Haruhiko Fuwa, Toshitake Kobayashi,¹ Takashi Tokitoh, Yukiko Torii, Hideaki Natsugari*

Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Fax +81(3)58414775; E-mail: natsu@mol.f.u-tokyo.ac.jp *Received 7 August 2004*

Abstract: A novel intramolecular nucleophilic aromatic substitution reaction of 2-carboxamido-3-arylquinazolin-4-one derivatives induced by base treatment and its application to the expeditious synthesis of secondary aryl amines, including diaryl amines, are described.

Key words: heterocycles, nucleophilic aromatic substitutions, amines, tandem reactions, medicinal chemistry

3-Arylquinazolin-4-one is a structural motif that is widely found in medicinal chemistry and natural product chemistry, as exemplified by methaqualone (1),² circumdatin F (2),³ benzomalvin A (3)⁴ and tryptanthrin (4)⁵ (Figure 1). Due to its potential utility, 3-arylquinazolin-4-one has been extensively utilized as a core structure in the field of medicinal chemistry. For example, researchers from Pfizer have recently succeeded in the discovery of a new potent AMPA receptor antagonist, CP-465,022 (5), based on 3-(2-chlorophenyl)-6-fluoroquinazolin-4-one as the template.⁶ It is noteworthy that CP-465,022 exists as a separable mixture of atropisomers and that the anticonvulsant activity resides in only one of the atropisomers [i.e., (+)-CP-465,022]. Such a relationship between the atropisomeric property and biological profile also makes 3arylquinazolin-4-one as an intriguing motif.

We have been engaged in the synthesis of a series of 3arylquinazolin-4-one derivatives, represented by 11 (Scheme 1). The synthesis was commenced with the acylation of the known amide 6^7 to give the ethyl ester 7 in high yield. Dehydrative cyclization of 7 under Snider's conditions^{8,9} produced a mixture of the iminobenzoxazine 8 and quinazolinone 9, which, without separation, was treated with pyrrolidine to provide the quinazolinone 9 in good overall yield. Exposure of 9 to dimethylaluminium thiolate¹⁰ led to the thiol ester **10**, which was reacted with *N*-methyl-3,5-bis(trifluoromethyl)benzylamine in the presence of $AgOCOCF_3^{11}$ to give the amide **11** in 100% yield. The related amide 12 was similarly obtained from 10 using 3,5-bis(trifluoromethyl)benzylamine. To our surprise, treatment of 12 with NaH in DMF at room temperature followed by the addition of MeI led to the exclusive formation of the tertiary amide 13 (81% yield) and

1: Methaqualone 2: Circumdatin F ($R^1 = R^2 = H$) 4: Tryptanthrin 3: Benzomalvin A ($R^1 = Ph$, $R^2 = Me$)

Figure 1 Representative bioactive molecules and natural products that possess the 3-arylquinazolin-4-one structural motif

the expected N-methylated product 11 was not observed. $^{12}\$

Thus, migration of the aryl group at the N3 position, presumably via nucleophilic aromatic substitution (S_NAr), was induced by the action of NaH, leading to the tertiary amide **13** after trapping of the resultant anion with MeI (Scheme 1). In this communication, we describe a novel intramolecular S_NAr reaction of 2-carboxamido-3arylquinazolin-4-ones and its synthetic utility as a tool for the synthesis of secondary aryl amines, including diaryl amines.

To validate the scope and limitation of the present S_NAr reaction, we first prepared a variety of 2-carboxamido-3-(2-chloro-3-pyridyl)quinazolin-4-ones **12** (Table 1). Upon treatment of the quinazolin-4-ones with 1.2 equivalents of NaH in DMF at room temperature, all compounds cleanly furnished the migrated products, i.e., 2-*N*-(2-chloro-3-pyridyl)carboxamidoquinazolin-4-one derivatives **14**, indicating that aliphatic, benzylic and aromatic amides are well tolerated in the present reaction.¹³

We also investigated the effect of the substitution of the N3 aryl group (Table 2). It was revealed that the reaction proceeded in N3 phenyl derivatives **15a–g** and the presence of an electron withdrawing group(s) at the *ortho* or *para* position of the N3 phenyl group is essential for the success of the present reaction: $p-CF_3$, p-CN and

SYNLETT 2004, No. 14, pp 2497–2500 Advanced online publication: 20.10.2004 DOI: 10.1055/s-2004-834805; Art ID: U22404ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Reagents and conditions: (a) ClCOCO₂Et, pyridine, THF, 0 °C, 97%; (b) I₂, PPh₃, *i*-Pr₂NEt, CH₂Cl₂, 0 °C to r.t.; (c) pyrrolidine, THF–HOAc (10:1), reflux, 91% (2 steps); (d) p-MeC₆H₅SH, AlMe₃, CH₂Cl₂, 0 °C to r.t., 87%; (e) *N*-methyl-3,5-bis(trifluoromethyl)benzylamine, AgOCOCF₃, THF–toluene (1:1), 60 °C, 100%; (f) 3,5-bis(trifluoromethyl)benzylamine, AgOCOCF₃, THF–toluene (1:1), 60 °C, 100%; (g) NaH, DMF, 0 °C to r.t., 1 h then MeI, 0 °C to r.t., 1 h, 81%.

