

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters 14 (2004) 3525–3529

Bioorganic & Medicinal Chemistry Letters

BMS-201620: a selective beta 3 agonist

W. N. Washburn,* C.-Q. Sun,* G. Bisacchi, G. Wu, P. T. Cheng, P. M. Sher, D. Ryono, A. V. Gavai, K. Poss, R. N. Girotra, P. J. McCann, A. B. Mikkilineni, T. C. Dejneka, T. C. Wang, Z. Merchant, M. Morella, C. M. Arbeeny, T. W. Harper, D. A. Slusarchyk, S. Skwish, A. D. Russell, G. T. Allen, B. Tesfamariam, B. H. Frohlich, B. E. Abboa-Offei, M. Cap, T. L. Waldron, R. J. George, D. Young, K. E. Dickinson and A. A. Seymour

Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543, USA

Received 3 February 2004; accepted 19 April 2004

Abstract—A series of N-(4-hydroxy-3-methylsulfonanilidoethanol)arylglycinamides were prepared and evaluated for their human β_3 adrenergic receptor agonist activity. SAR studies led to the identification of **BMS-201620** (**39**), a potent β_3 full agonist ($K_i = 93 \text{ nM}$, 93% activation). Based on its favorable safety profile, **BMS-201620** was chosen for clinical evaluation. © 2004 Elsevier Ltd. All rights reserved.

The alarming increase in the incidence of obesity and noninsulin dependent diabetes mellitus is of great concern to health authorities of Western countries.¹ An attractive approach to treating these conditions entails increasing metabolic energy expenditure by selective activation of the β_3 adrenergic receptor.² As previously described,^{3,4} our strategy has been to utilize full rather than partial β_3 agonists to enhance the probability of eliciting a thermogenic response from any brown adipose tissue (BAT) that may be present in man. Consequently, the high β_3 agonist intrinsic activity (IA) of 4-hydroxy-3-methylsulfonanilidoethanolamines ensured our continuing interest despite a poor prognosis for bioavailability.

Prior explorations of this chemotype had revealed that incorporation of benzyl amines containing a *para* hydrogen bonding acceptor (e.g., *p*-OMe, Table 1) enhanced β_3 affinity and selectivity, especially if a second aryl ring was attached to C α via a 0 or 1 atom linker to reduce the conformational flexibility. We have presented SAR wherein the linker is a single bond (1,1-diarylmethylamines) or a methylene (1,2-diaryl-ethylamines) exemplified by **1** and **2**, respectively.^{3,4} This paper focuses on the enhanced β_3 selectivity generated by a conformationally rigid carboxamide spacer joining the second aryl ring to C α .

The promising selectivity obtained with compound **3** with *R*,*S* stereochemistry prompted further investigation. To establish the stereochemical preference, the *R*,*R* isomer **4** was also prepared. The 80-fold greater β_3 affinity and 15- to 40-fold greater selectivity for β_3 versus β_1 and β_2 of isomer **3** compared to isomer **4** established the preferred glycinamide stereochemical orientation to be *S*. This preference for the configuration of C α to be *S* for the arylglycine series **3** and *R* for **2** reflects an identical spatial projection of the *p*-anisyl moiety into a common pocket of the β_3 receptor. The 162-fold binding selectivity of **3** versus β_2 was particularly striking, especially since the two series represented by compounds **1** and **2** rarely exhibited more than 13-fold β_2 selectivity.^{3,4}

The initial SAR revealed tertiary anilides were not tolerated since N-methylation of **3** to generate **5** resulted in a 90-fold loss of β_3 affinity. Elongation of this spacer also proved unfavorable since homologation of **3** to generate benzyl amide **6** decreased β_3 affinity and β_2 selectivity 8- and 3-fold, respectively. It is essential that the planarity of the aniline ring be maintained. Upon replacement of the anilide moiety of **3** with a *t*-Bu amide (**9**) or a cyclohexyl amide (**10**), selectivity was maintained; but, β_3 affinity decreased 25- and 19-fold,

^{*} Corresponding authors. Fax: +1-609-818-3550; e-mail addresses: william.washburn@bms.com; chongqing.sun@bms.com

Table 1. Comparison of β adrenergic profiles of compounds 1–11⁵

Compound	R	$\beta_3 K_i (nM)$	β_3 IA (% act)	Selectivity	Selectivity ^b versus	
				β_1	β_2	
1 ^a	Ph-4-OMe	81	100	17	22	
2	(R)-CH ₂ Ph	44	99	60	8	
3	(S)-CONHPh	370	90	60	162	
4	(R)-CONHPh	30,000	45	4	4	
5	(S)-CON(Me)Ph	33,000	78	4	3	
6	(S)-CONHCH ₂ Ph	3100	105	39	55	
7	(S)-CONH ₂	2910	92	46	31	
8	(R)-CONH ₂	14,100	29	4	3.5	
9	(S)-CONH-t-Bu	9600	80	>100	>100	
10	(S)-CONH-c-hexyl	7000	95	>14	>100	
11	(S)-CO-piperidine	10,000	99	15	10	

^aRacemate.

