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ABSTRACT: Isotopes of an element have the same electron
number but differ in neutron number and atomic mass.
However, due to the thickness-dependent properties in MX2
(M = Mo, W; X = S, Se, Te) transition metal dichalcogenides
(TMDs), the isotopic effect in atomically thin TMDs still
remains unclear especially for phonon-assisted indirect excitonic
transitions. Here, we report the first observation of the isotope
effect on the electronic and vibrational properties of a TMD
material, using naturally abundant NAWNASe2 and isotopically
pure 186W80Se2 bilayer single crystals over a temperature range
of 4.4−300 K. We demonstrate a higher optical band gap energy in 186W80Se2 than in NAWNASe2 (3.9 ± 0.7 meV from 4.41 to
300 K), which is surprising as isotopes are neutral impurities. Phonon energies decrease in the isotopically pure crystal due to
the atomic mass dependence of harmonic oscillations, with correspondingly longer E2g and A2

1g phonon lifetimes than in the
naturally abundant sample. The change in electronic band gap renormalization energy is postulated as being the dominant
mechanism responsible for the change in optical emission spectra.
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With the discovery of graphene,1 the atomically thin
family of materials receive interest continuously. A wide

application in electronics,2−5 optoelectronics,6−11 and quan-
tum phononics12−16 has been achieved with the expansion of
this class of materials to the MX2 (M = Mo, W; X = S, Se, Te)
transition metal dichalcogenides (TMDs) possessing large
band gaps compared with zero-gap graphene. TMDs are a
group of materials consisting of three atom-thick layers with
transition metals covalently bonded with chalcogens in trigonal
prismatic coordination geometry and adjacent layers bonded
by relatively weak van der Waals interactions. Compared to
bulk materials, atomically thin TMDs offer size and tunability
advantages over traditional materials for miniaturization of
electronic and optical devices,6,7,17 especially as their
optoelectronic and vibrational properties are highly dependent
on layer thickness.18,19 Thus, the precise manipulation of
electron and phonon band structure in atomically thin TMDs
materials is the key to widespread adoption in applications
including energy conversion.20 Reversible modification of the
electronic band gap in mono- and bilayer crystals of MoS2

21

and WSe2
10,22 has been demonstrated via strain,23 in which

bilayer WSe2 showed a two-orders of magnitude enhancement
of photoluminescence response with uniaxial tensile strain.10

Another method to extrinsically tune optoelectronic properties
has been achieved through application of external electric fields

in WSe2 and MoSe2 monolayers.11,24 Yet, an intrinsic route to
tune the electronic band structure and phonon dispersion
relationship in these materials still remains unexplored.
Recently, the tunability of van der Waals interactions and

anharmonic phonon scattering in bulk hexagonal boron nitride
(h-BN) has been proven via experimental observation of
changes in the electronic band gap and Raman signature due to
the isotope effect.25,26 However, the isotopic effect on phonon
and optoelectronic properties still remains unknown in the
TMD class of atomically thin materials. Here, we report iso-
topic engineering of the optical band gap and phonon energy
in atomically thin bilayer naturally abundant NAWNASe2 and
isotopically pure 186W80Se2 by combing X-ray diffraction and
temperature-dependent Raman and photoluminescence spec-
troscopy from ∼4 K to room temperature.
WSe2 occurs naturally with five W isotopes27 and six Se

isotopes28 with dominant concentrations of 184W (30.64% at.)
and 80Se (49.61% at.). The strength of isotopic disorder in a
compound is given by the second-order mass variance
parameter g = ∑i,j[ci,j(1−Mi,j/Mi,avg)

