when purification by column chromatography was performed (see Section 4).

^c Isomerization of *E* isomer towards *Z* isomer was observed when a solution of *E* isomer or the E/Z mixture was heated at 110 °C in toluene (see Section 4). ^d Not isolated, used in situ.

2-azadienes III (Fig. 2) containing a carboxylate group or a synthetic equivalent either in position 1 or in position 4, because these substrates are heterodienes derived from α and β -amino acids respectively, containing fluoroalkyl substituents on 3 position. The aza-Wittig reaction¹³ of fluoroalkyl E-N-vinylic phosphazenes 4a-c derived from triphenylphosphine ($R=R^1=Ph$) with ethyl glyoxalate 5 $(R^3 = CO_2Et)$ at room temperature (Scheme 2) gave fluoroalkyl 2-azadienes 6a-c (Table 2, entries 1-3) keeping the *E* configuration of the vinylic double bond (1,2)addition). These heterodienes 6a-c were unstable to distillation or chromatography and therefore were not isolated and used in situ for the following reactions, but the presence of the non isolable compounds was established on the basis of the spectroscopic data of their crude mixtures. In the ¹H NMR spectrum of crude reaction of compound **6b** the olefinic hydrogen appeared as a singlet at δ 6.85 ppm and the iminic hydrogen as a singlet at δ

Table 2. 3-Fluoroalkyl-2-azadienes 6 obtained

7.90 ppm. A significant signal enhancement (1.6% NOESY) was observed between the vinylic proton at δ 6.85 ppm of 2-azadiene and iminic proton at δ 7.90 ppm for compound **6b**. These data are consistent with the 1*E*,3*E*-configuration of heterodienes **6a–c**.

However, no aza-Wittig reaction (1,2-addition) was observed between ethyl glyoxalate or aromatic aldehydes 5 with fluoroalkyl N-vinylic phosphazenes derived from triphenylphosphine 4d,4e ($R=R^1=Ph$, $R^2=CO_2Me$) or **4i,4j** ($\mathbf{R} = \mathbf{R}^1 = \mathbf{Ph}$, $\mathbf{R}^2 = \mathbf{CN}$) or derived from diphenyl-methylphosphine **4f** ($\mathbf{R} = \mathbf{Ph}$, $\mathbf{R}^1 = \mathbf{Me}$, $\mathbf{R}^2 = \mathbf{CO}_2\mathbf{Me}$) and **4k** $(R=Ph, R^{1}=Me, R^{2}=CN)$. The electron withdrawing effect of these groups (CN, CO₂Me) on 4 position seems to decrease the reactivity of conjugated phosphazenes 4 through the P=N linkage in the aza-Wittig reaction. Conversely, when phosphazene **4i** ($R=R^1=Ph$, $R^2=CN$, $R_F = CF_3$) was treated with *p*-nitrobenzaldehyde 5 ($R^3 = 4$ -NO₂-C₆H₄), olefinic derivative 8a $(R^3 = 4 - NO_2 - C_6H_4)^{21}$ and triphenylphosphine oxide were isolated from the crude mixture (Scheme 2). This result suggests an enaminic behaviour (1,4-addition) of the conjugated phosphazene 4i. Formation of compound **8a** could be explained by an initial addition of aldehyde 5 to the β -carbon atom of phosphazene **4i** (1,4-addition) to give unstable 1,3,2-oxaazaphosphorane 7, whose opening afforded the corresponding triphenylphosphine oxide $(R=R^1=Ph)$, the very volatile nitrile 2 $(R_F = CF_3)$ and alkene derivative **8a**.

Substitution in the phosphorus atom of phosphazenes of phenyl by methyl groups increases the reactivity of the phosphazene^{6b} (1,2-addition) in a similar way to that observed for isosteric phosphorus ylides,²² therefore more reactive phosphazenes derived from trimethylphosphine were used. Initially, we explored the reaction of Z-conjugated phosphazene with an ester group in 4 position 4g $(R=R^1=Me, R^2=CO_2Me, R_F=CF_3)$ with aromatic aldehydes 5 ($R^3 = 4$ -NO₂-C₆H₄, 2,4-(NO₂)₂-C₆H₃). After heating the respective reaction mixtures in refluxing toluene the expected (1*E*,3*Z*)-2-azadienes **6d** ($\mathbb{R}^3 = 4$ -NO₂-C₆H₄) or **6e** $(R^3 = 2, 4 - (NO_2)_2 - C_6H_3)$ (Table 2, entries 4 and 5) were obtained, keeping the Z-configuration of the starting vinyl group from conjugated phosphazene 4g. Similar results were observed when aza-Wittig reaction was attempted with Z-conjugated phosphazenes containing a cyano group 41

	Compound	Starting material	R ²	R _F	R ³	<i>T</i> (°C)	Time (h)	Solvent	Yield (%)
1	(1 <i>E</i> ,3 <i>E</i>)-6a	(E)- 4 a	Ph	CF ₃	CO ₂ Et	20	1	CHCl ₃	a
2	(1 <i>E</i> ,3 <i>E</i>)- 6b	(E)- 4b	Ph	C_2F_5	CO ₂ Et	20	1	CHCl ₃	a
3	(1 <i>E</i> ,3 <i>E</i>)-6c	(E)- 4 c	Ph	C_7F_{15}	CO ₂ Et	20	0.5	CHCl ₃	a
4	(1E,3Z)-6d	(Z)- 4 g	CO ₂ Me	CF ₃	$4-NO_2-C_6H_4$	110	3	Toluene	a
5	(1 <i>E</i> ,3 <i>Z</i>)-6e	(Z)- 4 g	CO ₂ Me	CF ₃	2,4-(NO ₂) ₂ -C ₆ H ₃	110	3	Toluene	a
6	(1 <i>E</i> ,3 <i>Z</i>)-6f	(Z)-4l	CN	CF ₃	$4-NO_2-C_6H_4$	110	2	Toluene	45 ^b
7	(1E,3Z)-6f	(E)- 4 l	CN	CF ₃	$4-NO_2-C_6H_4$	110	3	Toluene	35 ^b
8	(1 <i>E</i> ,3 <i>Z</i>)-6g	(E)- 4 l	CN	CF ₃	$2,4-(NO_2)_2-C_6H_3$	110	6	Toluene	30 ^b
9	(1 <i>E</i> ,3 <i>Z</i>)-6g	(E+Z)-4l	CN	CF ₃	$2,4-(NO_2)_2-C_6H_3$	61	12	CHCl ₃	45 ^b
10	(1 <i>E</i> ,3 <i>Z</i>)-6h	$(E+Z)-4\mathbf{m}$	CN	C_2F_5	$4-NO_2-C_6H_4$	110	120	Toluene	a
11	(1 <i>E</i> ,3 <i>Z</i>)-6i	(Z)- 4n	CN	C_7F_{15}	$4-NO_2-C_6H_4$	110	120	Toluene	a
12	(1 <i>E</i> ,3 <i>Z</i>)-6i	(E)- 4n	CN	C_7F_{15}	$4-NO_2-C_6H_4$	110	138	Toluene	a
13	(1 <i>E</i> ,3 <i>Z</i>)-6j	(E)- 4n	CN	C_7F_{15}	2,4-(NO ₂) ₂ -C ₆ H ₃	110	192	Toluene	<u> </u>

^a Not isolated, used in situ for the next reactions.

^b Yield of isolated compounds by column chromatography.

 $(R=R^1=Me, R^2=CN, R_F=CF_3)$ and **4n** $(R=R^1=Me, R^2=CN, R_F=C_7F_{15})$ to give (1E,3Z)-heterodienes **6f** and **6i** (Table 2, entries 6 and 11).

However, these azadienes 6f and 6i with the same configuration (1E,3Z) were also obtained when E isomers 4l and 4n were used, although longer reaction times were necessary than for 3-Z isomers (Table 2, entries 7 and 12). ¹H NMR monitoring of reaction of *E* isomer of phosphazene 41 with *p*-nitrobenzaldehyde ($R^3 = 4 - NO_2 - C_6 \dot{H}_4$) was performed. Initially, signals corresponding to conversion of E-phosphazene towards Z isomer were observed, the latter being the precursor of corresponding (1E,3Z)-2azadiene 6f, whose signals began to be visible after isomerization. In a similar way, reaction E isomer of phosphazenes **4I** and **4n** with aromatic aldehyde **5** ($\mathbb{R}^3 = 2, 4$ - $(NO_2)_2$ -C₆H₃) (Table 2, entries 8 and 13) or reaction of E,Z mixtures of phosphazene 4l (3E/3Z=80/20) with aromatic aldehyde 5 ($R^3 = 2,4$ -(NO_2)₂- C_6H_3) or phosphazene 4m (3E/3Z=75/25) with 4-nitrobenzaldehyde 5 ($\mathbb{R}^3=4-\mathrm{NO}_{2-}$ C_6H_4) led to the formation of (1E,3Z)-azadienes **6g,h,j**, respectively (Table 2, entries 9, 10 and 13). HOESY ¹⁹F-¹H experiment for compound 6j showed cross signal between fluorinated group and vinylic proton, confirming the formation of (1E,3Z) isomer. As far as we know, this strategy describes the first synthesis¹⁴ of 3-perfluoroalkyl-2azabutadienes derived from α -amino esters **6a**-**c** (R_F=CF₃, C₂F₅, C₇F₁₅) and 3-perfluoroalkyl-2-azabutadienes derived from β -amino esters **6d**, **e** ($R_F = CF_3$) and from β -amino nitriles **6f**–**j** ($R_F = CF_3$, C_2F_5 , C_7F_{15}).

2.3. Reaction of 3-fluoromethyl-2-azadienes 6 with enamines 9. [4+2] versus [2+2] cycloaddition processes

Pyridine nuclei are widespread in the alkaloid family and constitute an important class of compounds in pharmaceuticals, agrochemicals and dyestuffs.^{23,24} For this reason, in order to test the synthetic usefulness of the new fluoroalkyl substituted azadienes **6** as key intermediates in organic synthesis and specially in the preparation of new nitrogen-containing heterocycles, the cycloaddition reaction of fluoroalkyl substituted 2-azadienes **6** was explored. Cycloaddition reactions with a range of dienophiles (diethyl ketomalonate, *trans*-cyclooctene, ...) were inefficient. Indeed, even on prolonged heating and at higher temperature no significant cycloaddition was observed, and so the reaction of heterodienes **6** with electron-rich olefins such as enamines was studied.

Initially, the reaction of 2-azadiene derived from α -amino esters **6a** was explored, because this substrate would be an interesting starting material for the preparation of pipecolic acid derivatives.²⁵ When the reaction of 2-azadiene **6a** with *N*-cyclohex-1-enyl pyrrolidine **9a** was performed in refluxing toluene, only the aromatic bicyclic compound **12** (Scheme 3, 40%) was obtained.

The formation of this tetrahydroisoquinoline can be explained through a [4+2] cycloaddition reaction of heterodiene **6a** with enamine **9a** and formation of cycloadduct **10** followed by the loss of pyrrolidine and oxidation. Then, we tried to stop the process in proposed intermediates when the reaction was achieved in very mild

Scheme 3.

reaction conditions. At room temperature in CHCl₃, alkylfluorinated 2-azadiene **6a**, underwent efficient regioand stereoselective cycloaddition with enamine **9a** affording the *endo*-cycloadduct **10** (Scheme 3) in good yield (80%) in a regio- and stereoselective fashion. The structure of compound **10** was assigned on the basis of the 1D and 2D spectroscopy, including COSY, NOE, HMQC and HMBC experiments and mass spectral data. As far as we know, this strategy describes the first synthesis¹⁴ of 3-trifluoromethylisoquinolines derived from α -amino esters **10** and **12**.

Then, we tried to extend the process to 3-trifluoromethyl-2azadienes derived from β -amino nitrile. Thus, 2-azadiene **6f**

Scheme 4.

Table 3. Pyridine derivatives 13-16 obtained from azadienes 6 and enamines 9

Entry	Compound	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Time (h)	Yield (%)
1	13a	CN	$4-NO_2-C_6H_4$	-(CH ₂) ₄ -		2	29 ^a
2	13b	CN	$2,4-(NO_2)_2-C_6H_3$	$-(CH_2)_4-$		3	b,c
3	14a	CN	$4-NO_2-C_6H_4$	-(CH ₂) ₄ -		2/72 ^d	29 ^a /93 ^e
4	14b	CN	$2,4-(NO_2)_2-C_6H_3$	-(CH ₂) ₄ -		3/144 ^f	— ^{b,c} /70 ^d
5	15a	CO ₂ Me	$2,4-(NO_2)_2-C_6H_3$	Н	ⁱ Pr	3	35 ^a
6	15b	$\overline{CO_2Me}$	$4-NO_2-C_6H_4$	Н	ⁱ Pr	24	$60^{\rm a}$
7	16a	$\overline{CO_2Me}$	$2,4-(NO_2)_2-C_6H_3$	Н	ⁱ Pr	3/24 ⁱ	43 ^a /98 ^f
8	16b	$\overline{CO_2Me}$	$4-NO_2-C_6H_4$	Н	ⁱ Pr	48^{i}	72 ^f
9	16c	CN	$4-NO_2-C_6H_4$	Н	ⁱ Pr	3	52 ^a
10	16d	CN	$2,4-(NO_2)_2-C_6H_3$	Н	ⁱ Pr	3	64 ^a

^a Isolated by column chromatography.

^b Not isolated.

^c Proportion **13b:14b**, 6:1.

^d Obtained by oxidation of the mixture of 13 and 14 with *p*-benzoquinone in dioxane at 80 $^{\circ}$ C.

^e Obtained by oxidation of **13a** with *p*-benzoquinone in dioxane at 80 °C.

^f Obtained by oxidation of **15** with p-benzoquinone in dioxane at 80 °C.