o-CO₂Me derivatives cleanly furnished the corresponding tertiary amides (i.e., 2-*N*-arylcarboxamidoquinazolin-4-ones **16a**–**g**; entries 1–7) upon treatment with 1.1–1.2 equivalents of NaH in DMF at room temperature. On the other hand, *m*-CO₂Me, *p*-OMe and unsubstituted derivatives (**15h**–**j**; entries 8–10) did not participate in the

 $\label{eq:stable} \begin{array}{ll} \textbf{Table 1} & \mbox{Intramolecular S_NAr Reaction of 2-Carboxamido-$3-($2$-chloro-$3-pyridyl)quinazolin-$4-ones $\mathbf{12}^a$ } \end{array}$

^a All reactions were performed using 1 equiv of the 3-arylquinazolin-4-one **12** and 1.2 equiv of NaH in DMF at r.t.

 Table 2
 Effect of a Substituent of the N3 Aryl Group

$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ $						
15a–j		16a–j				
Entry	15, 16	Х	R	Yield (%)		
1	а	<i>p</i> -CF ₃	Ph	85		
2	b	<i>p</i> -CF ₃	Bn	95		
3	с	<i>p</i> -CF ₃	<i>n</i> -Bu	100		
4	d	<i>p</i> -CN	Bn	95		
5	e	o-CO ₂ Me	Ph	72		
6	f	o-CO ₂ Me	C_6H_4 - <i>m</i> - CF_3	89		
7	g	o-CO ₂ Me	Bn	100		
8	h	<i>m</i> -CO ₂ Me	Ph	0		
9	i	<i>p</i> -OMe	Bn	0		
10	j	Н	Bn	0		

present reaction. In these cases, attempts to migrate the N3 aryl group by extending the reaction time and/or forcing the reaction conditions only gave a mixture of several unidentified products. These results imply that the present reaction is based on an S_NAr .

At this stage, the structural confirmation of the products of the present intramolecular S_NAr reaction (i.e., the migrated products **13**, **14** and **16**) was made by comparison of the spectroscopic data of the N-methylated compound **20** derived from **16b** with those of an authentic sample prepared from the ethyl 4-quinazolone-2-carboxylate (**17**)¹⁴ in 4 steps (Scheme 2).

Scheme 2 Structural confirmation of the tertiary amide **16b**. *Reagents and conditions*: (a) MeI, NaHMDS, DMF, 0 °C to r.t., 72%; (b) p-MeC₆H₄SH, AlMe₃, toluene, 0 °C to r.t., 71%; (c) 4-(trifluoro-methyl)aniline, AgOCOCF₃, THF–toluene (1:1), 60 °C, 80%; (d) NaH, BnBr, DMF, 0 °C to r.t., 99%; (e) NaH, MeI, DMF, 0 °C to r.t., 92%.

Based on the above results, we have thus established an expeditious method for the synthesis of secondary aryl amines: we found that treatment of the ethyl ester 21a with 1.5 equivalents of aniline and 5.0 equivalents of NaOMe (THF, 0 °C to r.t.) led to the generation of the secondary aryl amine 22a (Scheme 3). The present process should be a cascade reaction comprised of (i) amide formation, (ii) intramolecular S_NAr reaction, and (iii) cleavage of the resultant tertiary amide. The cascade reaction was then applied to a series of substrates and the results are summarized in Table 3. Various aliphatic, benzylic and aromatic amines could be employed in this process.¹⁵ It is worth mentioning that the present method does not require inert anhydrous conditions and is operationally very simple. It also offers easy access to diaryl amines (e.g., 22a-c, 22f) that are mainly synthesized via metal-catalyzed cross-coupling reactions.¹⁶

Table 3 Expeditious Synthesis of the Secondary Aryl Amines^a

Entry	22	Ar	R	Yield (%)
1	a	2-Chloro-3-pyridyl	Ph	78
2	b	2-Chloro-3-pyridyl	C ₆ H ₄ - <i>p</i> -Me	82
3	c	2-Chloro-3-pyridyl	C ₆ H ₄ -o-Me	64
4	d	2-Chloro-3-pyridyl	Bn	73
5	e	2-Chloro-3-pyridyl	<i>n</i> -Bu	64
6	f	C_6H_4 - p - CF_3	Ph	59
7	g	C_6H_4 - p - CF_3	Bn	77
8	h	C_6H_4 - p - CF_3	<i>n</i> -Bu	71
9	i	C ₆ H ₄ - <i>p</i> -CN	Bn	74
10	j	C ₆ H ₄ - <i>p</i> -CN	CH_2CH_2Ph	81

In conclusion, we have discovered a novel intramolecular S_NAr reaction of 2-carboxamido-3-arylquinazolin-4-ones. Application of the present reaction to the synthesis of secondary aryl amines, including diaryl amines, has also been demonstrated.

Acknowledgment

Continuous support by Takeda Pharmaceutical Company Limited is gratefully acknowledged.