2] in transport calcula-
tions,29,30 where ci,j and Mi,j are the concentration and atomic
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mass of ith atom and the jth impurity, respectively, and Mi,avg is
the average atomic mass. Naturally occurring NAWNASe2 has a
molecular mass of 341.98u and g of 9.94 × 10−4, where u is the
unified atomic mass constant. The g value can be reduced by
more than 377 times to 2.63 × 10−6 with a molecular mass of
345.99u through isotopic purification using 186W and 80Se at
commercially available purification levels greater than 99.9%
at., indicating that isotopic effects may play an important role

in TMDs such as WSe2 since the natural system is intrinsically
disordered.
In this first work on the isotope effect in a TMD material,

both naturally abundant NAWNASe2 and isotopically pure
186W80Se2 bilayers were grown by chemical vapor deposition
(CVD) on ∼285 nm SiO2-coated silicon substrates similar to
our previous report.10 Since the optical band gap is extremely
sensitive to strain and crystalline quality,10,31,32 the NAWNASe2

Figure 1. Spatially dependent characterization of an isotopically pure bilayer 186W80Se2 crystal. (a) Optical image and (b) atomic force microscopy
(AFM) characterization of 186W80Se2 on a 285 nm SiO2-on-Si substrate. (c) AFM height profile corresponding to the line shown in part b. Spatially
resolved Raman intensity at (d) 248.5 cm−1 (E2g mode), (e) 256.7 cm−1 (A1g mode), and (f) 305.9 cm−1 (A2

1g mode), where the vibrational modes
are depicted schematically. (g) Spatially resolved photoluminescence (PL) intensity at the peak emission wavelength of 1.58 eV.

Figure 2. Isotopic mass dependent Raman spectra of bilayer WSe2. Normalized Raman spectra of (a) naturally abundant NAWNASe2 and (b)
isotopically pure 186W80Se2 over the temperature range from 4.41 to 300 K. (c) Phonon frequency difference (Δω) of E2g (red), A1g (blue), and
A2

1g (green) modes between NAWNASe2 and
186W80Se2, where error is defined by the standard deviation of six measurements each with a different

spectral window initial point in order to account for the instrument uncertainty. Temperature-dependent phonon lifetime and full width at half-
maximum of the (d) E2g mode and (e) A2

1g mode from 4.41 to 300 K.
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and 186W80Se2 bilayers are synthesized under identical growth
conditions (for details, see methods and the Supporting
Information), eliminating differences in structure caused by
thermal expansion mismatch with the substrate.33 To isolate
the isotopic effect from the layer number19,34 and edge effect35

contributions to the optical band gap, Figure 1a−c
demonstrates our bilayer WSe2 single crystals are synthesized
so that the top and bottom layers have the same lateral
dimensions. Atomic force microscopy (AFM) analysis shows a
uniform thickness of ∼1.3 nm over the entire crystallite for
both NAWNASe2 and

186W80Se2 bilayers. Figure 1d−f illustrates
that the Raman spectra of an isotopically pure bilayer
186W80Se2 crystallite is spatially uniform in intensity throughout
the entire crystallite for the E2g, A1g, and A2

1g Raman active
modes, which is similar as our previous reported naturally
abundant bilayer NAWNASe2.

10 Photoluminescence (PL) also
demonstrates spatially uniform peak intensity and in the entire
crystallite (Figure 1g), further indicating the uniformity of
atomic-level thickness. Room temperature X-ray diffraction
(XRD) analysis of NAWNASe2 and

186W80Se2 is shown in Figure
S1 of the Supporting Information. We have also conducted
Rutherford backscattering spectrometry (RBS) analysis to
obtain the elemental atomic ratios of the materials in this
report. Analyzing the scattering yield ratios between W and Se,
we obtain a W/Se ratio of 1:1.98 for both the naturally
abundant and isotopically enriched samples indicating
comparable stoichiometry and hence sample quality (Figure
S2, Supporting Information).
Atomic vibrations described as phonons have energies which