(R²=CN, R³=4-NO₂-C₆H₄) reacted with *N*-cyclohex-1enylpyrrolidine **9a** at room temperature until disappearance of starting material, affording a mixture (1:1) of bicyclic cycloadduct **13a** (29%) and the corresponding aromatic heterocycle **14a** (29%) (Scheme 4, Table 3, entries 1 and 3). Oxidation of **13a** with *p*-benzoquinone in dioxane at 80 °C (72 h) gave only 3-trifluoromethyl-5,6,7,8-tetrahydro-isoquinoline **14a** in very high yield (93%). Similarly, azadiene **6g** (R²=CN, R³=2,4-(NO₂)₂-C₆H₃) was treated with enamine **9a** at room temperature to give an inseparable mixture of heterocyclic derivatives **13b** and **14b** (6:1) (Scheme 4, Table 3, entries 2 and 4). Oxidation of the mixture with *p*-benzoquinone in dioxane at 80 °C gave only the aromatic pyridine **14b** (Scheme 4, Table 3, entry 4).

Formation of compounds **13** and **14** $(R^4R^5 = (CH_2)_4)$ could be explained, as before, by formation of a [4+2]cycloadduct followed by the loss of pyrrolidine and oxidation in a similar way to that described in Scheme 3.

The reaction was extended to *N*-(3-methyl)but-1-enylpyrrolidine **9b** ($R^4 = H$, $R^5 = {}^iPr$). In this process, the electron-withdrawing effect of substituents at position 4 (CO₂Me, CN) seems to play an important role. 2-Azadiene **6e** derived from β -aminoester ($R^2 = CO_2Me$, $R^3 = 2,4$ -(NO_2)₂-C₆H₃) reacted with enamine **9b** in CHCl₃ at room temperature to give heterocycles **15a** ($R^2 = CO_2Me$, $R^3 =$ 2,4-(NO_2)₂-C₆H₃, $R^4 = H$, $R^5 = {}^iPr$) and **16a** ($R^2 = CO_2Me$, $R^3 = 2,4$ -(NO_2)₂-C₆H₃, (Scheme 4, Table 3, entries 5 and 7) along with a small amount (<10%) of aldehyde **18a** ($R^3 =$ 2,4-(NO_2)₂-C₆H₃) and enamine **19**.²⁶ Formation of heterocycles **15** and **16** ($R^4 = H$, $R^5 = {}^iPr$) could be explained, as before, by formation of a [4+2]-cycloadduct followed by the loss of pyrrolidine and oxidation in a similar way to that described in Scheme 3. However, the formation of aldehyde **18a** ($R^3 = 2,4-(NO_2)_2-C_6H_3$) and primary enamine **19** could be explained by a competitive [2+2] cycloaddition of the enamine with the iminic double bond of heterodiene²⁷ followed by ring opening of the fourmembered ring and formation of the intermediate **17** (Scheme 4), whose subsequent C–N bond cleavage gave pyrrolidine, carbonyl compound **18** and primary enamine **19**.

On the other hand, when 2-azadiene **6d** ($R^2 = CO_2Me$, $R^3 = 4-NO_2-C_6H_4$) reacted in CHCl₃ at room temperature with the same enamine **9b** a complex mixture of several compounds including decomposition products of starting azadiene was obtained after very long period of time (10 days). Nevertheless, if the reaction was performed by heating in toluene, only the 1,2-dihydropyridine **15b** ($R^2 = CO_2Me$, $R^3 = 4-NO_2-C_6H_4$, $R^4 = H$, $R^5 = iPr$) was obtained (Scheme 4, Table 3, entry 6). Oxidation of 1,2-dihydropyridines **15a,b** with *p*-benzoquinone in dioxane at 80 °C (for 24 and 48 h respectively) gave pyridines **16a,b** (98 and 72% see Table 3, entries 7 and 8).

Aromatic pyridines **16** can also be directly prepared in the case of 2-azadienes derived from β -amino nitriles **6f**,**g** (R²=CN). Reactions of 2-azadienes **6f** (R³=4-NO₂-C₆H₄) and **6g** (R³=2,4-(NO₂)₂-C₆H₃) with enamine **9b** was performed in CHCl₃ at room temperature to give only

Table 4. Pyridine derivatives 20, 24-27 obtained from azadienes 6 and enamines 9

							_
Entry	Compound	R ³	\mathbb{R}^{6}	\mathbb{R}^4	\mathbb{R}^5	Yield	
1	20	_	CF ₃	-(CH ₂) ₄ -	$60^{\rm a}$		
2	24a		CF_3	-(CH ₂) ₃ -	42^{a}		
3	24b	_	C ₆ F ₁₃	-(CH ₂) ₃ -	48^{a}		
4	25a	$4-NO_2-C_6H_4$	CF ₃	Н	ⁱ Pr	40^{a}	
5	25b	$4-NO_2-C_6H_4$	$C_{6}F_{13}$	Н	ⁱ Pr	35 ^a	
6	25c	$2,4-(NO_2)_2-C_6H_3$	$C_{6}F_{13}$	Н	ⁱ Pr	b	
7	26a	$4-NO_2-C_6H_4$	CF ₃	Н	ⁱ Pr	18 ^a	
8	26b	$4-NO_2-C_6H_4$	$C_{6}F_{13}$	Н	ⁱ Pr	18 ^a	
9	26c	$2,4-(NO_2)_2-C_6H_3$	$C_{6}F_{13}$	Н	ⁱ Pr	b	
10	27ь	$4-NO_2-C_6H_4$	C ₆ F ₁₃	Н	ⁱ Pr	22 ^a	

^a % Isolated by column chromatography.

^b Obtained as an inseparable mixture of **25c** and **26c** (1:2).

pyridines **16c** and **16d**, respectively (Scheme 4, Table 3, entries 9 and 10).

2.4. Reaction of 3-perfluoroethyl-2-azadienes and 3-perfluorohepthyl-2-azadienes with enamines

In order to test the influence of perfluoroalkyl substituents at 3 position on the reactivity of heterodienes **6** derived from α -amino esters ($\mathbb{R}^3 = \mathbb{CO}_2\mathbb{E}t$), we tried to extend the study to the reaction of 3-perfluoroethyl-2-azadiene **6b** ($\mathbb{R}^6 = \mathbb{CF}_3$) and 3-perfluorohepthyl-2-azadiene **6c** ($\mathbb{R}^6 = \mathbb{C}_6\mathbb{F}_{13}$) with enamines **9** (Scheme 5). However, an unexpected behaviour was observed when 2-azadiene derived from ethyl glyoxalate **6b** ($\mathbb{R}^6 = \mathbb{CF}_3$) was treated with enamine **9a** ($\mathbb{R}^4\mathbb{R}^5 = (\mathbb{CH}_2)_4$). Spectroscopic data for the compounds obtained showed that pyridine **20** ($\mathbb{R}^6 = \mathbb{CF}_3$, $\mathbb{R}^4\mathbb{R}^5 = (\mathbb{CH}_2)_4$) was obtained (Scheme 5, Table 4, entry 1) instead of the expected compound **21** ($\mathbb{R}^4\mathbb{R}^5 = (\mathbb{CH}_2)_4$).

Mass spectrometry of compound **20** showed the molecular ion (*m*/z 381, 73%), which corresponds to the loss of HF from expected cycloadduct **22**, confirmed also by ¹H NMR and ¹³C NMR spectra. Thus, ¹H NMR of compound **20** (R⁶=CF₃, R⁴R⁵=(CH₂)₄) showed a double quadruplet at δ 5.45 ppm with coupling constants of ²J_{HF}=46 Hz and ³J_{HF}=6 Hz and ¹³C NMR spectrum shows a double quadruplet at δ 122.0 ppm with coupling constants of ¹J_{CF}=281.0 Hz and ²J_{CF}=29.0 Hz.

Formation of this fluoroalkyl heterocycle 20 could be explained through a [4+2]-cycloadduct 10 followed by the loss of pyrrolidine, dehydrofluorination and formation of 23. Enamine-imine tautomerization of 23 may give aromatic

1-ethoxycarbonyl-4-phenyl-3-(1,2,2,2-tetrafluoroethyl)-5,6,7,8-tetrahydroisoquinoline **20** (Scheme 5).²⁸

Likewise, heterodienes derived from glyoxalate **6b** ($\mathbb{R}^6 = \mathbb{CF}_3$) and **6c** ($\mathbb{R}^6 = \mathbb{C}_6\mathbb{F}_{13}$) with *N*-cyclopent-1-enyl pyrrolidine **9c** ($\mathbb{R}^4\mathbb{R}^5 = (\mathbb{CH}_2)_3$) led also to the formation of bicyclic heterocycles **24a** ($\mathbb{R}^6 = \mathbb{CF}_3$, $\mathbb{R}^4\mathbb{R}^5 = (\mathbb{CH}_2)_3$) and **24b** ($\mathbb{R}^6 = \mathbb{C}_6\mathbb{F}_{13}$, $\mathbb{R}^4\mathbb{R}^5 = (\mathbb{CH}_2)_3$) containing fluoroalkyl substituents at 3 position (Scheme 5, Table 4, entries 2 and 3). In these processes the presence of an electron-withdrawing group ($\mathbb{CO}_2\mathbb{E}$ t) at 1 position seems to favour the [4+2] cycloaddition reaction with exclusive formation of aromatic pyridine derivatives **20** and **24**.

However, when heterodienes with an aryl group (1 position) and derived from β -amino nitriles ($R^2 = CN$) such as 2-azadiene **6h** ($R^6 = CF_3$, $R^3 = 4$ -NO₂-C₆H₄) were treated with enamine **9b**, not only aromatic pyridines **25a** and **26a** (Scheme 6, Table 4, entries 4 and 7) but also unsaturated aldehydes **18b** ($R^3 = 4$ -NO₂-C₆H₅, *E* and *Z*) and enamine **28a** ($R^6 = CF_3$) were obtained (<10%, Scheme 6).

Similar behaviour was observed in the reaction of 2-azadienes **6i** ($R^6 = C_6F_{13}$, $R^3 = 4$ -NO₂- C_6H_4) and **6j** ($R^6 = C_6F_{13}$, $R^3 = 2,4$ -(NO₂)₂- C_6H_3) with this enamine **9b** to give mixtures of aromatic perfluoro substituted (position 2) pyridines **25b,c** (Scheme 6) and pyridines with only a fluorine atom in C α of C-2 **26b,c** (Table 4, entries 5, 6, 8 and 9). Formation of compounds **25**, **26** could be explained, as before, through a normal [4+2] cycloaddition reaction of heterodienes and enamines with formation of cycloadducts **27**. These intermediates could give either pyridines **25**, by oxidation under reaction conditions, or pyridines **26** by dehydrofluorination, in a similar way to that observed before in Scheme **5**. Moreover, in the case of the reaction of heterodiene **6i**, the dihydropyridine derivative **27b**

Scheme 6.

2785

 $(R^6 = C_6F_{13}, R^3 = 4 - (NO_2) - C_6H_4)$ can also be isolated (Table 4, entry 10). Spectroscopic data 1D and 2D, including HMQC and HMBC experiments were consistent with the structure of compound 27. In these processes a small amount (<10%) of the corresponding unsaturated aldehydes **18b** ($R^3 = 4 - (NO_2) - C_6H_4$) and **18a** ($R^3 = 2, 4 - (NO_2)_2 - C_6H_3$) and enamine **28b** ($R^6 = C_6F_{13}$, 6% and 8% respectively) were obtained. The formation of compounds **28** and **18** could also be explained by a competitive [2+2] cycloaddition of the enamine with the iminic double bond of heterodiene and formation of intermediate **29** in a similar manner to that reported in Scheme 4.

3. Conclusion

In summary, fluoroalkyl N-vinylic phosphazenes 4 can be prepared readily from fluoroalkyl nitriles 2 and phosphorus ylides 1. These conjugated phosphazenes react cleanly and in good yields with aldehydes, by means of an aza-Wittig reaction, to afford fluoroalkyl functionalized 2-azadienes 6, which are excellent building blocks for the preparation of fluorinated heterocycles. For instance, fluoroalkylated heterocycles esters such as 5,6,7,8-tetrahydroisoquinolines 12, 14 and 20, substituted pyridines derived from pipecolic esters 24, as well as pyridine compounds derived from β -amino nitriles and β -amino esters such as 1,2,6,7,8,8ahexahydroisoquinolines 13, dihydropyridines 15 and 27 and substituted pyridines 16, 25 and 26 can be prepared through a [4+2] cycloaddition strategy involving heterodienes 6 with electron-rich dienophiles such as enamines. Most of them are described for the first time. These fluoroalkylated 2-aza-1,3-butadienes may be important synthons in organic synthesis and in the preparation of fluoroalkyl substituted acyclic and heterocycles.^{1,8}

4. Experimental

4.1. General

Chemicals were purchased from Aldrich, Lancaster, Fluorochem and Acros Chemical Companies. Solvents for extraction and chromatography were technical grade. All solvents used in reactions were freshly distilled from appropriate drying agents before use. All other reagents were recrystallized or distilled as necessary. All reactions were performed under an atmosphere of dry nitrogen. Analytical TLC was performed with Merck silica gel 60 F₂₅₄ and aluminium oxide N/UV₂₅₄ plates. Visualization was accomplished by UV light. Flash chromatography was carried out using Merck silica gel 60 (230-400 mesh ASTM) and aluminium oxide 90 active neutre (70-230 mesh ASTM). Melting points were determined with an Electrothermal IA9100 Digital Melting Point Apparatus and are uncorrected. 1 H (400, 300 and 250 MHz), 13 C (100 and 75 MHz), 19 F NMR (376 and 282 MHz) and 31 P NMR (120 MHz) spectra were recorded on a Bruker Avance 400 MHZ and a Varian VXR 300 MHz spectrometer using CDCl₃ or CD₃OD solutions with TMS as an internal reference ($\delta = 0.00$ ppm) for ¹H and ¹³C NMR spectra, FCCl₃ as an internal reference ($\delta = 0.00$ ppm) for ¹⁹F NMR spectra, and phosphoric acid (85%) ($\delta = 0.0$ ppm) for ³¹P NMR spectra. Chemical shifts (δ) are reported in ppm. Coupling constants (*J*) are reported in Hertz. Lowresolution mass spectra (MS) were obtained at 50–70 eV by electron impact (EIMS) on a Hewlett–Packard 5971 or 5973 spectrometer. Data are reported in the form *m/z* (intensity relative to base = 100). Infrared spectra (IR) were taken on a Nicolet IRFT Magna 550 spectrometer, and were obtained as solids in KBr or as neat oils. Peaks are reported in cm⁻¹. Elemental analyses were performed in a LECO CHNS-932 apparatus.

