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Abstract—The dihydropyranyl segment common to ambruticin and jerangolid A was prepared in six steps (31.7% yield) from (S)-2-
benzyloxypropanal via silyloxydiene cyclocondensation, followed by C-glycosidation, and eventual epimerization at C18.
� 2005 Published by Elsevier Ltd.
Ambruticin (1, Scheme 1) is a structurally unique car-
boxylic acid isolated from Polyangium cellulosum var.
fulvum, which exhibits potent oral antifungal activity
against Coccidioides immitis, Histoplasma capsulatum
and Blastomyces dermititidis.1 Extensive spectral ana-
lysis revealed that the structure of 1 consists of a tetra-
hydropyranyl ring, a dihydropyranyl ring and a
divinylcyclopropane ring. More recently, the jerangolids
A and D (2a,b), isolated from a strain of Sorangium cell-
ulosum (So ce 307), were found to exhibit antifungal
activity similar to that of 1.2 The structure of 2 from
C6–C18 is identical with the C13–C24 segment of
ambruticin, and similar antibiotic spectrum of 1 and 2
suggests that these segments are responsible for their
0040-4039/$ - see front matter � 2005 Published by Elsevier Ltd.
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Scheme 1.
biological activity. The complex array of diverse func-
tionality present in 1 has generated considerable syn-
thetic interest,3 including total syntheses by the groups
of Kende et al.,4 Martin and co-workers,5 Lee et al.6

and Liu and Jacobsen.7 To our knowledge, there are
no reported syntheses of the jerangolids. As part of
our interest in the preparation of C-glycosides,8 we here-
in report the enantioselective preparation of the com-
mon dihydropyranyl segment 3, an intermediate in the
Martin synthesis of 1.5

Construction and elaboration of the oxane ring was
envisioned by means of a Lewis acid catalyzed diene–
aldehyde cyclocondensation reaction,9 followed by a
C-glycosidation of the derived pseudoglycal. Since C-
glycosidation generally proceeds via axial attack on an
oxonium ion to afford trans-2,6-disubstituted pyrans, it
was anticipated that a subsequent epimerization at
C18 (ambruticin numbering) would be necessary to gen-
erate the desired cis-18,22 relative stereochemistry. To
this end, reaction of 2(S)-benzyloxypropanal (4)10 with
1-methoxy-2-methyl-3-(trimethylsiloxy)-1,3-butadiene
(5)11 in the presence of BF3-etherate, followed by work-
up with TFA gave an inseparable mixture of diastereo-
meric dihydropyrones 6 and 7 (Scheme 2). The relative
stereochemistry of 6 and 7 was assigned on the basis
of their 1H NMR spectral data.12 In particular, the sig-
nals for H17 and H19eq (ambruticin numbering) of 6 (d
3.69 and 2.36 ppm, respectively), appear upfield of the
corresponding signals for 7 (d 3.81 and 2.56 ppm,
respectively). These relative chemical shifts are quite
characteristic of diastereomeric dihydropyrones with
an a-alkoxy group.13 Cyclocondensation of 4 with 5 in
the presence of MgBr2, followed by work-up with
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TFA gave only dihydropyrone (+)-6. The S configura-
tion at C18 (ambruticin numbering) of 6 is the result
of approach of the diene in an exo sense on the less hin-
dered face of the Mg2+ chelated form of optically active
aldehyde 4.

Reduction of 6 gave the pseudoglycal (+)-8 as a single
diastereomer (Scheme 3). We8a and others14 have re-
ported that the reaction of glycals with trialkylalumin-
ium reagents is useful for the preparation of C-alkyl
glycosides. To this end, treatment of pseudoglycal 8 with
the weak nucleophile triethylaluminium, in the presence
of boron trifluoride etherate, gave a mixture of trans-
and cis-dihydropyrans (8:1 ratio). The major product
arises via axial attack of the weak nucleophile on the
cyclic oxonium ion generated by ionization of 8. The
pure trans-isomer, (�)-9, was obtained in good yield
after column chromatography. Removal of the benzyl
protecting group, followed by oxidation gave (�)-11.15
Base-catalyzed epimerization of the trans-ketone, in
benzene, gave a separable mixture of (�)-11 and (+)-3
(1:2 ratio).16 Two equilibration/separation cycles gave
pure (+)-3 in 83% combined yield. The NMR spectral
data obtained for 3 was identical with that previously
reported.5

In summary, the synthesis of the dihydropyranyl seg-
ment (3), common to ambruticin and the jerangolids,
from optically active aldehyde 4, was accomplished in
six steps (31.7% overall yield). The length and yield of
our synthetic route is competitive with that reported
by Martin and co-workers.5
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