are dependent on the atomic mass, where frequency changes
stemming from isotopic substitution can be monitored by
Raman spectroscopy.36 Figure 2a,b shows the evolution of
optical phonon energies with temperature in NAWNASe2 and
186W80Se2 bilayers using Raman spectroscopy and 532 nm laser
excitation with a point-to-point resolution of ∼0.51 cm−1 using
an 1800 gr/mm grating. To minimize the instrumental
uncertainty, we conducted six sets of measurements with
spectral windows defined by initial points differing by 0.1 cm−1

to fully cover the point-to-point separation. The mean and
standard deviation of modeled peak positions and full width at
half-maximum (fwhm) obtained for each of these six spectra
was used as the uncertainty for each data point. To avoid any
influence from the slightly nonuniform temperature distribu-
tion on the sample mount in the optical cryostat, all Raman
spectra were aligned using the silicon substrate peak at each
nominal temperature.
The frequency of optical lattice vibrations is expected to

decrease with heavier isotopic atomic mass according to a
simple one-dimensional harmonic oscillator model37 as ω =
[2C·ΣjMj

−1]1/2 for zone center and ω = (2C/Mj)
1/2, j = 1,2, for

zone boundary phonons where C is the force constant and Mj
is the mass of the jth atom in the two-atom basis chain. The
experimental frequency difference between NAWNASe2 and
186W80Se2 bilayers for each Raman active mode is evaluated as
Δωi = ωi,NA − ωi,isotope, i = E2g, A1g, A

2
1g, where ωi is the Raman

peak frequency of the ith Raman active mode. Figure 2c shows
that the phonon frequency globally red-shifts in the isotopic
samples over the entire temperature range from 4.41 to 300 K.
The E2g mode corresponds to intralayer tungsten and selenium
atoms vibrating against each other in the hexagonal basal plane,
in which the phonon frequency difference between NAWNASe2
and 186W80Se2 bilayers is ΔωE2g = 1.38 ± 0.05 cm−1. The A1g

mode represents selenium atom vibrations along the out-of-
plane direction with ΔωA1g = 1.53 ± 0.07 cm−1. The more
interesting mode here is A2

1g with ΔωA21g = 1.94 ± 0.06 cm−1.
The A2

1g mode represents an interlayer vibration involving
both tungsten and selenium atoms from different van der
Waals layers and only appears for two or more layers of
WSe2.

38 We observe that the isotopic effect on the interlayer
out-of-plane A2

1g mode is larger than on the in-plane E2g mode
or the intralayer out-of-plane A1g mode, which arises from the
fact that the isotopic effect on the weak interlayer van der
Waals interaction is slightly larger than it is on the strong
intralayer W−Se covalent interaction.
Besides the harmonic oscillation of phonons, the contribu-

tion of van der Waals bond length on phonon frequency also
needs to be evaluated to support the statement above. The
phonon frequency changes due to strain can be defined as10

Δωi,strain = −εγiωi where γ is the Grüneisen parameter, ε is the
hydrostatic strain, and i represents the phonon mode. The
interlayer van der Waals bond length change can be treated as
Δc = εzzc, where Δc is the c-lattice parameter change due to
isotopic substitution, c is the natural abundance c-lattice
parameter, and εzz is the out-of-plane strain component. Thus,
the phonon frequency change due to isotopic substitution in
this work can be approximated as Δωi,strain = −γiωiΔc/c. By
adopting the experimental Grüneisen parameter of the A2

1g
mode in bilayer WSe2 as 0.357

10 and the c-lattice parameters
obtained from XRD analysis, the phonon frequency changes
expected due to isotope induced changes in van der Waals
bond length can be estimated on the order of ΔωA21g,strain =
0.04 cm−1, which is negligible compared to the measured
experimental frequency changes.
The phonon lifetime is an important parameter that

describes phonon scattering processes and can be estimated
from the fwhm of the Raman peak as26 τ = ℏ/Γ where τ is the
phonon lifetime, ℏ is the reduced Planck constant, and Γ is the
fwhm. Figure 2d,e illustrates that isotopically pure 186W80Se2
exhibits slightly longer phonon lifetimes for both the intralayer
in-plane E2g mode and the interlayer out-of-plane A2