4.2. General procedure A for the preparation of phosphazenes 4

A 1.6 M solution of methyllithium (3.125 mL, 5 mmol) in ether was added dropwise to a solution of 5 mmol of phosphonium salt in ether or toluene (20 mL) cooled to 0 °C under N₂. The clear red solution was heated at reflux for 1 h. Fluoroalkylated nitrile was added dropwise or bubbled to the ylide solution at 0 or -35 °C and the mixture was stirred at room temperature. Inorganic salts were filtered under N₂ and filtrate was concentrated to afford an oil.

4.3. General procedure B for the preparation of phosphazenes 4

A 0.5 M solution of KHMDS in toluene (10 mL, 5 mmol) was added dropwise to a solution of 5 mmol of phosphonium salt in THF (20 mL) cooled to 0 °C under N₂ and was stirred for 4.5 h at room temperature. Inorganic salts were filtered under N₂ and fluoroalkylated nitrile was added dropwise or bubbled to the ylide solution at -35 °C. The mixture was stirred at room temperature overnight. Evaporation of solvent afforded an oil.

4.3.1. (*3E*)-**1**,**1**,**1**,**4**-**Tetraphenyl-3**-**trifluoromethyl-2**-**aza**-**1** λ^{5} -**phosphabuta-1**,**3**-diene (4a). The general procedure A was followed using benzyltriphenylphosphonium iodide (2.40 g) in ether and bubbling trifluoroacetonitrile (CF₃CN) in excess at 0 °C for 12 h. Crystallization from ethyl acetate gave the (*E*) isomer of **4a** as a yellow solid (2.01 g, 90%) mp 134–135 °C (ethyl acetate). IR (KBr) ν 1600, 1341 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 5.70 (d, ⁴J_{PH}=3.2 Hz, 1H), 6.98–7.85 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 113.8 (dd, ³J_{CP}=11.3 Hz, ³J_{CF}=1.7 Hz), 122.8 (dq, ¹J_{CF}=278.0 Hz, ³J_{CP}=24.5 Hz), 125.5–133.7 (m), 137.0 (q, ²J_{CF}=21.3 Hz). ³¹P NMR (120 MHz, CDCl₃) δ : 7.94. ¹⁹F NMR (282 MHz, CDCl₃) δ : -64.1. MS (EI) *m*/*z* 447 (M⁺, 100). Anal. Calcd for C₂₇H₂₁F₃NP (447): C, 72.48; H, 4.73; N, 3.13. Found: C, 72.02; H, 4.68; N, 3.10.

4.3.2. (*3E*)-**3-Perfluoroethyl-1,1,1,4-tetraphenyl-2-aza-1** λ^{5} -**phosphabuta-1,3-diene** (**4b**). The general procedure A was followed using benzyltriphenylphosphonium iodide (2.40 g) in ether and bubbling perfluoropropanenitrile (C₂F₅CN) in excess at 0 °C for 24 h. Crystallization from ethyl acetate gave the (*E*) isomer of **4b** as a yellow solid (2.01 g, 81%) mp 105–106 °C (ethyl acetate). IR (KBr) ν 1608, 1203 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 5.73 (s, 1H), 6.91–7.8 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.4 (tq, ¹*J*_{CF}=259.9 Hz, ²*J*_{CF}=40.8 Hz), 119.3 (tq, ¹*J*_{CF}=286.6 Hz, ²*J*_{CF}=40.8 Hz), 125.9–136.6 (m). ³¹P NMR (120 MHz, CDCl₃) δ : 7.46. ¹⁹F NMR (282 MHz, CDCl₃) δ : -64.3, -94.5; MS (EI) *m/z* 497 (M⁺, 100). Anal. Calcd for C₂₈H₂₁F₅NP (497): C, 67.61; H, 4.25; N, 2.82. Found: C, 67.72; H, 4.21; N, 2.81.

4.3.3. (*3E*)-**3**-Perfluorohepthyl-1,1,1,4-tetraphenyl-2aza-1 λ^5 -phosphabuta-1,3-diene (4c). The general procedure A was followed using benzyltriphenylphosphonium iodide (2.40 g) at 0 °C in toluene and adding dropwise 1.97 g (5 mmol) of perfluorooctanenitrile (C₇F₁₅CN). The mixture was stirred at room temperature for 12 h. Crystallization from ethyl acetate gave the (*E*) isomer of **4c** as a yellow solid (3.10 g, 83%) mp 120–121 °C (ethyl acetate) IR (KBr) ν 1611, 1206 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 5.74 (s, 1H), 6.89–7.81 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 109.3–115.8 (m), 125.9–136.6 (m). ³¹P NMR (120 MHz, CDCl₃) δ : 7.03. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.2 (t, ³*J*_{FF}=9.2 Hz), -107.1-126.5 (m); MS (EI) *m/z* 747 (M⁺, 40). Anal. Calcd for C₃₃H₂₁F₁₅NP (747): C, 53.03; H, 2.83; N, 1.87. Found: C, 53.20; H, 2.80; N, 1.82.

4.3.4. (3*Z*)-4-Methoxycarbonyl-3-trifluoromethyl-1,1,1triphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4d). Trifluoroacetonitrile in excess (CF₃CN) was bubbled to a suspension of commercial ylide (methoxycarbonyl-methylen)-triphenylphosphoran (Ph₃P=CHCO₂CH₃) in Et₂O at 0 °C and the mixture was stirred at room temperature for 12 h. Filtration and evaporation of solvent afforded the (*Z*) isomer of **4d** as an orange solid (1.39 g, 65%) mp 101– 102 °C (CHCl₃). IR (KBr) ν 1702, 1208 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 3.17, (s, 3H), 5.41 (s, 1H), 7.31–7.58 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ : 50.2, 96.7, 120.9 (q, ¹*J*_{CF}=280 Hz), 128.2–132.5 (m), 167.1. ³¹P NMR (120 MHz, CDCl₃) δ : 10.2. ¹⁹F NMR (282 MHz, CDCl₃) δ : -71.3. MS (EI) *m*/*z* 429 (M⁺, 18). Anal. Calcd for C₂₃H₁₉F₃NO₂P (429): C, 64.34; H, 4.46; N, 3.26. Found: C, 64.58; H, 4.51; N, 3.13.

4.3.5. (3Z)-4-Methoxycarbonyl-3-perfluoroethyl-1,1,1triphenyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4e). A solution of commercial (methoxycarbonylmethylen)-triphenylphosphorane (1.672 g, 5 mmol) in CH₂Cl₂ was cooled to 0 °C under N2. Perfluoropropanenitrile in excess (C_2F_5CN) was bubbled and the mixture was stirred for 24 h. Crystallization from ethyl acetate gave the (Z) isomer of **4e** as a white solid (2.37 g, 99%) mp 93–94 °C (ethyl acetate). IR (KBr) ν 1709, 1178 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 3.13, (d, ⁴*J*_{PH}=0.97 Hz, 3H), 5.43 (s, 1H), 7.40–7.71 (m, 15H). ¹³C NMR (100 MHz, CDCl₃) δ : 50.0, 95.8 (d, ³J_{PC}= 4.5 Hz), 111.1 (tq, ${}^{1}J_{CF}=258$ Hz, ${}^{2}J_{CF}=31$ Hz) 119.2 (tq, ${}^{1}J_{CF}=287$ Hz, ${}^{2}J_{CF}=31$ Hz) 119.2 (tq, ${}^{1}J_{CF}=287$ Hz, ${}^{2}J_{CF}=37.8$ Hz), 127.7–132.4 (m), 149.1 (t, ${}^{2}J_{CF}=27.7$ Hz), 167.0. ${}^{31}P$ NMR (120 MHz, CDCl₃) δ : 9.56. ¹⁹F NMR (282 MHz, CDCl₃) δ -59.6, -95.0. MS (EI) m/z 479 (M⁺, 100). Anal. Calcd for C₂₄H₁₉F₅NO₂P (479): C, 60.13; H, 3.99; N, 2.92. Found: C, 60.21; H, 3.88; N, 2.86.

4.3.6. (3*Z*)-1,1-Diphenyl-4-methoxycarbonyl-3-perfluorohepthyl-1-methyl-2-aza- $1\lambda^5$ -phosphabuta-1,3diene (4f). The general procedure A was followed using methoxycarbonylmethyldiphenylphosphonium bromide (1.76 g) at 0 °C in toluene and adding dropwise 1.97 g (5 mmol) of perfluorooctanenitrile (C₇F₁₅CN). The mixture was stirred at room temperature for 48 h. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture [(3Z)-4f]: ¹H NMR (300 MHz, CDCl₃) δ : 2.36 (d, ²*J*_{PH}= 13.4 Hz, 3H), 3.34 (s, 3H), 5.37 (s, 1H), 7.26–7.76 (m, 10H). ³¹P NMR (120 MHz, CDCl₃) δ : 11.2.

4.3.7. (3Z)-4-Methoxycarbonyl-3-trifluoromehyl-1,1,1trimethyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4g). The general procedure A was followed using (methoxycarbonyl)-tetramethylphosphonium bromide (1.15 g) at -35 °C in ether and bubbling trifluoroacetonitrile in excess (CF₃CN) for 12 h. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture [(3Z)-4g]: ¹H NMR (400 MHz, CDCl₃) δ : 1.81 (d, ²J_{PH}=12.8 Hz, 9H), 3.67 (s, 3H), 5.44 (d, ⁴J_{PH}=1.4 Hz, 1H). ³¹P NMR (120 MHz, CDCl₃) δ : 22.2. ¹⁹F NMR (282 MHz, CDCl₃) δ : -71.4.

4.3.8. (**3Z**)-4-Methoxycarbonyl-3-perfluorohepthyl-**1,1,1-trimethyl-2-aza-1** λ^5 -phosphabuta-1,3-diene (4h). The general procedure A was followed using (methoxycarbonyl)-tetramethylphosphonium bromide (1.15 g) in ether at 0 °C and adding dropwise 1.97 g (5 mmol) of perfluorooctanenitrile (C₇F₁₅CN). The mixture was stirred at room temperature for 12 h. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture [(3Z)-4h]: ¹H NMR (300 MHz, CDCl₃) δ : 1.70 (d, ²J_{PH}=12.8 Hz, 9H), 3.63 (s, 3H), 5.40 (s, 1H). ³¹P NMR (120 MHz, CDCl₃) δ : 19.8. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.0, -114.4 to -126.4 (m).

4.3.9. (3*E*/3*Z*)-4-Cyano-3-trifluoromethyl-1,1,1-triphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4i). The general procedure A was followed using cyanomethyl-triphenylphosphonium chloride obtained in situ [from triphenylposphine 1.31 g (5 mmol) and 1-chloroacetonitrile 0.80 mL (12.5 mmol) the mixture was stirred at 70 °C for 12 h] in ether and bubbling trifluoroacetonitrile in excess (CF₃CN) for 24 h to give **4i** as a mixture of isomers 3*E*/3*Z* (60/40). The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture [(3*E* and 3*Z*)-**4i**]: ¹H NMR (300 MHz, CDCl₃) δ : 3.87 (s, 1H), 4.86 (s, 1H), 7.50–7.78 (m, 30H). ³¹P NMR (120 MHz, CDCl₃) δ : 9.1, 12.8. ¹⁹F NMR (282 MHz, CDCl₃) δ –67.2, –71.2.

4.3.10. (*3E*)-4-Cyano-3-perfluorohepthyl-1,1,1-triphenyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4j). The general procedure A was followed using cyanomethyl-triphenylphosphonium chloride (1.69 g) in toluene at 0 °C and adding dropwise 1.97 g (5 mmol) of perfluorooctanenitrile (C₇F₁₅CN). The mixture was stirred at room temperature for 48 h. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture [(*3E*)-4j]: ¹H NMR (300 MHz, CDCl₃) δ : 4.77 (d, ⁴J_{PH}=1.07 Hz, 1H), 7.14–7.79 (m, 15H). ³¹P NMR (120 MHz, CDCl₃) δ : 11.1. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1, -113.8 to -126.5 (m).

4.3.11. (*3E*)-4-Cyano-1,1-diphenyl-1-methyl-3-perfluorohepthyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4k). The general procedure B was followed using cyanomethylmethyldiphenyl phosphonium chloride (1.20 g) at 0 °C in toluene and adding dropwise 1.97 g (5 mmol) of perfluorooctanenitrile (C₇F₁₅CN). The mixture was stirred at room temperature for 48 h. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture [(3*E*)-4**k**]: ¹H NMR (300 MHz, CDCl₃) δ : 2.14 (d, ²J_{PH}=13.3 Hz, 3H), 4.74 (s, 1H), 7.18–7.79 (m, 10H). ³¹P NMR (120 MHz, CDCl₃) δ : 14.4. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1 (t, ³J_{FF}=10.7 Hz) -111.9 to -126.5 (m).

