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Abstract: A synthesis of the halogenated medium-ring ether natu-
ral product (+)-obtusenyne is reported utilizing a Claisen rearrange-
ment and an intramolecular hydrosilation as key steps.
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A variety of nonterpenoid C15 metabolites have been iso-
lated from red algae and the opisthobranchs which feed on
Laurencia species. Among these is the nine-membered
cyclic ether (+)-obtusenyne (1) (Figure 1), which was in-
dependently isolated by Imre1 and by Fenical and Clardy2

and their respective co-workers. The structure and abso-
lute configuration of 1 were assigned by a combination of
spectroscopic analysis and X-ray crystallography.1,2 

Figure 1 Structure of (+)-obtusenyne (1)

The isolation of a large number of halogenated ether ma-
rine natural products has led to the development of a vari-
ety of elegant synthetic strategies for the construction of
strained medium-ring ether systems.3–8 Our own strategy
towards these metabolites8 has involved exploitation of
the Claisen rearrangement of a vinyl-substituted ketene-
acetal to deliver a medium-ring lactone, which is convert-
ed into a medium-ring ether via a methylenation/intramo-
lecular hydrosilation sequence. In the context of our
studies on the total synthesis of obtusenyne (1) we have
previously reported a highly diastereoselective racemic
synthesis of the diol (±)-7 from racemic methyl trans-3,4-
epoxyhexanoate [(±)-2] that uses this Claisen rearrange-
ment/intramolecular hydrosilation sequence.9 Herein we
describe an enantioselective route to the diol (–)-7
(Scheme 1) and its conversion into (+)-obtusenyne (1). 

Scheme 1 Enantioselective synthesis of the diol (–)-7. Reagents
and conditions: i. crude pig liver esterase, pH 7.2 phosphate buffer,
31%; ii. 3% aq H2SO4, 85%; iii. TBDPSCl, imidazole, DMF, 96%; iv.
DIBAL-H, THF, –78 °C to r.t., 90%; v. CH2=CHMgBr, THF, 91%;
vi. PhSeCH2CH(OEt)2, PPTS, toluene, reflux, 90%; vii. NaIO4,
CH2Cl2, MeOH, H2O, ~100%; viii. DBU, toluene, reflux, 85%; ix.
KHMDS, toluene, –78 °C then (±)-2-(phenylsulfonyl)-3-phenyl-
oxaziridine, then CSA, 79%; x. TMSCl, Et3N, THF, 98%; xi. Tebbe
reagent, DMAP, THF, –40 °C to r.t., 90%; xii. TBAF, THF, r.t., 99%;
xiii. (Me2SiH)2NH, NH4Cl, ~100%; xiv. cat. (PPh3)3RhCl, THF,
reflux, then KOH, H2O2, THF, MeOH, H2O, 80%.

The synthesis began with a pig liver esterase catalysed ki-
netic resolution of racemic methyl trans-3,4-epoxyhex-
anoate [(±)-2] to provide methyl (+)-(3R,4R)-
epoxyhexanoate [(+)-2] {[a]D

21 +26.6 (c = 0.64,
CH2Cl2)}

10 with 96% ee11,12 following the method of
Tamm (Scheme 1).13 The chiral non-racemic epoxide (+)-
2 was readily converted into the crystalline diol (–)-7 {mp
68–69 °C (hexane); [a]D

22 –21.6 (c = 1.78, CHCl3)} with
very similar yields and diastereoselectivities to those pre-
viously reported for the synthesis of racemic (±)-7
(Scheme 1).9,14 The diol (–)-7 was protected as its p-meth-
oxybenzylidene acetal (95%) and selective reduction with
DIBAL-H provided the primary alcohol 8 (Scheme 2).
Mesylation of 8 (99%) followed by displacement of the
mesylate with cyanide delivered the corresponding nitrile
in excellent yield (99%). The nitrile was reduced with
DIBAL-H to furnish the aldehyde 9 (~100%). We investi-
gated two methods for the introduction of the enyne side
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chain of 1. Exposure of the aldehyde 9 to lithio 1,3-bis(tri-
isopropylsilyl)propyne at –78 °C furnished the cis-enyne
10a in 50% yield along with the corresponding (separa-
ble) trans-enyne. Alternatively, Stork–Wittig reaction
converted 9 into the corresponding iodoalkene with exclu-
sive cis-selectivity and in good yield (97%). Sonogashira
reaction of the cis-vinyl iodide with trimethylsilylacety-
lene delivered the cis-enyne 10b in excellent yield (97%).
The PMB ether in 10b was readily removed15 with
BCl3⋅SMe2 to provide the secondary alcohol 11 in readi-
ness for introduction of the chlorine atom. 