1g mode,
although this is still only marginally higher than experimental
uncertainty. The observed decrease of the phonon lifetime
with temperature arises from an increase of phonon occupancy
and phonon−phonon interaction with temperature.39 At 4.41
(300) K, the phonon lifetime of the E2g mode in bilayer
186W80Se2 is 2.90 ± 0.02 (2.52 ± 0.05) ps and ∼2.16 ± 0.03
(1.32 ± 0.09) ps for the A2

1g mode, which is 10.1 (4.42) % and
11.1 (2.77) % higher than the lifetimes of E2g and A1g modes in
bilayer NAWNASe2, respectively.
Figure 3 shows the temperature dependent Raman shift of

the E2g, A1g, and A2
1g modes of bilayer NAWNASe2 and

186W80Se2. As the temperature increases from 4.41 to 300 K,
the E2g mode frequency decreases by 1.31 ± 0.03 cm−1 in
NAWNASe2 and by and 1.22 ± 0.03 cm−1 in 186W80Se2. The A1g

mode frequency drops a similar amount over the same
temperature range, 1.58 ± 0.11 cm−1 and 1.53 ± 0.06 cm−1 in
NAWNASe2 and 186W80Se2, respectively. The A2

1g mode
frequency drops by nearly twice as much, 2.58 ± 0.03 cm−1

and 2.45 ± 0.04 cm−1 in NAWNASe2 and 186W80Se2 bilayers,
respectively. This behavior can be explained by the positive
thermal expansion coefficient (TEC) of both in-plane and out-
of-plane unit cell parameters.40,41 We observe that the out-of-
plane vibrational modes, A1g and A2

1g, have ∼1.2 and ∼1.9
times higher frequency changes than the in-plane vibration
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mode (E2g), respectively, which arises from an out-of-plane
TEC approximately 1.6 times higher than the in-plane TEC.41

Electronic transitions from filled to empty states must
conserve electron momentum. Bilayer WSe2 is known as a
semiconductor with an indirect electronic band gap,19 in which
the conduction band minimum at the Σ-point (CBMΣ) and
valence band maximum at the K-point (VBMK) are not at the
same electron momentum in reciprocal space. Since the
momentum of photons is negligible, especially in the
wavelength range used in this work, the transition between
CBMΣ and VBMK must involve phonon assistance to obey the
rule of momentum conservation, which means the band gap
can be affected by the isotope effect. Furthermore, phonon
energy tuning by the isotope effect may also result from a
change in wave vector arising from a shift of the PL band gap
energy. Figure 4 reports the temperature dependent PL spectra
for bilayer NAWNASe2 and 186W80Se2. To avoid uncertainty
arising from nonidentical local heating by the excitation laser,
all the samples were characterized under the same conditions
including laser power and acquisition time at each temperature.
Surprisingly, we observe a higher optical band gap energy in
bilayer 186W80Se2 compared with bilayer NAWNASe2 where the
PL spectra of the isotopically pure sample blue-shifts by 3.9 ±
0.7 meV over the entire temperature range from 4.41 to 300 K

(Figure 4c). This trend is similar to the PL spectra blue-shift
with increasing atomic mass phenomenon observed in other
isotopically purified indirect band gap semiconductors, where
the indirect band gap renormalization energy changes ∼4.4
meV between h-10BN and h-NABN,25 and ∼2.2 meV between
70Ge and 76Ge.42