4.3.12. 4-Cyano-3-trifluoromethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4l). The general procedure B was followed using cyanotetramethylphosphonium chloride (0.76 g) in THF and bubbling trifluoroacetonitrile in excess (CF₃CN) for 12 h to give **4l** (0.90 g, 86%) as a mixture of isomers 3*E*/3*Z* (80/20). ¹H NMR (300 MHz, CDCl₃) of crude reaction mixture [(3*E* and 3*Z*)-**4l**] δ : 1.72 (d, ²*J*_{PH} = 12.8 Hz, 9H), 1.80 (d, ²*J*_{PH} = 12.9 Hz, 9H), 4.02 (d, ⁴*J*_{PH} = 0.6 Hz, 1H), 4.71 (s, 1H). Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.54 g (52%) of *E* isomer **4l** as a white solid; mp 133–134 °C (CHCl₃/hexane). IR (KBr) ν 2195, 1360 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.72 (d, ²*J*_{PH} = 12.8 Hz, 9H), 4.02 (d, ⁴*J*_{PH} = 0.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 13.5 (d, ¹*J*_{CP} = 68.0 Hz), 70.5, 116.5 (q, ¹*J*_{CF} = 279 Hz), 117.7, 155.4 (q, ²*J*_{CF} = 32 Hz). ³¹P NMR (120 MHz, CDCl₃) δ : 21.5. ¹⁹F NMR (282 MHz, CDCl₃) δ : -68.5. MS (EI) *m*/*z* 210 (M⁺, 100). Anal. Calcd for C₇H₁₀F₃N₂P (210): C, 40.01; H, 4.80; N, 13.33. Found C, 39.96; H, 4.56; N, 13.12.

4.3.13. 4-Cyano-3-perfluoroethyl-1,1,1-trimethyl-2-aza-1 λ^{5} **-phosphabuta-1,3-diene (4m).** The general procedure B was followed using cyanotetramethylphosphonium chloride (0.76 g) in THF and bubbling perfluoropropanenitrile in excess (C₂F₅CN) for 12 h to give **4m** (0.86 g, 66%) as a mixture of isomers *3E/3Z* (75/25). ¹H NMR (300 MHz, CDCl₃) of crude reaction mixture [(3E and 3Z)-**4m**] δ : 1.71 (d, ²*J*_{PH}=12.8 Hz, 9H), 1.80 (d, ²*J*_{PH}=13.0 Hz, 9H), 4.09 (d, ⁴*J*_{PH}=0.6 Hz, 1H), 4.73 (s, 1H). Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.56 g (43%) of *E* isomer **4m** as a brown solid; mp 143–144 °C (CHCl₃/ hexane). IR (KBr) 2199, 1371 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.71 (d, ²*J*_{PH}=12.8 Hz, 9H), 4.09 (d, ⁴*J*_{PH}= 0.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 13.8 (d, ¹*J*_{CF}= 68 Hz), 72.0 (d, ³*J*_{CF}=16 Hz), 111.7 (tq, ¹*J*_{CF}=143 Hz, ³*J*_{CF}=37 Hz), 117.7, 118.8 (tq, ¹*J*_{CF}=288 Hz, ³*J*_{CF}=37 Hz), 156.3. ³¹P NMR (120 MHz, CDCl₃) δ : 21.3. ¹⁹F NMR (282 MHz, CDCl₃) δ : -82.4, -115.6 (d, ²*J*_{FF}= 7.6 Hz); MS (CI) *m/z* 261 (M⁺ + 1, 100). Anal. Calcd for C₈H₁₀F₅N₂P (260): C, 36.94; H, 3.87; N, 10.77. Found: C, 36.65; H, 3.58; N, 10.63.

4.3.14. (3*E*)-4-Cyano-3-perfluorohepthyl-1,1,1-trimethyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4n). The general procedure B was followed using cyanotetramethylphosphonium chloride (0.76 g) in THF at 0 °C and adding dropwise 1.97 g (5 mmol) of perfluorooctanenitrile (C₇F₁₅CN). The mixture was stirred at room temperature for 12 h to give the (*E*) isomer of **4n** as a brown solid (1.02 g, 40%) mp 98–99 °C (CHCl₃). IR (KBr) ν 2196, 1379 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.70 (d, ²*J*_{PH}= 12.8 Hz, 9H), 4.09 (d, ⁴*J*_{PH}=0.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.2 (d, ¹*J*_{CP}=68 Hz), 72.7 (d, ³*J*_{CF}=16 Hz), 110.5–115.7 (m), 117.5, 155.0–157.2 (m). ³¹P NMR (120 MHz, CDCl₃) δ : 21.1. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1, -112.1 to -126.4 (m). MS (CI) *m/z* 511 (M⁺+1, 100). Anal. Calcd for C₁₃H₁₀F₁₅N₂P (510): C, 30.60; H, 1.98; N, 5.49. Found: C, 30.49; H, 1.86; N, 5.47.

4.4. General procedure A for isomerization of (*E*) isomer towards (*Z*) isomer of phosphazenes 4

Purification by colum chromatography of (*E*)-phosphazene **4** (2 mmol) on neutral alumina using ethyl acetate as eluent.

4.5. General procedure B for isomerization of (*E*) isomer towards (*Z*) isomer of phosphazenes 4

A solution of (*E*)-phosphazene **4** or a mixture of *E*/*Z* isomers of phosphazene (2 mmol) in toluene under N₂, was stirred at reflux (110 °C), until ¹H NMR of crude reaction mixture indicated the disappearance of (*E*)-isomer of phosphazene.

4.5.1. (3*Z*)-3-Trifluoromethyl-1,1,1,4-tetraphenyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4a). The general procedure A was followed using (3*E*)-1,1,1,4-tetraphenyl-3-trifluoromethyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4a) and 0.54 g (60%) of (3*Z*)-4a were obtained. When the general procedure B was followed for 12 h, 0.88 g (98%) of (3*Z*)-4a were obtained. In both cases evaporation of solvent and crystallization from ethyl acetate give a yellow solid mp 121–122 °C. IR (KBr) ν 1613, 1467 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.23 (s, 1H), 7.05–7.81 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.6–112.8 (m), 122.5 (dq, ${}^{1}J_{CF}$ =279.0 Hz, ${}^{3}J_{CP}$ =3.7 Hz), 125.9–133.7 (m), 133.7 (q, ${}^{2}J_{CF}$ =29.5 Hz). ³¹P NMR (120 MHz, CDCl₃) δ : 2.13; ¹⁹F NMR (282 MHz, CDCl₃) δ – 68.2. MS (EI) *m/z* 447 (M⁺, 100). Anal. Calcd for C₂₇H₂₁F₃NP (447): C, 72.48; H, 4.73; N, 3.13. Found: C, 72.22; H, 4.70; N, 3.10.

4.5.2. (3*Z*)-3-Perfluoroethyl-1,1,1,4-tetraphenyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4b). The general procedure A was followed using (3*E*)-3-perfluoroethyl-1,1,1,4-tetraphenyl-2-aza- $1\lambda^5$ -phosphabuta-1,3-diene (4b) and 0.61 g (62%) of (3*Z*)-4b were obtained. When the general procedure B was followed for 12 h, 0.97 g, (98%)of (3*Z*)-4b were obtained. In both cases evaporation of solvent and crystallization from ethyl acetate give a yellow solid mp 97–98 °C (ethyl acetate). IR (KBr): ν 1626, 1328, 1150 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 6.17 (s, 1H), 7.08–7.67 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.4 (tq, ¹ J_{CP} = 259.8 Hz, ² J_{CF} =36.7 Hz), 115.3 (t, ³ J_{CF} =7.3 Hz), 119.4 (tq, ¹ J_{CF} =287.0 Hz, ² J_{CF} =39.8 Hz), 125.8–132.9 (m), 133.5 (t, ² J_{CF} =21.9 Hz). ³¹P NMR (120 MHz, CDCl₃) δ : 2.35. ¹⁹F NMR (282 MHz, CDCl₃) δ : -66.3, -96.5. MS (EI) *m*/*z* 497 (M⁺, 76). Anal. Calcd for C₂₈H₂₁F₅NP (497):

C, 67.61; H, 4.25; N, 2.82. Found: C, 67.70; H, 4.29; N, 2.79.

4.5.3. (3*Z*)-3-Perfluorohepthyl-1,1,1,4-tetraphenyl-2aza-1 λ^5 -phosphabuta-1,3-diene (4c). The general procedure B was followed using (3*E*)-3-perfluorohepthyl-1,1,1,4-tetraphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4c) for 12 h, and 1.46 g (98%) of (3*Z*)-4c were obtained. Evaporation of solvent give a yellow oil; R_f =0.13 (1/10, ethyl acetate/hexane). IR (KBr) ν 1612, 1438, 1206 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 6.07 (s, 1H), 6.93–7.82 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 107.2–119.1 (m), 125.8–137.3 (m). ³¹P NMR (120 MHz, CDCl₃) δ : 1.44. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.15 to -82.3 (m), -109.8 (t, ³ $_{FF}$ =15.2 Hz), -117.0 to -127.2 (m). MS (EI) *m/z* 747 (M⁺, 69). Anal. Calcd for C₃₃H₂₁F₁₅NP (747): C, 53.03; H, 2.83; N, 1.87. Found: C, 52.90; H, 2.86; N, 1.86.

4.5.4. (**3***Z*)-**4**-**Cyano-3**-**trifluoromethyl-1,1,1**-**triphenyl-2**-**aza-1** λ^5 -**phosphabuta-1,3**-**diene** (**4i**). The general procedure B was followed for 24 h using a mixture of 3*E*/3*Z* (60/40) of 4-cyano-3-trifluoromethyl-1,1,1-triphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (**4i**) prepared in situ. Evaporation of solvent and crystallization gave the (*Z*) isomer of **4i** (0.68 g, 86%) as a white solid mp 122–123 °C (hexane/ethyl acetate). IR (KBr) ν 2207, 1432 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 4.86 (s, 1H), 7.50–7.78 (m, 15H). ¹³C NMR (100 MHz, CDCl₃) δ : 75.8, 119.1, 120.5 (q, ¹*J*_{CF}=280 Hz), 128.6–132.7 (m), 152.6 (q, ²*J*_{CF}=32 Hz). ³¹P NMR (120 MHz, CDCl₃) δ : 9.03. ¹⁹F NMR (282 MHz, CDCl₃) δ : -71.2. MS (EI) *m/z* 396 (M⁺, 100). Anal. Calcd for C₂₂H₁₆F₃N₂P (396): C, 66.67; H, 4.07; N, 7.07. Found: C, 66.76; H, 3.86; N, 7.17.

4.5.5. (3*Z*)-4-Cyano-3-trifluoromethyl-1,1,1-trimethyl-2aza-1 λ^5 -phosphabuta-1,3-diene (4I). The general procedure B was followed for 4 h using (3*E*)-4-cyano-3trifluoromethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4I). Evaporation of solvent gave the (*Z*) isomer of **4I** (0.38 g, 91%) as a yelow oil; R_f =0.17 (ethyl acetate). IR (KBr) ν 2175, 1295 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.80 (d, ²J_{PH}=12.9 Hz, 9H), 4.71 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 17.8 (d, ¹J_{CF}=69 Hz), 69.8 (dd, ³J_{CF}= 11 Hz, ³J_{CF}=4 Hz), 121.8 (dq, ¹J_{CF}=253 Hz, ³J_{CF}= 27 Hz), 121.6, 154.7 (q, ²J_{CF}=31 Hz). ³¹P NMR (120 MHz, CDCl₃) δ : 19.7. ¹⁹F NMR (282 MHz, CDCl₃) δ : -72.5. M/S (EI) *m*/*z* 210 (M⁺, 84). Anal. Calcd for C₇H₁₀F₃N₂P (210): C, 40.01; H, 4.80; N, 13.33. Found C, 40.09; H, 4.65; N, 13.27.

4.5.6. (**3***Z*)-4-Cyano-3-perfluoroethyl-1,1,1-trimethyl-2aza-1 λ^5 -phosphabuta-1,3-diene (4m). The general procedure B was followed for 120 h using (3*E*)-4-cyano-3-perfluoroethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4m). Evaporation of solvent and crystallization gave the (*Z*) isomer of 4m (0.49 g, 95%) as a brown solid; mp 43–44 °C (ethyl acetate). IR (KBr) ν 2189, 1326 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.80 (d, ²*J*_{PH}=13 Hz, 9H), 4.73 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ =17.9 (d, ¹*J*_{CP}=69 Hz), 70.7, 110.2–111.5 (m), 118.8 (tq, ¹*J*_{CF}= 287 Hz, ²*J*_{CF}=38 Hz), 121.9, 154.4–155.1 (m). ³¹P NMR (120 MHz, CDCl₃) δ : 18.8. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.9, -118.2. MS (EI) *m/z* 260 (M⁺, 85). Anal. Calcd for C₈H₁₀F₅N₂P (260): C, 36.94; H, 3.87; N, 10.77. Found C, 36.89; H, 3.75; N, 10.72.

4.5.7. (3*Z*)-4-Cyano-3-perfluorohepthyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4n). The general procedure B was followed for 120 h using (3*E*)-4-cyano-3-perfluorohepthyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (4n). Evaporation of solvent and crystallization gave the (*Z*) isomer of 4n (0.87 g, 85%) as a white solid; mp 90–91 °C (CHCl₃). IR (KBr) ν 2211, 1248 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.80 (d, ²*J*_{PH}=12.9 Hz, 9H), 4.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.0 (d, ¹*J*_{CP}=69 Hz), 70.8, 110.5–115.7 (m), 122, 157.0–157.5 (m). ³¹P NMR (120 MHz, CDCl₃) δ : 18.9. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1 (t, ³*J*_{FF}=9 Hz), -118.1 to -126.4 (m). MS (EI) *m*/*z* 510 (M⁺, 95). Anal. Calcd for C₁₃H₁₀F₁₅N₂P (510): C, 30.60; H, 1.98; N, 5.49. Found: C, 30.69; H, 2.02; N, 5.51.