^b Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

respectively. The weak affinity and diminished selectivity of the piperidinyl amide **11** is consistent with the need for planar secondary amides. The contribution of each aryl ring to β_3 selectivity and affinity of **3** was ascertained. Upon deletion of the α -anisyl ring (**12**), β_3 affinity diminished 22-fold ($\beta_3 K_i = 8200 \text{ nM}$) relative to that of **3**; selectivity versus β_1 and β_2 was abolished. In contrast, β_3 affinity of **7**, the primary amide counterpart of **3**, was reduced 8-fold relative to that of **3**, with no change in β_1 and 5-fold diminution in β_2 selectivity.

Compounds 3–11 were prepared from the appropriate arylglycine.⁸ Following sequential Cbz protection, EDC or EEDQ mediated amide formation, and hydrogenolysis over Pd(OH)₂, the resulting arylglycinamide was condensed at 110 °C in THF/EtN(*i*-Pr)₂ with iodide 13.⁹ Sequential deprotection mediated by NH₄F and then H₂/Pd/MeOH yielded 3–11. During the condensation with 13, partial epimerization of the arylglycinamide typically occurred thereby necessitating preparative HPLC purification of the final product.¹⁰

Prior to embarking on an extensive SAR study, the consequence of quarternization of the α -carbon of **3** to preclude epimerization was ascertained, and the *p*-hydrogen bonding acceptor of the α -aryl ring optimized. All of the α -methylated arylglycinamides were prepared as shown in Scheme 1.¹⁰ Comparison of **3**, **14**, and **15** to their respective α -methylated counterparts **16**, **17**, and **18** (Table 2) revealed methylation increased β_3 affinity \sim 5- to 10-fold and maintained full β_3 agonist activity. However, β_1 and β_2 affinity was enhanced even

more; consequently, selectivity versus β_1 and β_2 diminished as much as 5-fold. With respect to α -aryl ring

Scheme 1. Reagents and conditions: (a) $(NH_4)_2CO_3$, NaCN, DMF, 76%; (b) NaOH/H₂O, 95%; (c) Ac₂O, 100%; (d) (L)- α -methylbenzylamine, EtOH, 50%; (e) concd HCl/H₂O; (f) EtOH, HCl, 84% (two steps); (g) diisopropylethylamine, diglyme, 145 °C, 65%; (h) LiOH/MeOH/THF/H₂O; (i) H₂, Pd/C, MeOH, 90% (two steps); (j) EDC, HOAt, 5:1 DCE/DMF, 20 °C; (k) NH₄F, MeOH/HOAc, 64% (two steps).

		CH3SC	P2NH HO H3CO				
Compound	R	Х	$\beta_3 K_i (nM)$	β_3 IA (% act)	Selectivi	ty ^a versus	
					β_1	β ₂	
3	Н	Н	370	90	60	162	
14	Н	3,4-OCH ₂ O-	280	85	15	89	
15	Н	4-C1	89	101	32	573	
16	Me	Н	77	119	11	81	
17	Me	3,4-OCH ₂ O-	33	97	9	38	
18	Me	4-C1	8.8	117	15	100	

Table 2. Comparison of β_3 AR agonist activity and selectivity versus β_1 and β_2 as a consequence of α -methylation⁵

^a Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

substitution, **16** was found to be superior to **19**, **20**, and **21** (Table 3), presumably reflecting the superior hydrogen bonding capability and better accommodation of the steric demands of the *para* methoxyl substituent.

The importance of the conformation restriction imposed by the carboxamide moiety is readily apparent upon comparison of **16** with **22** for which the carboxamide linkage was replaced with a flexible ethano tether. Although **22** exhibited similar β_3 affinity (59 nM) to that of **16**, the 1000-fold increase in β_1 (0.8 nM) and β_2 (1.1 nM) affinity abolished both β_1 and β_2 selectivity.