Scheme 3 Cascade process leading to the generation of the secondary aryl amine

References

- Visiting scientist from Takeda Pharmaceutical Company Limited (01.2003–03.2004); present address: Medicinal Chemistry Research Laboratories, Takeda Pharmaceutical Company Limited, 10 Wadai, Tsukuba-shi, Ibaraki 300-4293, Japan.
- (2) Harvey, S. C. In *Goodman and Gilman's The Therapeutic Basis of Therapeutics*, 6th ed.; Gilman, A. G.; Goodman, L. S.; Gilman, A., Eds.; MacMillan: New York, **1980**, 367.
- (3) (a) Rahbæk, L.; Breinholt, J.; Frisvad, J. C.; Christophersen, C. J. Org. Chem. 1999, 64, 1689. (b) Rahbæk, L.; Breinholt, J. J. Nat. Prod. 1999, 62, 904.
- (4) Sun, H. H.; Barrow, C. J.; Cooper, R. J. Nat. Prod. 1995, 58, 1575.
- (5) (a) Mitscher, L. A.; Baker, W. *Med. Res. Rev.* **1998**, *18*, 363.
 (b) Bhattacharjee, A. K.; Hartell, M. G.; Nichols, D. A.; Hicks, R. P.; Stanton, B.; van Hamont, J. E.; Milhous, W. K. *Eur. J. Med. Chem.* **2004**, *39*, 59.
- (6) (a) Chenard, B. L.; Menniti, F. S.; Pagnozzi, M. J.; Shenk, K. D.; Ewing, F. E.; Welch, W. M. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1203. (b) Welch, W. M.; Ewing, F. E.; Huang, J.; Menniti, F. S.; Pagnozzi, M. J.; Kelly, K.; Seymour, P. A.; Guanowsky, V.; Guhan, S.; Guinn, M. R.; Critchett, D.; Lazzaro, J.; Ganong, A. H.; DeVries, K. M.; Staigers, T. L.; Chenard, B. L. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 177. (c) Chenard, B. L.; Welch, W. M.; Blake, J. F.; Butler, T. W.; Reinhold, A.; Ewing, F. E.; Menniti, F. S.; Pagnozzi, M. J. J. *Med. Chem.* **2001**, *44*, 1710.
- (7) Liégeois, J.-F. F.; Bruhwyler, J.; Damas, J.; Nguyen, T. P.; Chleide, E. M. G.; Mercier, M. G. A.; Rogister, F. A.; Delarge, J. E. *J. Med. Chem.* **1993**, *36*, 2107.
- (8) (a) Snider, B. B.; He, F. J. Org. Chem. 1999, 64, 1397.
 (b) Snider, B. B.; Zeng, H. Heterocycles 2003, 61, 173.
- (9) (a) Mazurkiewicz, R. *Monatsh. Chem.* **1989**, *120*, 973.
 (b) Wang, H.; Ganesan, A. J. Org. Chem. **1998**, *63*, 2432.
 (c) Wang, H.; Ganesan, A. J. Org. Chem. **2000**, *65*, 1022.
- (10) Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1981, 54, 274.
- (11) Kurosu, M. Tetrahedron Lett. 2000, 41, 591.
- (12) Premixing MeI and **12** prior to the addition of NaH led to a mixture of the migrated tertiary amide **13** (58%) and *N*methylated compound **11** (31%).
- (13) Representative Procedure for the Intramolecular S_NAr Reaction: To a solution of 12a (40.5 mg, 0.108 mmol) in DMF (1.5 mL) cooled at 0 °C was added NaH (60% in oil, 5.2 mg, 0.13 mmol) and the reaction mixture was stirred at

r.t. for 1 h. The reaction was quenched by the addition of H_2O and solid NH_4Cl (ca 20 mg). The resultant mixture was diluted with EtOAc, washed with H_2O and brine, dried over Na_2SO_4 , and concentrated under reduced pressure. Purification of the residue by flash chromatography (silica gel, CHCl₃ then 5% MeOH–CHCl₃) gave **14a** (35.6 mg, 88%) as a colorless solid.

- (14) (a) Baker, B. R.; Almaula, P. I. J. Org. Chem. 1962, 27, 4672. (b) Süsse, M.; Adler, F.; Johne, S. Helv. Chim. Acta 1986, 69, 1017.
- (15) Representative Procedure for the Synthesis of Secondary Aryl Amines: To a solution of **21a** (50 mg, 0.15 mmol) in THF (1 mL) cooled at 0 °C were added aniline (21 mg, 0.23 mmol) and NaOMe (41 mg, 0.76 mmol). After being stirred at r.t. for 5 h, the reaction mixture was diluted with EtOAc and neutralized with HOAc. The organic layer was separated, washed with H_2O and brine, dried over MgSO₄, and concentrated under reduced pressure. Purification of the residue by flash chromatography (silica gel, 20% EtOAc– hexane) gave **22a** (24 mg, 78%) as a colorless oil.
- (16) For recent reviews on diaryl amine synthesis, see:
 (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046. (c) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400.