4.6. General procedure for preparation of azadienes 6

Aldehyde (2 mmol) was added to a 0-10 °C solution of phosphazene 4 (2 mmol) in CHCl₃, toluene or xylenes under N₂, and the mixture was stirred at room temperature or reflux, until TLC indicated the disappearance of phosphazene.

4.6.1. (1*E*,3*E*)-1-Ethoxycarbonyl-4-phenyl-3-trifluoromethyl-2-azabuta-1,3-diene (6a). The general procedure was followed using (3*E*)-3-trifluoromethyl-1,1,1,4-tetraphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (0.89 g) **4a** and ethyl glyoxalate (0.20 g) for 1 h at room temperature in CHCl₃. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture (**6a**+Ph₃PO): ¹H NMR (300 MHz, CDCl₃) δ : 1.26 (t, *J*=7.1 Hz, 3H), 4.26 (q, *J*=7.1 Hz, 2H), 6.89 (s, 1H), 7.09–7.56 (m, 20H), 7.82 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -71.2.

4.6.2. (1*E*,3*E*)-1-Ethoxycarbonyl-4-phenyl-3-perfluoroethyl-2-azabuta-1,3-diene (6b). The general procedure was followed using (3*E*)-3-perfluoroethyl-1,1,1,4-tetraphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (0.99 g) **4b** and ethyl glyoxalate (0.20 g) for 2 h at room temperature in CHCl₃. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture (**6b**+Ph₃PO): ¹H NMR (300 MHz, CDCl₃) δ : 1.46 (t, *J*=7.2 Hz, 3H), 4.45 (q, *J*=7.2 Hz, 2H), 6.85 (s, 1H), 7.40–7.80 (m, 20H), 7.90 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -62.0, -93.6.

4.6.3. (1*E*,3*E*)-1-Ethoxycarbonyl-4-phenyl-3-perfluorohepthyl-2-azabuta-1,3-diene (6c). The general procedure was followed using (3*E*)-4-phenyl-3-perfluorohepthyl-1,1,1-triphenyl-2-aza-1 λ^5 -phosphabuta-1,3-diene (1.50 g) **4c** and ethyl glyoxalate (0.20 g) for 0.5 h at room temperature in CHCl₃. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used in situ for the following reactions. Spectroscopic data of crude reaction mixture (**6c** + Ph₃PO): ¹H NMR (300 MHz, CDCl₃) δ : 1.22 (t, *J*= 7.2 Hz, 3H), 4.21 (q, *J*=7.2 Hz, 2H), 6.63 (s, 1H), 7.16–7.59 (m, 20H), 7.70 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1 (t, ³*J*_{FF}=9.2 Hz), -111.3 to -126.5 (m).

4.6.4. (1*E*,3*Z*)-4-Methoxycarbonyl-1-(4-nitrophenyl)-3trifluoromethyl-2-azabuta-1,3-diene (6d). The general procedure was followed using (3*Z*)-4-methoxycarbonyl-3trifluoromethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene **4g** obtained in situ and 4-nitrobenzaldehyde (0.31 g) for 3 h at 110 °C in toluene. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used for the following reactions. Spectroscopic data of crude reaction mixture (6d + Me₃PO). ¹H NMR (300 MHz, CDCl₃) δ : 1.53 (d, ²*J*_{HP}=12.9 Hz, 9H), 3.71 (s 3H), 5.96 (s, 1H), 8.10 (d, *J*=8.8 Hz, 2H), 8.36 (d, *J*=8.8 Hz, 2H), 8.50 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -70.8.

4.6.5. (1*E*,3*Z*)-1-(2,4-Dinitrophenyl)-4-methoxycarbonyl-3-trifluoromethyl-2-azabuta-1,3-diene (6e). The general procedure was followed using (3*Z*)-4-methoxycarbonyl-3-trifluoromethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene **4g** obtained in situ and 2,4dinitrobenzaldehyde (0.39 g) for 3 h at 110 °C in toluene. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used for the following reactions. Spectroscopic data of crude reaction mixture (**6e**+Me₃PO). ¹H NMR (400 MHz, CDCl₃) δ : 1.53 (d, ²*J*_{HP}=12.9 Hz, 9H), 3.73 (s, 3H), 5.98 (s, 1H), 8.48 (d, *J*= 8.5 Hz, 1H), 8.61 (dd, *J*=8.5, 2.1 Hz, 1H), 8.93 (s, 1H), 8.99 (d, *J*=2.1 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -70.6.

4.6.6. (1E,3Z)-4-Cyano-1-(4-nitrophenyl)-3-trifluoromethyl-2-azabuta-1,3-diene (6f). The general procedure was followed using (3Z)-4-cyano-3-trifluoromethyl-1,1,1trimethyl-2-aza- $1\lambda^{5}$ -phosphabuta-1,3-diene **41** (0.42 g) and 4-nitrobenzaldehyde (0.31 g) for 2 h at 110 °C in toluene. Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.24 g (45%) of **6f** as a yellow oil; $R_{\rm f} = 0.50$ (1/5, ethyl acetate/hexane). When (3E)-4-cyano-3-trifluoromethyl-1,1,1-trimethyl-2-aza- $1\lambda^{5}$ -phosphabuta-1,3-diene 41 (0.42 g) was used the mixture was stirred for 3 h at 110 °C in toluene and chromatographic separation (10/1, hexane/ ethyl acetate) gave 0.19 g (35%) of 6f. IR (KBr) ν 2204, 1708 cm^{-1} . ¹H NMR (300 MHz, CDCl₃) δ : 5.56 (s, 1H), 8.14 (d, J=8.8 Hz, 2H), 8.37 (d, J=8.8 Hz, 2H), 8.68 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ: 87.7, 113.5, 119.5 (q, ${}^{1}J_{CF}$ =276 Hz), 124.2, 130.9, 138.5, 150.7, 155.7 (q, ${}^{2}J_{CF}$ = 33 Hz), 165.3. 19 F NMR (282 MHz, CDCl₃) δ : -69.8. MS (EI) *m*/*z* 269 (M⁺, 100).

4.6.7. (1*E*,3*Z*)-4-Cyano-1-(2,4-dinitrophenyl)-3-trifluoromethyl-2-azabuta-1,3-diene (6g). The general procedure was followed using a mixture 80/20 of (3*E*/3*Z*)-4-cyano-3trifluoromethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene **41** (0.42 g) and 2,4-dinitrobenzaldehyde (0.39 g) for 12 h at 61 °C in CHCl₃. Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.29 g (45%) of **6g** as an orange oil; *R*_f=0.48 (1/5, ethyl acetate/hexane). When (3*E*)-4-cyano-3-trifluoromethyl-1,1,1-trimethyl-2-aza-1 λ^5 phosphabuta-1,3-diene **41** (0.42 g) was used the mixture was stirred for 6 h at 110 °C in toluene and chromatographic separation (10/1, hexane/ethyl acetate) gave 0.19 g (30%) of **6g**. IR (KBr) ν 2210, 1708 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 5.67 (s, 1H), 8.47 (d, J=8.5 Hz, 1H), 8.61 (dd, J=8.5, 2.1 Hz, 1H), 9.01 (d, J=2.1 Hz, 1H), 9.19 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 90.0, 112.9, 119.3 (q, ¹ J_{CF} = 277 Hz), 120.6, 128.2, 132.1, 133.4, 149.3, 149.9, 154.6 (q, ² J_{CF} =34 Hz), 162.5. ¹⁹F NMR (282 MHz, CDCl₃) δ : -69.5. M/S (EI) m/z 314 (M⁺, 4).

4.6.8. (1*E*,3*Z*)-4-Cyano-1-(4-nitrophenyl)-3-perfluoroethyl-2-azabuta-1,3-diene (6h). The general procedure was followed using a mixture 75/25 of (3*E*/3*Z*)-4-cyano-3perfluoroethyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3diene 4m (0.52 g) and 4-nitrobenzaldehyde (0.31 g) for 120 h at 120 °C in toluene. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used for the following reactions. Spectroscopic data of crude reaction mixture (6h+Me₃PO): ¹H NMR (300 MHz, CDCl₃) δ : 1.53 (d, ²J_{HP}=12.9 Hz, 9H), 5.50 (s, 1H), 8.10 (d, ³J_{HH}=8.6 Hz, 2H), 8.37 (d, ³J_{HH}=8.8 Hz, 2H), 8.65 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -82.4, -114.3.

4.6.9. (1*E*,3*Z*)-4-Cyano-1-(4-nitrophenyl)-3-perfluorohepthyl-2-azabuta-1,3-diene (6i). The general procedure was followed using (3*Z*)-4-cyano-3-perfluoroepthyl-1,1,1trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene **4n** (1.02 g) and 4-nitrobenzaldehyde (0.31 g) for 120 h at 110 °C in toluene. When (3*E*)-4-cyano-3-perfluoroepthyl-1,1,1-trimethyl-2aza-1 λ^5 -phosphabuta-1,3-diene **4n** (1.02 g) was used the mixture was stirred for 138 h at 110 °C in toluene. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used for the following reactions. Spectroscopic data of crude reaction mixture (**6i**+Me₃PO): ¹H NMR (300 MHz, CDCl₃) δ : 1.53 (d, ²J_{HP}=12.9 Hz, 9H), 5.47 (s, 1H), 8.10 (d, J=8.7 Hz, 2H), 8.36 (d, J=8.7 Hz, 2H), 8.66 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1, -115.4 to -126.4 (m).

4.6.10. (1*E*,3*Z*)-4-Cyano-1-(2,4-dinitrophenyl)-3-perfluorohepthyl-2-azabuta-1,3-diene (6j). The general procedure was followed using (3*E*)-4-cyano-3-perfluorohepthyl-1,1,1-trimethyl-2-aza-1 λ^5 -phosphabuta-1,3-diene **4n** (1.02 g) and 2,4-dinitrobenzaldehyde (0.39 g) for 192 h at 120 °C in toluene. The reaction product is unstable to distillation or chromatography and therefore was not isolated and used for the following reactions. Spectroscopic data of crude reaction mixture (**6j**+Me₃PO): ¹H NMR (400 MHz, CDCl₃) δ : 1.53 (d, ²J_{HP}=12.9 Hz, 9H), 5.56 (s, 1H), 8.39 (d, *J*=8.4 Hz, 1H), 8.63 (dd, *J*=8.3, 1.4 Hz, 1H), 9.04 (d, *J*=1.5 Hz, 1H), 9.17 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.0, -118.1 to -126.3 (m).

4.7. General procedure for reactions of 2-azadienes (6) with enamines (9)

Enamine (5 mmol) was added to a 0-10 °C solution of azadiene **6** (5 mmol) in CHCl₃ or toluene (15 mL) under N₂, and the mixture was stirred to adequate temperature, until TLC indicated the disappearance of azadiene.

4.7.1. Reaction of 2-azadiene (6a) with enamine (9a).
4.7.1.1. 1-Ethoxycarbonyl-3-trifluoromethyl-4-phenyl-4a-pyrrolidyl-1,4,5,6,7,8-hexahydroisoquinoline (10). The general procedure was followed using (1*E*,3*E*)-1ethoxycarbonyl-4-phenyl-3-trifluoromethyl-2-azabuta-1,3diene **6a** obtained in situ and 1-cyclohex-1-enylpyrrolidine **9a** (0.23 g) at room temperature in CHCl₃ for 15 h. Chromatographic separation (15/1, hexane/ethyl acetate) gave 0.51 g (80%) of **10** as a yellow oil; $R_{\rm f}$ =0.42 (1/5, ethyl acetate/hexane). IR (KBr) ν 1733, 1193 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.09–1.72 (m, 16H), 2.41 (s, 1H), 2.53–2.56 (m, 1H), 2.86–2.88 (m, 1H), 3.06–3.09 (m, 1H), 3.84 (s, 1H), 4.30–4.36 (m, 2H), 4.79 (d, *J*=9.8 Hz, 1H), 7.23–7.37 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.1, 19.3, 20.6, 22.5, 24.8, 25.2, 32.3, 32.5, 43.2, 43.7, 49.2, 56.6, 61.7, 65.2, 119.3 (q, ¹*J*_{CF}=280.8 Hz), 127.7–135.7 (m), 161.4 (q, ²*J*_{CF}=32.0 Hz), 171.6. ¹⁹F NMR (282 MHz, CDCl₃) δ : –71.3. MS (EI) *m*/*z* 422 (M⁺, 2). Anal. Calcd for C₂₃H₂₉F₃N₂O₂ (422): C, 65.39; H, 6.92; N, 6.63. Found C, 65.41; H, 6.90; N, 6.68.

4.7.1.2. 1-Ethoxycarbonyl-3-trifluoromethyl-4-phenyl-5,6,7,8-tetrahydroisoquinoline (12). The general procedure was followed using (1E,3E)-1-ethoxycarbonyl-4-phenyl-3-trifluoromethyl-2-azabuta-1,3-diene 6a obtained in situ and 1-cyclohex-1-enylpyrrolidine 9a (0.23 g) in refluxing toluene (110 °C) for 48 h. Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.70 g (40%) of **12** as a yellow oil; $R_f = 0.25$ (1/10, ethyl acetate/hexane). IR (KBr) ν 1738, 1210 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 0.94 (t, J=7.1 Hz, 3H), 1.88–2.00 (m, 4H), 2.82 (t, J=6.2 Hz, 2H), 3.08 (t, J=6.4 Hz 2H), 4.00 (q, J=7.1 Hz, 2H) 7.26–7.40 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.6, 22.0, 22.3, 26.1, 32.7, 61.6, 122.0 (q, ¹ J_{FC} = 33.0 Hz), 123.2–157.3 (m), 166.4. ¹⁹F NMR (282 MHz, CDCl₃) δ : -61.3. MS (70 eV) *m/z* 349 (M⁺, 5). Anal. Calcd for C₁₉H₁₈F₃NO₂ (349): C, 65.32; H, 5.19; N, 4.01. Found C, 65.29; H, 5.23; N, 3.98.