The salient β_3 agonist SAR for analogs of **16** arising from modification of the anilide moiety is illustrated in Table 4. The effect of substituent position is readily apparent from the regioisomeric dependence of $\beta_3 K_i$ upon methylation, methoxylation, and chlorination of **16** to generate sets **23–25**, **29–31**, and **18**, **26–27**, respectively. *para* Substitution was more favorable than *meta*, which in turn was strongly preferred to *ortho*. In every instance, *ortho* substitution was deleterious; even *ortho* fluorination of **18** to form **28** decreased β_3 affinity 3-fold. Affinity relative to hydrogen was increased by lipophilic *meta* substituents such as Me (**24**) or Cl (**27**) or Br (**34**) whereas the unfavorable interactions of a more hydrophilic *meta* phenolic ethers such as methoxy (**30**) or PhO (**32**) progressively diminished affinity as steric demands increased. In contrast, any nonpolar *para* substituent, even OPh (**33**), bound to β_3 with ~5-fold higher affinity than the unsubstituted parent **16**. *meta*-*para* Annelation to generate bicyclic entities (**17**) and (**37**) was favorable. The β_3 binding pocket also accommodated *para* polar groups such as OH (**36**), CONHPr (**38**), or CH₂PO(OEt)₂ (**39**); whereas, β_3 affinity was diminished 5-fold for *meta* polar moieties such as OH (**35**). *meta* or *para* Substitution with either cationic (**40**, **41**, **42**) or anionic (**43**, **44**, **45**) substituents was unfavorable, particularly if the charge was in close proximity to the anilide ring as in the case of **43**.

The impact of anilide substitution on selectivity is more complex. In general, β_1 and β_2 affinities were not altered by *ortho* or *meta* substitution. Consequently, selectivity, being solely dependent on β_3 affinity, varied accordingly. Only modest selectivity perturbations were observed upon *para* substitution since affinity to all three receptors tended to be commensurately enhanced. Our criteria for in vivo evaluation were high β_3 binding selectivity and reduced potency and/or partial agonist activity in a β_1 functional assay measured using spontaneously beating guinea pig atria.¹¹ Diminished β_1 IA of <20% were determined for lipophilic agonists, such as dichlorides **46** and **47** or trichloride **48**, suggesting that there was an apparent inverse correlation of β_1 IA with ACD log *P* values ($r^2 = 0.62$, *P* < 0.0001, *n* = 28). The β_1

CH ₃ SO ₂ NH HO Z						
Compound	Z	$\beta_3 K_i (nM)$	β ₃ IA (% act)	Selectivity ^a versus		
				β1	β ₂	
16	OMe	77	119	11	81	
19	Br	950	69	6	13	
20	$CONH_2$	400	77	40	150	
21	OCHF ₂	190	105	17	75	

Table 3. Comparison of β_3 AR agonist activity and selectivity versus β_1 and β_2 as a consequence of substitution of the α -aryl ring⁵

^a Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

Fable 4. SAR for anilide substitution for	$\beta_3 AR$	agonist activity	and selectivit	y versus β_1	and f	β_2
--	--------------	------------------	----------------	--------------------	-------	-----------

Compound	Х	$\beta_3 K_i (nM)$	Selectivity ^a versus		$EC_{50} \ \beta_1 \ (\% \ IA)^b$	ACD log P
			β_1	β ₂		
16	Н	77	11	80	1200 (95)	2.36
17	3,4-OCH ₂ O-	33	9	38	950 (93)	2.56
23	2-CH ₃	2200	1	3	4500 (83)	2.82
24	3-CH ₃	61	17	74	5300 (73)	2.82
25	4-CH ₃	28	19	39	1100 (90)	2.82
26	2-Cl	380	4	12		2.55
27	3-Cl	17	27	59	1700 (50)	3.08
18	4-Cl	15	9	67	4300 (62)	3.32
28	2-F-4-Cl	47	32	79	56,000 (43)	3.38
29	$2-OCH_3$	3100	2	4	15,000 (60)	2.25
30	3-OCH ₃	142	14	46	500 (85)	2.53
31	$4-OCH_3$	17	8	65	140 (85)	2.37
32	3-OPh	490	5	23		4.49
33	4-OPh	14	3	17		3.93
34	3-Br	19	54	116	13,700 (50)	2.85
35	3-OH	340	6	32	750 (96)	2.00
36	4-OH	23	11	139	300 (90)	1.61
37	3,4-NC(Me)S-	11	66	173	1700 (70)	2.55
38	4-CONHPr	20	7	11		2.49
39	$4-CH_2PO_3Et_2$	93	51	194	2400 (55)	2.2
40	3-CH ₂ NH ₂	115	63	209	12,000 (91)	1.23
41	$3-O(CH_2)_2NMe_2$	520	10	23	23,600 (85)	2.38
42	$4-O(CH_2)_2NMe_2$	260	3	1	1600 (92)	2.23
43	3-CO ₂ H	1800	10	38		-0.67
44	3-OCH ₂ CO ₂ H	450	30	138	4600 (87)	1.73
45	$4-OCH_2CO_2H$	370	4	65	3200 (100)	1.58
46	3,4-Cl ₂	24	36	32	48,000 (8)	3.92
47	3,5-Cl ₂	71	21	16	16,000 (13)	3.82
48	3,4,5-Cl ₃	51	51	13	34,000 (15)	4.53
49	3,4-(OCH ₃) ₂	46	35	313	2100 (89)	2.44
50	3,4,5-(OCH ₃) ₃	370	79	281	23,000 (66)	2.40