The mechanisms responsible for this observable change in
emission energy are indirect band gap renormalization43 and
isotopic phonon energy shift.25 When evaluating the
normalized electronic states in an indirect band gap semi-
conductor, the band gap renormalization energy is inversely
proportional to the square root of effective mass and depends
on the zero-point vibrational energy, calculated with all
phonon modes at zero temperature. The isotope effect on
indirect band gap renormalization energy has been proven in
bulk h-BN.25 However, the phonon replicas of MX2 TMDs can
only be obtained by resonant Raman spectroscopy, rather than
the nonresonant spectra which is used here and in the previous
h-BN report.25 Another approach to estimate the renormaliza-
tion energy is to extrapolate the linear relationship between
temperature and band gap energy at high temperature, which is
up to 800 K for bulk h-BN25 and 1000 K for Ge.43 Comparing
to h-BN, the atomically thin MX2 TMDs are extremely
sensitive to oxygen,44 so there has been no available report of
the PL spectra above 400 K of atomically thin WSe2. The band
gap renormalization energy is proportional to μ−1/2, and thus
can be calculated as δEg

α = δEg
NA(μα/μNA)1/2, where α

represents the isotope and μ indicates the reduced mass. Since
both bilayer WSe2 and WS2 are indirect semiconductors,
sharing the same lamellar structure and having similar band
gaps, we adopt the experimental band gap renormalization
energy of bilayer WS2 bilayer for bilayer

NAWNASe2, δEg
NA ∼

500 meV.45 The change of band gap renormalization energy in
the isotopically enriched sample can then be estimated as δEg

α

− δEg
NA ≈ 2.99 meV. Therefore, the isotopic band gap

renormalization dominates the PL band gap shift which is
measured as 3.9 ± 0.7 meV in this study.
It is also important to evaluate the contribution of van der

Waals bond length change to optical band gap energy, as out-
of-plane compressive strain has been shown to decrease the
indirect optical band gap energy in bilayer WSe2.

10 A similar
trend has also been predicted for bilayer MoS2, in which the
indirect band gap decreases with shorter c-lattice parameter.46

This is contrary to our observation of the higher optical band
gap in bilayer 186W80Se2 which possesses a smaller c-lattice
parameter than NAWNASe2. Therefore, we conclude that the
van der Waals bond length is not the dominant factor resulting
in the optical band gap energy change with isotopic
purification in this work. The temperature evolution of the
optical band gap is shown in Figure 4d, which decreases from
1.649 eV at 4.41 K to 1.599 eV at 300 K for NAWNASe2 and
from 1.652 eV at 4.41 K to 1.574 eV at 300 K for 186W80Se2.
This behavior can be modeled using the empirical Varshni
relation47 as Eg(T) = Eg(T = 0) − (αT2)/(β + T) where Eg(T
= 0) is the band gap energy at 0 K, T is the absolute
temperature, and α and β are adjustable constants. We
obtained Eg(T = 0) = 1.650 eV, α = 0.365 meV/K, and β =
93.93 K for NAWNASe2, and Eg(T = 0) = 1.654 eV, α = 0.379
meV/K, and β = 112.96 K for 186W80Se2. Coefficients of
determination were 0.991 and 0.992 for NAWNASe2 and
186W80Se2, respectively. The slight difference between our
experimental data and the empirical modeling at low
temperature arises from the quadratic temperature dependence

Figure 3. Temperature dependence of Raman active mode peak
positions in isotopically engineered bilayer WSe2. Raman shift for the
(a) E2g, (b) A1g, and (c) A2

1g modes of naturally abundant NAWNASe2
(solid symbols) and isotopically pure 186W80Se2 (open symbols).
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of the empirical Varshni relation, whereas theoretical and
experimental observations are reported to exhibit T4 depend-
ence at low temperature.43,48,49

In conclusion, we have experimentally demonstrated the
isotope effect on the phonon frequency, phonon lifetime, and
optical band gap energy in an atomically thin TMD through
temperature dependent spectroscopy of naturally abundant
and isotopically pure bilayer WSe2. We have postulated a new
mechanism by which the electronic band gap energy and
phonon dispersion can be tuned in this material by isotopic
enrichment. The outcomes of this study should help stimulate
future investigations and theoretical predictions of phonon and
electronic property modification in other isotopically enriched
van der Waals material systems, such as the isotope effect on
thermal conductivity.36,50−53
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