4.7.2. Reaction of 2-azadiene (6f) with enamine (9a).

4.7.2.1. 4-Cyano-1-(4-nitrophenyl)-3-trifluoromethyl-1,2,6,7,8,8a-hexahydroisoquinoline (13a) and 4-cyano-1-(4-nitrophenyl)-3-trifluoromethyl-5,6,7,8-tetrahydroisoquinoline (14a). The general procedure was followed using (1E,3Z)-4-cyano-1-(4-nitrophenyl)-3-trifluoromethyl-2azabuta-1,3-diene 6f obtained in situ and 1-cyclohex-1envlpyrrolidine **9a** (0.23 g) at room temperature in CHCl₃ for 2 h. Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.20 g (29%) of 13a as a brown solid mp 156-157 °C (CH₂Cl₂/hexane) and 0.20 g (29%) of 14a as a brown oil $R_f = 0.42$ (1/5, ethyl acetate/hexane). Data for **13a**: IR (KBr) ν 3296, 2211, 1522 cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3) \delta$: 1.06–2.44 (m, 7H), 4.00 (d, J= 10.7 Hz, 1H), 4.76 (s, 1H), 6.21 (s, 1H), 7.52 (d, J=8.7 Hz, 2H), 8.30 (d, J = 8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ: 21.5, 25.4, 29.6, 39.6, 61.1, 85.3, 114.7, 119.9 (q, ${}^{1}J_{CF}$ = 276 Hz), 124.3, 126.2, 127.3, 128.7, 140.0 (q, ${}^{2}J_{CF}$ = 33 Hz), 145.5, 148.2. 19 F NMR (282 MHz, CDCl₃) δ: -66.6. MS (EI) *m/z* 349 (M⁺, 5). Anal. Calcd for C₁₇H₁₄ F₃N₃O₂ (349): C, 58.45; H, 4.04; N, 12.03. Found C, 58.91; H, 3.93; N, 12.13. Data for **14a**: IR (KBr) ν 2234, 1522 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.84 (m, 2H), 1.97 (m, 2H), 2.79 (t, J = 6.4 Hz, 2H), 3.16 (t, J = 6.1 Hz, 2H), 7.74 (d, J =8.8 Hz, 2H), 8.36 (d, J = 8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ : 21.0, 21.7, 107.4, 112.6, 120.3 (q, ¹ J_{CF} = 276 Hz), 123.6, 130.1, 135.2, 143.9, 146.8 (q, ² J_{CF} = 35 Hz), 148.2, 153.9, 158.5. ¹⁹F NMR (282 MHz, CDCl₃) δ :

-65.9. MS (EI) m/z 347 (M⁺, 100). Anal. Calcd for $C_{17}H_{12}F_3N_3O_2$ (347): C, 58.79; H, 3.48; N, 12.10. Found C, 58.81; H, 3.53; N, 12.07.

4.7.3. Reaction of 2-azadiene (6g) with enamine (9a).

4.7.3.1. 4-Cyano-1-(2,4-dinitrophenyl)-3-trifluoromethyl-1,2,6,7,8,8a-hexahydroisoquinoline (13b) and 4-cyano-1-(2,4-dinitrophenyl)-3-trifluoromethyl-5,6,7,8tetrahydroisoquinoline (14b). The general procedure was followed using (1E,3Z)-4-cyano-1-(2,4-dinitrophenyl)-3trifluoromethyl-2-azabuta-1,3-diene (6g, 1.57 g) and 1-cyclohex-1-enylpyrrolidine 9a (0.23 g) at room temperature in CHCl₃ for 3 h. After column chromatography (hexane/ethyl acetate 10/1) a mixture (1.348 g) of compounds 13b and 14b (6/1) was obtained. Spectroscopic data of mixture **13b** and **14b**: ¹H NMR (300 MHz, CDCl₃) δ : 1.11-2.35 (m, 11H), 2.48 (m, 2H), 3.16 (t, J=6.1 Hz, 2H), 4.66 (d, J = 10.4 Hz, 1H), 5.38 (s, 1H), 6.21 (s, 1H), 7.64 (d, J)J=8.4 Hz, 1H), 7.90 (d, J=8.7 Hz, 1H), 8.54 (dd, J=8.7, 2.2 Hz, 1H), 8.62 (dd, J=8.4, 2.3 Hz, 1H), 8.70 (d, J=2.1 Hz, 1H) 9.09 (d, J=2.3 Hz, 1H).¹⁹F NMR (282 MHz, CDCl₃) δ : -65.8, -71.5. Compound **13b** is unstable and the separation of both products was not possible. Therefore *p*-benzoquinone (0.15 g) was added to a solution of (0.39 g) of 13b and 14b mixture in dioxane and was heated at 80 °C for 144 h. Evaporation of solvent and chromatographic separation (10/1, hexane/ethyl acetate) gave 0.27 g (70%) of 14b as a brown oil; $R_f = 0.40$ (1/5, ethyl acetate/hexane). *Data for* **14b**: IR (KBr) *v* 2210. ¹H NMR (300 MHz, CDCl₃) δ: 1.85 (m, 2H), 1.96 (m, 2H), 2.48 (m, 2H), 3.16 (t, J =6.1 Hz, 2H), 7.64 (d, J=8.4 Hz, 1H), 8.62 (dd, J=8.4, 2.3 Hz, 1H), 9.09 (d, J=2.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) &: 20.9, 21.3, 26.7, 28.6, 108.2, 112.3, 118.3 (q, ${}^{1}J_{CF}$ =269 Hz) 120.7, 128.1, 132.4, 135.2, 139.0, 147.5.(q, $^{2}J_{\rm CF} = 42$ Hz), 148.3, 153.7, 156.7. 19 F NMR (282 MHz, CDCl₃) δ : -65.8. MS (EI) m/z 392 (M⁺, 11).

4.7.4. Reaction of 2-azadiene (6e) with enamine (9b).

4.7.4.1. 5-Isopropyl-6-(2,4-dinitrophenyl)-2-trifluoromethyl-1,2-dihydropiridine-3-carboxylic acid methyl ester (15a) and 5-isopropyl-6-(2,4-dinitrophenyl)-2-trifluoromethylnicotinic acid methyl ester (16a). The general procedure was followed using (1E,3Z)-1-(2,4dinitrophenyl)-4-methoxycarbonyl-3-trifluoromethyl-2azabuta-1,3-diene 6e obtained in situ and trans 3-methyl-1pyrrolidyl-but-1-ene 9b (0.67 g) at room temperature in CHCl₃ for 3 h. Chromatographic separation (10/1, hexane/ ethyl acetate) gave 0.72 g (35%) of **15a** as a brown oil; $R_{\rm f} =$ 0.26 (1/5, ethyl acetate/hexane) and 0.88 g (43%) of 16a as a brown oil; $R_f = 0.39$ (1/5, ethyl acetate/hexane), 0.09 g of **18a** (7%) and 0.06 g of **19** (9%).²⁶ Data for **15a**: IR (KBr) *v* 3362, 2867, 1692 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 0.88 (d, J=6.8 Hz, 3H), 0.93 (d, J=6.8 Hz, 3H), 1.90 (dq, J = 6.8 Hz, 1H), 3.82 (s, 3H), 4.30 (d, J = 5.6 Hz, 1H), 5.21 $(dq, {}^{3}J_{HF} = 7.3 \text{ Hz}, J = 6.7 \text{ Hz}, 1\text{H}), 7.45 \text{ (s, 1H)}, 7.72 \text{ (d,})$ J=8.3 Hz, 1H), 8.53 (dd, J=8.3, 2.1 Hz, 1H), 8.81 (d, J=2.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ: 21.1, 23.3, 28.1, 51.9, 52.1 (q, ${}^{2}J_{CF}$ =32 Hz), 117.1, 118.3 (q, ${}^{1}J_{CF}$ = 284 Hz), 119.7, 127.5, 134.4, 135.9, 136.2, 136.6, 142.5, 148.1, 148.4, 165.6. ¹⁹F NMR (282 MHz, CDCl₃) δ: -81.3. MS (EI) *m/z* 415 (M⁺, 3). *Data for* 16a: IR (KBr) *v* 2873, 1744, 1601 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.23 (d, J=6.7 Hz, 6H), 2.76 (m, J=6.8 Hz, 1H), 4.02 (s, 3H), 7.65 (d, J=8.2 Hz, 1H), 8.17 (s, 1H), 8.59 (dd, J=8.3, 2.2 Hz, 1H), 9.05 (d, J=2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 23.2, 30.1, 53.4, 120.1, 120.5, 120.6 (q, ¹ $J_{CF}=275$ Hz), 127.6, 132.8, 136.9, 139.5, 145.2, 148.1, 153.7–154.1 (m), 154.3, 165.7. ¹⁹F NMR (282 MHz, CDCl₃) δ : -64.6. MS (EI) m/z 413 (M⁺, 5). ¹H NMR (300 MHz, CDCl₃) for **18a** δ : 1.22 (d, J=6.7 Hz, 6H), 3.02–3.11 (m, 1H), 7.58 (d, J=8.4 Hz, 1H), 7.70 (s, 1H), 8.49 (dq, J=8.4, 2.4 Hz, 1H), 9.06 (d, J=2.4 Hz, 1H), 9.63 (s, 1H).

4.7.5. Reaction of 2-azadiene (6d) with enamine (9b).

4.7.5.1. 5-Isopropyl-6-(4-nitrophenyl)-2-trifluoromethyl-1,2-dihydropiridine-3-carboxylic acid methyl ester (15b). The general procedure was followed using (1E,3Z)-4-methoxycarbonyl-1-(4-nitrophenyl)-3-trifluoromethyl-2-azabuta-1,3-diene 6d obtained in situ and trans 3-methyl-1-pyrrolidylbut-1-ene **9b** (0.67 g) at 120 °C in toluene for 24 h. Chromatographic separation (10/1, hexane/ethyl acetate) gave 1.11 g (60%) of 15b as an orange solid; mp 155–157 °C (hexane/CH₂Cl₂). IR (KBr) v 3426, 2852, 1679 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 0.96 (d, J = 6.8 Hz, 3H), 1.19 (d, J = 6.9 Hz, 3H), 2.48 (dq, J = 6.9 Hz), 2.48 (dq,J=6.9, 6.8 Hz, 1H), 3.85 (s, 3H), 4.15 (d, J=5.2 Hz, 1H) 5.20 (q, ${}^{3}J_{HF}=7.5$ Hz, ${}^{3}J_{HH}=5.6$ Hz, 1H), 7.57 (d, J=8.8 Hz, 2H), 7.58 (s, 1H), 8.30 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 23.7, 29.7, 52.6–53.2 (m), 53.3, 117.0, 119.4 (q, ${}^{1}J_{CF}$ =285 Hz), 123.7, 130.2, 137.2, 141.6, 144.5, 145.1, 148.1, 165.9. ¹⁹F NMR (282 MHz, CDCl₃) δ: -64.8. MS (EI) m/z 370 (M⁺, 9). Anal. Calcd for C₁₇H₁₇F₃N₂O₄ (370): C, 55.14; H, 4.63; N, 7.56. Found: C, 55.22; H, 4.72; N, 7.61.

4.7.5.2. 5-Isopropyl-6-(4-nitrophenyl)-2-trifluoromethylnicotinic acid methyl ester (16b). p-Benzoquinone (0.32 g, 3 mmol) was added to a solution of **15b** (0.74 g, 3 mmol)2 mmol) in dioxane and the mixture was heated at 80 °C for 48 h. Evaporation of solvent and chromatographic separation (10/1, hexane/ethyl acetate) gave 0.53 g (72%) of 16b as a green solid; mp 145-146 °C (hexane/ethyl acetate). IR (KBr) ν 1727, 1606, 1522 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3$) δ : 1.26 (d, J = 6.9 Hz, 6H), 3.17 (q, J = 6.9 Hz, 1H), 4.00 (s, 3H), 7.68 (d, J=8.8 Hz, 2H), 8.15 (s, 1H), 8.35 (d, J=8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ : 23.7, 29.2, 53.3, 120.9 (q, ${}^{1}J_{CF}$ =275 Hz), 123.7, 130.1, 137.1, 142.8 (q, ${}^{2}J_{CF}$ =37 Hz), 144.5, 145.1, 148.1, 156.9, 165.9. ${}^{19}F$ NMR (282 MHz, CDCl₃) δ : -64.7. MS (EI) m/z 368 (M⁺, 47). Anal. Calcd for C₁₇H₁₅F₃N₂O₄ (368): C, 55.44; H, 4.11; N, 7.61. Found: C, 55.99; H, 4.23; N, 7.58.

4.7.6. Reaction of 2-azadiene (6f) with enamine (9b).

4.7.6.1. 5-IsopropyI-6-(4-nitrophenyI)-2-trifluoromethyI-3-cyanopiridine (16c). The general procedure was followed using (1*E*,3*Z*)-4-cyano-1-(4-nitrophenyI)-3trifluoromethyI-2-azabuta-1,3-diene **6f** (1.35 g) and *trans* 3-methyI-1-pyrrolidyIbut-1-ene **9b** (0.67 g) at room temperature in CHCl₃ for 3 h. Chromatographic separation (10/1, hexane/ethyl acetate) gave 0.87 g (52%) of **16c** as a white solid; mp 143–144 °C (hexane/ethyl acetate). IR (KBr) ν 2234, 1600, 1526 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.28 (d, *J*=6.8 Hz, 6H), 3.22 (dq, *J*=6.8 Hz, 1H), 7.69 (d, *J*=8.9 Hz, 2H), 8.22 (s, 1H), 8.39 (d, *J*= 8.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ : 23.6, 29.3, 107.3, 113.7, 120.1 (q, ¹*J*_{CF}=276 Hz), 123.8, 130.1, 141.3, 143.5, 145.7, 146.4 (q, ${}^{2}J_{CF}$ =36 Hz), 148.4, 158.4. ${}^{19}F$ NMR (282 MHz, CDCl₃) δ : -65.9. MS (EI) *m/z* 334 (M⁺-1, 35). Anal. Calcd for C₁₆H₁₂F₃N₃O₂ (335): C, 57.32; H, 3.61; N, 12.53. Found: C, 57.33; H, 3.65; N, 12.50.