^a Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

 ${}^{b}\beta_{1}$ IA determined using spontaneously beating guinea pig atria by measuring contraction acceleration relative to isoproterenol response.¹¹

blocker activity exhibited by **46** during in vivo characterization summarized in Table 5 was in accord with this finding.

Upon iv administration to ketamine anesthetized African green monkeys (AGM), the in vitro/in vivo correlation in this series was particularly poor since most of the compounds were devoid of in vivo activity (Table 5). Serum stability was acceptable; whereas, both intestinal and hepatic first pass glucuronidation were rapid. A dose response was determined for those compounds which produced a statistically significant elevation in free fatty acid (FFA) unaccompanied by β_2 mediated decrease in serum K⁺ concentrations¹² or β_1 or β_2 induced tachycardia (HR). Efforts to exploit the diminution of β_1 IA to minimize onset of tachycardia were frustrated by weak in vivo β_3 activity of lipophilic agonists such as **46**.

Table 6 summarizes the in vivo potency and the functional margin of separation between β_3 mediated effects

Table 5. In vivo response in African green monkeys (iv)

		CH ₃ SO ₂ NH HO	CH ₃ H
		H ₃ CO	
pd	R	β ₂ <i>K</i> :	AGM response to

Compd	R	$\beta_3 K_i$ (nM)	AGM response to 0.1 mg/kg iv dose		e to 0.1 ose
			ΔHR	ΔK^+	ΔFFA
27	3-C1	17	+2	-0.14	$+0.9^{*}$
34	3-Br	19	+11	+0.1	+0.37
18	4-Cl	15	+2	+0.5	$+0.88^{*}$
38	4-CONHPr	20	+23	+0.1	+0.7
39	4-CH ₂ PO(OEt) ₂	93	+11	-0.24	$+0.7^{*}$
46	3,4-Cl ₂	24	-11	+0.19	+0.39
17	3,4-OCH ₂ O-	33	+16	+0.33	$+0.73^{*}$
37	3,4-NC(Me)S-	11	+3	+0.06	+0.4

 $p^* < 0.05.$

Table 6. Dose response of African green monkeys (iv administration)

Compd	Lipolysis ED ₅₀ (mg/kg)	β_1 Margin ^a before onset of tachycardia	$\begin{array}{l} \beta_2 \ Margin^a \ before \\ decrease \ serum \ K^+ \end{array}$
17 18	0.08 0.07	>1<6 >7	>6 >7
39	0.1	>25	>25
196085	0.03	>3<5	>25
194449	0.08	>6<12	>60

^aThe margin of separation was the ratio of the dose that produced the onset (statistically significant) of a β_1 or β_2 event to the ED₅₀ for lipolysis.

and β_1 or β_2 dependent events in ketamine anesthetized African green monkeys. Compound **39** was unique among all the arylglycinamides with respect to the safety margin magnitude. This margin was superior to that of the other two BMS β_3 agonists, 1,1-diarylmethylamine **BMS-194449**³ and 1,2-diarylethyl-amine **BMS-196085**,⁴ that entered clinical trials.

The unfavorable biophysical and PK profile of **39** did not differ from that of other arylglycinamides. Rat and AGM oral bioavailability of less than 1–2% were consistent with Caco-2 permeability of 6–20 nm/sec. Following iv administration a low V_{ss} of ~2.5 L/kg and high clearance of 68 mL/min/kg combined to produce a $t_{1/2}$ of 1 h in AGM. Despite these inauspicious values, we continued to pursue **39** in hopes that the large safety margin, full β_3 IA and good β_3 affinity would produce a definitive indication whether β_3 agonists could elicit a sustained robust thermogenic response in man.