Scheme 2 Introduction of the enyne side chain. Reagents and con-
ditions: i. p-methoxybenzaldehyde, PPTS, benzene, reflux, 95%; ii.
DIBAL-H, CH2Cl2, –78 to –15 °C, 86%; iii. MsCl, Et3N, CH2Cl2,
~100%; iv. NaCN, DMF, 60 °C, 99%; v. DIBAL-H, toluene, –78 to
–15 °C, ~100%; vi. Ph3P

+CH2I I
–, NaHMDS, THF, DMPU, –78 °C to

r.t., 73%; vii. TMSC≡CH, CuI, Pd(PPh3)4, Et2NH, r.t., 97%; viii.
TIPSC≡CCH2TIPS, n-BuLi, THF, –78 °C to r.t., 50%; ix. BCl3⋅SMe2,
CH2Cl2, 92%.

Experience had taught us that the introduction of halogen
atoms into medium-rings via SN2 displacement of activat-
ed alcohols with halide anions can depend critically on the
substituents on (and hence conformation of) the medium-
ring. Indeed, treatment of the secondary alcohol 12 with
CBr4 and trioctylphosphine16 in toluene at 70 °C resulted
in decomposition of the substrate whereas the chloro alco-
hol 13 could be cleanly converted into the corresponding
bromide 14 (65%) under the same reaction conditions
(Scheme 3). 

We were disappointed to find that attempted chlorination
of the secondary alcohol 11 under a wide variety of con-
ditions [Tf2O, pyridine then Et3BnNCl; CCl4, P(oct)3;
Ghosez reagent17] did not produce any of the required
chloride. We therefore turned our attention to the intro-
duction of the C-12 bromide before the C-7 chloride. 

Exposure of the enyne 10a to TBAF in THF removed both
silyl protecting groups to deliver the alcohol 15 in good
yield (95%) (Scheme 4). Bromination of 15 was conduct-
ed using freshly sublimed CBr4 and freshly distilled
P(oct)3 in toluene at 80 °C to deliver the bromide 16 in
67% yield. The bromide 16 was deprotected to provide the
bromo alcohol 17 (70%), an intermediate in Crimmins’s

synthesis of (+)-obtusenyne (1).4b The data for our syn-
thetic bromo alcohol 17 were in close agreement with the
data supplied by Crimmins resulting in a formal synthesis
of 1. Chlorination of 17 using Crimmins’s conditions de-
livered (+)-obtusenyne (1) as a clear and colourless oil
{[a]D

23 +142.5 (c = 0.0267 in CHCl3)}. The data for our
synthetic sample of obtusenyne (1) were in agreement
with the data for the natural material and that obtained by
other synthetic routes.1,2,4,18

Scheme 4 Synthesis of (+)-obtusenyne (1). Reagents and conditi-
ons: i. TBAF, THF, 95%; ii. CBr4, P(oct)3, toluene, 80 °C, 67%; iii.
BCl3⋅SMe2, CH2Cl2, 70%; iv. CCl4, P(oct)3, toluene, 80 °C (ca. 50%).

In summary, we have developed an efficient, enantiose-
lective synthesis of the halogenated marine natural prod-
uct (+)-obtusenyne (1) which further demonstrates the
utility of the Claisen rearrangement/intramolecular hy-
drosilation approach to these strained medium-ring sys-
tems. 
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Scheme 3 Bromination studies. Reagents and conditions: CBr4,
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