4.7.7. Reaction of 2-azadiene (6g) with enamine (9b).

4.7.7.1. 5-Isopropyl-6-(2,4-dinitrophenyl)-2-trifluoromethyl-3-cyanopiridine (16d). The general procedure was followed using (1E,3Z)-4-cyano-1-(2,4-dinitrophenyl)-3trifluoromethyl-2-azabuta-1,3-diene 6g (1.57 g) and trans 3-methyl-1-pyrrolidylbut-1-ene 9b (0.67 g) at room temperature in CHCl₃ for 3 h. Chromatographic separation (10/1, hexane/ethyl acetate) gave 1.22 g (64%) of 16d as an orange solid; mp 96–97 °C (hexane/ethyl acetate). IR (KBr) ν 2240, 1731, 1602 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.25 (d, J = 6.9 Hz, 6H), 2.76 (dq, J = 6.9 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 8.24 (s, 1H), 8.64 (dd, J = 8.3, 2.2 Hz, 1H), 9.10 (d, J=2.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 23.1, 30.2, 108.1, 113.5, 119.9 (q, ${}^{1}J_{CF}=276$ Hz), 120.7, 127.9, 132.4, 138.6, 140.9, 145.8, 146.5 (q, ${}^{2}J_{CF}$ =36 Hz), 147.9, 148.5, 156.2; 19 F NMR (282 MHz, CDCl₃) δ : -65.9. MS (CI) m/z 381 (M⁺+1, 100). Anal. Calcd for C₁₆H₁₁F₃N₃O₄ (380): C, 50.53; H, 2.92; N, 14.99. Found: C, 50.33; H, 2.94; N, 15.01.

4.7.8. Reaction of 2-azadiene (6b) with enamine (9a).

4.7.8.1. 1-Ethoxycarbonyl-3-(**1,2,2,2-tetrafluoro-ethyl)-4-phenyl-5,6,7,8-tetrahydroisoquinoline** (**20**). The general procedure was followed using (1*E*,3*E*)-1-ethoxy-carbonyl-4-phenyl-3-pentafluoroethyl-2-azabuta-1,3-diene **6b** in situ and 1-cyclohex-1-enylpyrrolidine **9a** (0.68 g) in refluxing CHCl₃ for 60 h. Chromatographic separation (15/1, hexane/ethyl acetate) gave 1.33 g (70%) of **20** as a yellow solid, mp 84–85 °C (ethyl acetate/hexane). IR (KBr) ν 1747, 1173 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.45 (t, *J*= 7.2 Hz, 3H), 1.64–1.85 (m, 4H), 2.35–2.41 (m, 2H), 3.00–3.02 (m, 2H), 4.48 (q, *J*=7.2 Hz, 2H), 5.45 (dq, ²*J*_{HF}= 46 Hz, ³*J*_{HF}=6.0 Hz, 1H), 7.13–7.55 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.2, 21.7, 21.8, 26.1, 28.5, 61.7, 85.0 (dq, ¹*J*_{CF}=187.8 Hz, ²*J*_{CF}=34.7 Hz), 122.0 (dq, ¹*J*_{CF}=281.0 Hz, ²*J*_{CF}=29.0 Hz), 128.3–160.2 (m), 166.5. ¹⁹F NMR (282 MHz, CDCl₃) δ : -75.6 (dd, ³*J*_{FF}=14 Hz, ³*J*_{HF}=6 Hz), -190.1 (dq, ²*J*_{HF}=46 Hz, ³*J*_{FF}=14 Hz). MS (EI) *m*/*z* 381 (M⁺, 73). Anal. Calcd for C₂₀H₁₉F₄NO₂ (381): C, 62.99; H, 5.02; N, 3.67. Found C, 63.01; H, 5.00; N, 3.66.

4.7.9. Reaction of 2-azadiene (6b) with enamine (9c).

4.7.9.1. 2-Ethoxycarbonyl-6-(1,2,2,2-tetrafluoroethyl)-3,4-trimethylen-5-phenylpyridine (24a). The general procedure was followed using (1*E*,3*E*)-1ethoxycarbonyl-4-phenyl-3-pentafluoroethyl-2-azabuta-1,3-diene **6b** obtained in situ and 1-cyclopent-1-enylpyrrolidine **9c** (0.67 g) in CHCl₃ at room temperature for 2 h. Chromatographic separation (15/1, hexane/ethyl acetate) gave 0.77 g (42%) of **24a** as a colorless oil; $R_{\rm f}$ =0.23 (1/10, ethyl acetate/hexane). IR (KBr) ν 1724, 1294 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.46 (t, *J*=7.1 Hz, 3H), 2.10– 2.17 (m, 2H), 2.70–2.76 (m, 2H), 3.41–3.45 (m, 2H), 4.47 (m, 2H), 5.67 (dq, ² $J_{\rm HF}$ =45 Hz, ³ $J_{\rm HF}$ =6.0 Hz, 1H), 7.23– 7.51 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 24.4, 32.4, 33.1, 61.6, 85.9 (dq, ¹ $J_{\rm CF}$ =188.6 Hz, ² $J_{\rm CF}$ =34.6 Hz), 122.0 (dq, ¹ $J_{\rm CF}$ =282.7 Hz, ² $J_{\rm CF}$ =29.1 Hz), 126.4–156.7 (m), 165.3. ¹⁹F NMR (282 MHz, CDCl₃) δ : -75.2 (dd, ³ J_{FF} =15 Hz, ³ J_{HF} =6 Hz), -190.0 (dq, ² J_{HF} =45 Hz, ³ J_{FF} =15 Hz). MS (EI) *m*/*z* 367 (M⁺, 3). Anal. Calcd for C₂₅H₁₉F₄NO₂ (367): C, 62.12; H, 4.66; N, 3.81. Found: C, 61.99; H, 4.70; N, 3.83.

4.7.10. Reaction of 2-azadiene (6c) with enamine (9c).

4.7.10.1. 2-Ethoxycarbonyl-6-(1,2,2,3,3,4,4,5,5,6,6,7, 7,7-tetradecafluoro-heptyl)-3,4-trimethylen-5-phenylpyridine (24b). The general procedure was followed using (1E,3E)-1-ethoxycarbonyl-4-phenyl-3-perfluorohepthyl-2azabuta-1,3-diene 6c obtained in situ and 1-cyclopent-1enylpyrrolidine 9c (0.67 g) in CHCl₃ at room temperature for 15 h. Chromatographic separation (15/1, hexane/ethyl acetate) gave 1.76 g (56%) of **24b** as a colorless oil; $R_{\rm f}$ = 0.43 (1/5, ethyl acetate/hexane). IR (KBr) ν 1724, 1224 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ: 1.46 (t, J =7.1 Hz, 3H), 2.08–2.18 (m, 2H), 2.71–2.76 (m, 2H), 3.41– 3.48 (m, 2H), 4.44-4.55 (m, 2H), 5.83-5.99 (m, 1H), 7.18-7.51 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.2, 24.3, 32.4, 33.1, 61.6, 82.5-85.0 (m), 107.0-120.2 (m), 128.1-156.6 (m), 165.4. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.2, -117.1 to -126.6 (m). MS (EI) m/z 617 (M⁺, 2). Anal. Calcd for C₂₄H₁₇F₁₄NO₂ (617): C, 46.69; H, 2.78; N, 2.27. Found: C, 46.73; H, 2.81; N, 2.25.

4.7.11. Reaction of 2-azadiene (6h) with enamine (9b).

4.7.11.1. 5-Isopropyl-6-(4-nitrophenyl)-2-perfluoroethyl-3-cyanopiridine (25a) and 5-isopropyl-6-(4-nitrophenyl)-2-(1,2,2,2-tetrafluoroethyl)-3-cyanopiridine (26a). The general procedure was followed using (1E,3Z)-4cyano-1-(4-nitrophenyl)-3-perfluoroethyl-2-azabuta-1,3diene (6h) obtained in situ and trans 3-methyl-1-pyrrolidylbut-1-ene **9b** (0.67 g) in CHCl₃ at room temperature for 3 h. Chromatographic separation (15/1, hexane/ethyl acetate) gave 0.78 g (40%) of 25a as a white solid; mp 120-121 °C (ethyl acetate/hexane); 0.33 g (18%) of 26a as an orange oil, $R_f = 0.50$ (1/5, ethyl acetate/hexane); 0.04 g (4%) of E-18b as yellow oil, $R_f = 0.27$ (1/5, ethyl acetate/ hexane); 0.03 g (3%) of Z-18b and as a orange oil, $R_f = 0.45$ (1/5, ethyl acetate/hexane) and 0.06 g (6%) of 28a as an orange solid; mp 69-70 °C (ethyl acetate/hexane). Data for **25a**: IR (KBr) ν 2237, 1520 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.30 (d, J=6.8 Hz, 6H), 3.26 (dq, J=6.8 Hz, 1H), 7.68 (d, J=8.7 Hz, 2H), 8.24 (s, 1H), 8.38 (d, J=8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 23.6, 29.2, 108.6, 110.9 (tq, ${}^{1}J_{CF} = 258$ Hz, ${}^{2}J_{CF} = 39$ Hz), 113.8, 118.5 (tq, ${}^{1}J_{CF} = 287$ Hz, ${}^{2}J_{CF} = 36$ Hz), 123.8, 130.1, 141.7, 143.4, 145.6, 145.8–146.4 (m), 148.5, 158.2. ¹⁹F NMR (282 MHz, CDCl₃) δ: -82.4, -113.3. MS (EI) m/z 385 $(M^+, 23)$. Anal. Calcd for $C_{17}H_{12}F_5N_3O_2$ (385): C, 52.99; H, 3.14; N, 10.91. Found: C, 52.48; H, 3.31; N, 10.81. *Data for* **26a**: IR (KBr) ν 2236, 1522 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 1.26 (d, J=7.1 Hz, 3H), 1.28 (d, J=7.0 Hz, 3H), 3.20 (dq, J=7.0, 7.1 Hz, 1H), 5.97 (dq, ${}^{2}J_{\text{HF}}=44.3$ Hz, ${}^{3}J_{\rm HF}$ = 6.0 Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 8.16 (s, 1H), 8.37 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 23.6, 23.7, 29.2, 87.8 (dq, ${}^{1}J_{CF}=194$ Hz, ${}^{2}J_{CF}=35$ Hz), 109.2, 114.5, 121.5 (dq, ${}^{1}J_{CF}=283$ Hz, ${}^{2}J_{CF}=28$ Hz), 123.7, 130.0, 140.6, 143.9, 144.2, 148.3, 158.6. ${}^{19}F$ NMR (282 MHz, CDCl₃) δ : -76.6 (dd, ³ J_{FF} =12.5 Hz, ³ J_{HF} = 6.0 Hz), -197.9 (dq, ² J_{HF} =44.3 Hz, ³ J_{FF} =12.5 Hz). MS (CI, 80V) *m*/*z* 368 (M⁺ + 1, 100). Anal. Calcd for

C₁₇H₁₃F₄N₃O₂ (367): C, 55.59; H, 3.57; N, 11.44. Found: C, 55.48; H, 3.38; N, 11.31. ¹H NMR (400 MHz, CDCl₃) for *E*-isomer of **18b**, δ: 1.28 (d, J=7.0 Hz, 6H), 3.02 (dq, J= 7.0 Hz, 1H), 7.50 (s, 1H), 7.51 (d, J=8.8 Hz, 2H), 8.30 (d, J=8.8 Hz, 2H), 9.59 (s, 1H). ¹H NMR (400 MHz, CDCl₃) for *Z*-isomer of **18b**, δ: 1.18 (d, J=6.8 Hz, 6H), 3.05 (dq, J=6.8 Hz, 1H), 7.46 (d, J=8.7 Hz, 2H), 7.50 (s, 1H), 8.26 (d, J=8.7 Hz, 2H), 9.82 (s, 1H). ¹H NMR (400 MHz, CDCl₃) for **28a**, δ: 4.51 (s, 1H), 5.19 (bs, 2H).