Intravenous administration of **39** to six volunteers produced no separation between the onset of lipolysis and prolongation of QT interval.¹³ Further studies with **39** (**BMS-201620**) were terminated.

Acknowledgements

We acknowledge the contributions of members of the Bristol-Myers Squibb analytical chemistry department; A. D. Strosberg for providing transfected CHO cells.

References and notes

 (a) Yanovski, S. Z.; Yanoski, J. A. N. Engl. J. Med. 2002, 346, 591; (b) Friedman, J. M. Nature 2000, 404, 632; (c) Amos, A. F.; McCarty, D. J.; Zimmet, P. Diabet. Med. 1997, 14, S7.

- For recent reviews, see: (a) Lowell, B. B.; Bachman, E. S. J. Biol. Chem. 2003, 278, 29385; (b) de Souza, C. J.; Burkey, B. F. Curr. Pharm. Des. 2001, 7, 1433; (c) Weyer, C.; de Souza, C. J. Drug Dev. Res. 2000, 51, 80; (d) Bray, G. A.; Tartaglia, L. A. Nature 2000, 404, 672; (e) Weyer, C.; Gautier, J. F.; Danforth, E., Jr. Diabet. Metab. 1999, 25, 11; (f) Kordik, C. P.; Reitz, A. B. J. Med. Chem. 1999, 42, 181; (g) Weber, A. E. Annu. Rep. Med. Chem. 1998, 33, 193.
- Washburn, W. N.; Sher, P. M.; Poss, K.; Girotra, R. N.; McCann, P. J.; Gavai, A. V.; Mikkilineni, A. B.; Mathur, A.; Cheng, P.; Dejneka, T. C.; Sun, C. Q.; Wang, T. C.; Harper, T. W.; Russell, A. D.; Slusarchyk, D. A.; Skwish, S.; Allen, G. T.; Hillyer, D. E.; Frohlich, B. H.; Abboa-Offei, B. E.; Cap, M.; Waldron, T. L.; George, R. J.; Tesfamariam, B.; Ciosek, C. P.; Young, D. A.; Dickinson, K. E.; Seymour, A. A.; Arbeeny, C. M.; Gregg, R. E. *Bioorg. Med. Chem. Lett.* 2001, 11, 3035.
- Gavai, A. V.; Sher, P. M.; Mikkilineni, A. B.; Poss, K. M.; McCann, P. J.; Girotra, R. N.; Fisher, L. G.; Wu, G.; Bednarz, M. S.; Mathur, A.; Wang, T. C.; Sun, C. Q.; Slusarchyk, D. A.; Young, D. A.; Dickinson, K. E.; Seymour, A. A.; Arbeeny, C. M.; Washburn, W. N. *Bioorg. Med. Chem. Lett.* 2001, 11, 3041.
- 5. Receptor binding assays were run in triplicate with membranes prepared from CHO cells expressing the three cloned human β receptors in the presence of ¹²⁵I-iodo-cyanopindolol;⁶ β_3 AR agonist activity was assessed by measurement of cAMP accumulation levels in CHO membranes expressing human β_3 AR.⁷ IA is the percent of the maximal stimulation achieved with isoproterenol.
- 6. All compounds were evaluated using the truncated human β_3 adrenergic receptor reported by Emorine, L. T.; Marullo, S.; Briend-Sutren, M. M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. *Science* **1989**, *245*, 1118.
- Sher, P. M.; Fisher, L. G.; Skwish, S.; Michel, I. M.; Seiler, S. M.; Washburn, W. N.; Dickinson, K. E. J. Med. Chem. Res. 1997, 7, 109.
- For the synthesis of the enantiomers of i, see Crast L. B. U.S. Patent 3,517,023, 1970; *Chem. Abstr.* 1970, 466567.

- 9. Preparation of 13 analogous to 25 of Ref. 3.
- 10. Spectral data were fully consistent with structures.
- 11. Tesfamariam, B.; Allen, G. T. Br. J. Pharmacol. 1994, 112, 55.
- 12. Lipworth, B. J.; McFarlane, L. C.; Coutie, W. J.; McDevitt, D. *Eur. J. Clin. Pharmacol.* **1989**, *37*, 297.
- 13. Unpublished work communicated by Dr. Peter Slugg.