4.7.12. Reaction of 2-azadiene (6i) with enamine (9b).

4.7.12.1. 5-Isopropyl-6-(4-nitrophenyl)-2-perfluorohepthyl-3-cyanopiridine (25b), 5-isopropyl-6-(4-nitrophenyl)-2-(1,2,2,3,3,4,4,5,5,6,6,7,7,7-tetradecafluorohepthyl)-3-cyanopiridine (26b) and 3-isopropyl-2-(4nitrophenyl)-6-perfluorohepthyl-1,2-dihydro-5-cyanopiridine (27b). The general procedure was followed using (1E,3Z)-4-cyano-1-(4-nitrophenyl)-3-perfluorohepthyl-2azabuta-1,3-diene (6i) obtained in situ and and trans 3-methyl-1-pyrrolidylbut-1-ene 9b (0.67 g) in CHCl₃ at room temperature for 5 h. Chromatographic separation (10/1, hexane/ethyl acetate) gave 1.11 g (35%) of 25b as an orange solid; mp 80-81 °C (CH₂Cl₂/hexane); 0.56 g (18%) of **26b** as a yellow solid; mp 93–94 °C (CH₂Cl₂/ hexane); 0.68 g (22%) of 27b as a yellow solid; mp 90-91 °C (ethyl acetate/hexane) 0.03 g (3%) of 18b (see reaction of 2-azadiene 6h with enamine 9b) and 0.15 g (7%) of **28b** as a white solid mp 127–128 °C (hexane/ethyl acetate). Data for **25b**: IR (KBr) ν 2233, 1523 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.30 (d, J = 6.9 Hz, 6H), 3.25 (dq, J=6.9 Hz, 1H), 7.68 (d, J=8.8 Hz, 2H), 8.23 (s, 1H),8.38 (d, J=8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ : 23.6, 29.7, 109.2, 110.2-111.1 (m), 113.9, 123.8, 130.1, 141.6, 143.4, 145.6, 145.7–146.4 (m), 148.5, 158.4. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.0, -110.8 to -126.3 (m). MS (EI) m/z 635 (M⁺, 20). Anal. Calcd for C₂₂H₁₂F₁₅N₃O₂ (635): C, 41.59; H, 1.90; N, 6.61. Found: C, 41.31; H, 1.91; N, 6.79. Data for 26b: IR (KBr) v 2235, 1524 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ: 1.29 (d, J =6.7 Hz, 3H), 1.30 (d, J=6.7 Hz, 3H), 3.21 (dq, J=6.7 Hz, 1H), 6.20 (dd, ${}^{1}J_{\text{HF}}$ =24.9 Hz, ${}^{3}J_{\text{HF}}$ =19.1 Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 8.18 (s, 1H), 8.37 (d, J = 8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ : 23.6, 29.2, 87.3 (dt, ${}^{1}J_{CF} =$ 195 Hz, ${}^{2}J_{CF}$ =23 Hz), 109.8, 110.2–111.2 (m), 114.5, 123.7, 123.7, 130.0, 140.7, 143.1-143.6 (m), 144.0, 144.2, 148.3, 158.6. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1, -110.8 (t, ³ J_{FF} =13.7 Hz), -120.8 to -126.4 (m), -198.6 (d, ³ J_{FF} =13.7 Hz). MS (CI) *m*/*z* 618 (M⁺+1, 100). Anal. Calcd for C₂₂H₁₃F₁₄N₃O₂ (617): C, 42.80; H, 2.12; N, 6.81. Found: C, 42.77; H, 2.09; N, 6.85. Data for **27b**: IR (KBr) ν 3284, 2214, 1531 cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3) \delta$: 1.00 (d, J=6.8 Hz, 3H), 1.05 (d, J=6.7 Hz, 3H), 2.07 (dq, J=6.8, 6.7 Hz, 1H), 5.25 (s, 1H), 5.33 (d, J=3.3 Hz, 1H), 6.08 (s, 1H), 7.50 (d, J=8.7 Hz, 2H), 8.26 (d, J = 8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ: 20.7, 21.2, 31.6, 57.1, 83.8, 109.8-110.9 (m), 116.0, 116.6, 124.4, 128.0, 137.6, 143.5–144.2 (m), 147.4, 148.3. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1, -112.7 to -126.4 (m). MS (CI) m/z 638 (M⁺+1, 100). Anal. Calcd for C₂₂H₁₄F₁₅N₃O₂ (637): C, 41.46; H, 2.21; N, 6.59. Found: C, 41.41; H, 2.26; N, 6.57. ¹H NMR (400 MHz, CDCl₃) for **28b**, δ: 4.56 (s, 1H), 5.30 (bs, 2H).

4.7.13. Reaction of 2-azadiene (6j) with enamine (9b). 4.7.13.1. 5-Isopropyl-6-(2,4-dinitrophenyl)-2-perfluorohepthyl-3-cyanopiridine (25c) and 5-isopropyl-6-(2,4-dinitrophenyl)-2-(1,2,2,3,3,4,4,5,5,6,6,7,7,7-tetrafluorohepthyl-3-cyanopiridine (26c). The general procedure was followed using (1E,3Z)-4-cyano-1-(2,4dinitrophenyl)-3-perfluorohepthyl-2-azabuta-1,3-diene (6j) obtained in situ and 9b (0.23 g) at room temperature in CHCl₃ for 5 h. After column chromatography (hexane/ethyl acetate 10/1) 2.0 g of an inseparable mixture of compounds 25c and 26c (1/2), 0.05 g (4%) of 18a (see reaction of 2-azadiene 6e with enamine 9b) and 0.18 g (8%) of 28b (see reaction of 2-azadiene 6g with enamine 9b) were obtained. Spectroscopic data of mixture 25c and 26c: IR (KBr) ν 2239, 1640, 1547 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 1.19-1.28 (m, 18H), 2.77-2.86 (m, 2H) for 25c and 26c, 6.12 (dq ${}^{2}J_{\text{FH}}$ =25.1 Hz, ${}^{3}J_{\text{FH}}$ =2.8 Hz, 1H) for **26c**, 7.65 (d, J = 8.3 Hz, 4H) for 25c and 26c, 8.21 (s, 1H) for 26c, 8.27 (s, 1H) for 25c, 8.64 (d, J = 8.3 Hz, 2H) for 26c, 8.66 (d, J =8.3 Hz, 2H) for **25c**, 9.07–9.13 (m, 2H) for **25c** and **26c**. ¹³C NMR (75 MHz, CDCl₃) δ : 23.1, 30.1, 87.3 (dt, ${}^{1}J_{CF} =$ 167 Hz, ${}^{2}J_{CF}$ =23 Hz), 107.0–119.1 (m), 120.8, 127.8, 132.2, 138.5–148.5 (m), 156.2. ¹⁹F NMR (282 MHz, CDCl₃) δ : -81.1, -111.3 to -126.5 (m), -198.6 to -199.6 (m).

Acknowledgements

The authors thank the Ministerio de Ciencia y Tecnología (MCYT, Madrid DGI, PPQ2003-0910) and the Universidad del País Vasco (UPV-GC/2002) for supporting this work. C. A. thanks the Departamento de Educación, Universidades e Investigación of Gobierno Vasco for a Postdoctoral Fellowship and M. V. thanks the Universidad del País Vasco for a Predoctoral Fellowship.

References and notes

- For reviews see: (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. *Angew. Chem. Int. Ed.* **2002**, *41*, 1668–1698. (b) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. *Tetrahedron* **2002**, *58*, 379–471. (c) Buonora, P.; Olsen, J.-C.; Oh, T. *Tetrahedron* **2001**, *57*, 6099–6138.
- For recent contributions, see: (a) Bongini, A.; Panunzio, M.; Tamanini, E.; Martelli, G.; Vicennati, P.; Moneri, M. *Tetrahedron: Asymmetry* 2003, 14, 993–998. (b) Alves, M. J.; Duraes, M. M.; Gil, A. *Tetrahedron Lett.* 2003, 44, 5079–5082. (c) Nicolaou, K. C.; Nevalainen, M.; Safina, B. S.; Zak, M.; Bulat, S. *Angew. Chem. Int. Ed.* 2002, 41, 1941–1945. (d) Moody, C. J.; Hughes, R. A.; Thompson, S. P.; Alcaraz, L. *Chem. Commun.* 2002, 1760–1761. (e) Ntirampebura, D.; Ghosez, L. *Synthesis* 2002, 2043–2052.
- (a) Jnoff, E.; Ghosez, L. J. Am. Chem. Soc. 1999, 121, 2617–2618. (b) Bandini, E.; Martelli, G.; Spunta, G.; Bongini, A.; Panunzio, M. Synlett 1999, 1735–1738. (c) Ntirampebura, D.; Ghosez, L. Tetrahedron Lett. 1999, 40, 7079–7082. (d) Ghosez, L. Pure Appl. Chem. 1996, 68, 15–22.
- (a) Palacios, F.; Aparicio, D.; Ochoa de Retana, A. M.; de los Santos, J. M.; Gil, J. I.; Alonso, J. M. J. Org. Chem. 2002, 67,

7283–7288. (b) Palacios, F.; Ochoa de Retana, A. M.; Gil, J. I.; Alonso, J. M. *Tetrahedron: Asymmetry* **2002**, *13*, 2541–2552.
(c) Palacios, F.; Ochoa de Retana, A. M.; Gil, J. I.; López de Munain, R. *Org. Lett.* **2002**, *4*, 2405–2408.

- (a) Palacios, F.; Alonso, C.; Amezua, P.; Rubiales, G. J. Org. Chem. 2002, 67, 1941–1946. (b) Palacios, F.; Alonso, C.; Rubiales, G. J. Org. Chem. 1997, 62, 1146–1154.
- 6. (a) Palacios, F.; Herrán, E.; Rubiales, G.; Ezpeleta, J. M. J. Org. Chem. 2002, 67, 2131–2135. (b) Palacios, F.; Herrán, E.; Rubiales, G. J. Org. Chem. 1999, 64, 6239–6246.
- (a) Chambers, R. 2nd ed.; Fluorine in Organic Chemistry; Blackwell: London, 2004. (b) Organofluorine Compounds: Chemistry and Applications; Hiyama, T., Ed.; Springer: Berlin, 2000. (c) Asymmetric Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions; Ramachandran, P. V., Ed.; American Chemical Society: Washington DC, 1999.
- (a) Kirsch, P.; Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley: New York, 2004. (b) *Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenges and Biomedical Targets*; Soloshonok, V. A., Ed.; Wiley: New York, 1999. (c) *Fluorine-Containing Amino Acids: Synthesis and Applications*; Kukhar, V. P., Soloshonok, V. A., Eds.; Wiley: New York, 1995.
- (a) Hou, Y.; Higashiya, S.; Fuchigami, T. J. Org. Chem. 1997,
 62, 8773–8776. (b) Hou, Y.; Higashiya, S.; Fuchigami, T. Synlett 1997, 655, 656.
- (a) Ichikawa, J.; Wada, Y.; Miyazaki, H.; Mori, T.; Kuroki, H. Org. Lett. 2003, 5, 1455–1458. (b) Shen, Y.; Zhang, Y.; Sun, J. J. Fluorine Chem. 2002, 116, 157–161. (c) Peng, W.; Zhu, S. J. Chem. Soc., Perkin Trans. 1 2001, 3204–3218.
- (a) Oesterle, T.; Simchen, G. Synthesis 1985, 403–406. (b) Burger, K.; Dirsteiner, G.; Fehn, J. Liebigs Ann. Chem. 1971, 747, 45–50. (c) Ono, T.; Kukhar, V. P.; Soloshonok, V. A. J. Org. Chem. 1996, 61, 6563–6569.
- (a) Simchen, G.; Pürkner, E. Synthesis 1990, 525–527. (b) Burger, K.; George, G.; Fehn, J. Liebigs Ann. Chem. 1972, 757, 1–8. (c) Burger, K.; Fehn, J. Liebigs Ann. Chem. 1972, 757, 14–19. (d) Burger, K.; Meffert, A. Liebigs Ann. Chem. 1975, 316–322.
- Aza-Wittig reaction affords an excellent strategy for the construction of the C=N double bonds. For reviews see: (a) Wamhoff, H.; Richard, G.; Stölben, S. Adv. Heterocycl. Chem. 1995, 64, 159–249. (b) Barluenga, J.; Palacios, F. Org. Prep. Proced. Int. 1991, 23, 1–65.
- For a preliminary communication see: Palacios, F.; Alonso, C.; Rubiales, G.; Villegas, M. *Tetrahedron Lett.* 2004, 45, 4031–4034.
- C₇F₁₅CN was purchased from Lancaster, however CF₃CN and C₂F₅CN were freshly prepared by dehydration of the corresponding amides (CF₃CONH₂ and C₂F₅CONH₂, respectively).¹⁶
- Reisner, D. B.; Horning, E. C. In Organic Syntheses, Collect. Vol. IV; Wiley: New York, 1963; pp 144–145.
- 17. Phosphorus ylides **1** were generated in situ from theirs corresponding phosphonium salts and methyl lithium in diethyl ether.
- (a) Barluenga, J.; Ferrero, M.; Lopez, F.; Palacios, F. J. Chem. Soc., Perkin Trans. 1 1989, 615–618. (b) Ciganek, E. J. Org. Chem. 1970, 35, 3631–3636.
- Palacios, F.; Legido, M.; Pérez de Heredia, I.; Rubiales, G. *Heterocycles* 2000, 52, 1057–1064.

- 20. Oikawa, T.; Kanomata, N.; Tada, M. J. Org. Chem. **1993**, 58, 2046–2051.
- 21. Huang, X.; Xie, L.; Wu, H. J. Org. Chem. 1988, 53, 4862–4864.
- Ylides and Imines of Phosphorus; Johnson, A. W., Kahsa, W. S., Starzewski, K. A. D., Dixon, D. A., Eds.; Wiley: New York, 1993.
- (a) Coffey, D. S.; Kolis, S. P.; May, S. A. In Gribble, G. W., Gilchrist, T. L., Eds.; Progress in Heterocyclic Chemistry; Pergamon: Amsterdam, 2002; Vol. 14; Chapter 6.1. (b) Bentley, K. W.; The Isoquinoline Alkaloids; Harwood Academic: Amsterdam, 1998. (c) Yates, F. S. In Katritzky, A. R., Rees, C. W., Eds.; Comprehensive Heterocyclic Chemistry; Pergamon: New York, 1984; Vol. 2; Chapter 2.09.
- 24. (a) Dai, G.; Larock, R. C. J. Org. Chem. 2002, 67, 7042. (b) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437–3444.
- 25. (a) Hofle, G.; Glaser, N.; Leibold, T.; Karama, U.; Sasse, F.; Steinmetz, H. *Pure Appl. Chem.* 2003, 75, 167–178. (b) Cativiela, C.; Diaz de Villegas, M. D. *Tetrahedron: Asymmetry* 2000, 11, 645–742. (c) Couty, F. *Amino Acids* 1999, 16, 297–320.
- 26. Goure, W. F. J. Heterocycl. Chem. 1993, 30, 71-80.
- [2+2] Cycloaddition reaction of imines with electron-rich alkenes (enamines and enol ethers) has been reported. See: Aben, R. W. M.; Smit, R.; Scheeren, J. W. J. Org. Chem. 1987, 52, 365–370.
- 28. Mori, T.; Ichikawa, J. Chem. Lett. 2004, 33, 1206.