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Abstract: The intramolecular Diels–Alder reaction of a 2,9-disub-
stituted hexahydro-D5,6-oxonin derivative 14 afforded two diastere-
omeric tricyclic eunicellin analogues 15 and 16, which were
desilylated to produce the alcohols 17 and 3; these were found to be
microtubule stabilising agents with activity in the micromolar
range.
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Eunicellin (1) and related diterpenoid marine natural
products such as the antineoplastic sclerophytin A (2)
have attracted considerable attention owing to their gener-
al cytotoxic properties.1,2 A number of different synthetic
strategies have been employed, ranging from the pioneer-
ing Prins-pinacol condensation-rearrangement combined
with Nozaki–Hiyama–Kishi ring closure approach of
Overman3 to the furanone annelation combined with ring
closing metathesis approach of Paquette4 and the Lewis
acid-mediated [4+3]-annulation of Molander.5 Other im-
portant contributions have been made by Rainier,6 Jung7

and McIntosh.8 The importance of synthesis in the revi-
sion of certain structures in this family has been demon-
strated on several occasions.

Figure 1 Eunicellin (1) and sclerophytin A (2)

Our strategy for the synthesis of the skeleton 3 (Scheme 1)
represented by 1 and 2 (Figure 1) is based on the use of an
intramolecular Diels–Alder reaction of a 2,9-disubstituted
nine-membered ether derivative 4 which should be readily
accessible from the corresponding D5,6-unsaturated 9-

membered lactone precursor 5 which we have previously
described.9,10

Petasis methylenation11 of the lactone 59,10 (Scheme 2) af-
forded the enol ether 6. The enol ether was efficiently con-
verted into the aldehyde 9 by a method adapted from that
used in the synthesis of octahydrodeacetyldebromolau-
rencin.12 Addition of phenylselenyl chloride to the enol
ether 6 and subsequent reduction with lithium aluminium
hydride gave a mixture of the phenylselenomethyl deriv-
atives 7. Selenoxide formation followed by Pummerer re-
arrangement and methoxide cleavage of 8 afforded the
cis-2,9-disubstituted unsaturated oxonane 9. The cis-con-
figuration is predicted by molecular modelling to be the
thermodynamically preferred, and was confirmed by
NOE measurements, which are consistent with previous
experience regarding the base-catalysed equilibration of
related 2,9-disubstituted oxonane derivatives.13

Scheme 2 Synthesis of the 2,9-cis-disubstituted D5,6-oxonane.
Reagents and conditions: i, Cp2TiMe2, toluene, 110 °C, 0.5 h, 83%;
ii, PhSeCl, THF, then LiAlH4, –78 °C, 52%; iii, m-CPBA, THF,
NaOAc, Ac2O, –78 °C → reflux; iv, MeOH, CH2Cl2, K2CO3, 16 h,
88% over two steps.
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Scheme 1 Retrosynthetic analysis of the eunicellin skeleton 3
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Synthesis of the diene component of the Diels–Alder pre-
cursor is illustrated in Scheme 3. The aldehyde 9 was con-
verted by Wittig reaction into the E-enal 10; Petasis
methylenation11 of the enal proved unsatisfactory, giving
a mixture of products that were inseparable by HPLC.
However, Wittig methylenation yielded the diene 11 in
quantitative yield. This was deprotected to the alcohol and
oxidised with perruthenate14 to the aldehyde 13.

Scheme 3 Synthesis of the aldehyde 13. Reagents and conditions: i,
2-(Triphenylphosphoranylidene)propanal, toluene, 110 °C, 62%; ii,
Ph3PCH3Br, n-BuLi, –78 °C, 2 h, 100%; iii, HF–pyridine, THF, 3 h,
89%; iv, TPAP, NMO, 4 Å molecular sieves, CH2Cl2, 0.5 h, 100%.

The aldehyde 13 was converted into the enone 14 by a
Wittig reaction. Under the conditions employed the prod-
uct 14 underwent an in situ intramolecular Diels–Alder
reaction to afford two diastereomeric tricyclic adducts
15 and 16 in a 3:1 ratio and a combined overall yield of
84% (Scheme 4). Finally, cleavage of the silyl ether with
HF–pyridine furnished the diastereomeric eunicellin ana-
logues 17 and 3 in 77% and 64% yield, respectively.

The alcohol 17 derived from the major adduct 15 afforded
crystals suitable for X-ray crystal structure analysis which
revealed (Figure 2) that it corresponded to a non-natural

eunicellin configuration, arising from one of the two
possible endo transition states.

The parent natural products (1 and 2) possess a cis-anti-
cis-relative stereochemistry of the bridgehead hydrogens
in relation to the hydrogens at the angular positions that
would arise from an exo transition state. Detailed 1H NMR
analysis15 of the minor product 16 and comparison with
the data for 15 suggests that the structure of 16 corre-
sponds to the required natural configuration of the euni-
cellin skeleton, and efforts are in hand to adjust the
diastereoselectivity of the intramolecular cycloaddition
reaction.

Figure 2 X-ray crystal structure of the alcohol 1716,17

The effect of the new analogues 17 and 3 on the assembly
of tubulin to form microtubules was assessed using pacli-
taxel™ as a reference (Table 1).18 Both compounds were
shown to induce microtubule assembly and stabilise them
in the presence of CaCl2.

19

The lower ED90 of 3 compared with 17 (Table 1), corre-
lates with a more potent microtubule stabilising activity.
This may be consistent with the fact that the minor adduct
corresponds to the natural eunicellin configuration.
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Scheme 4 Tandem Wittig/Diels–Alder sequence to prepare adducts
15 and 16. Reagents and conditions: i, 1-Triphenylphosphoranylide-
ne-2-propanone, toluene, 110 °C, 2 h, 84%; ii, heat; iii, HF (40% aq),
MeCN, 48 h, 17 (77%), 3 (64%).
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Table 1 Comparison of Tubulin Assembly Properties of 17 and 3 
with that of Paclitaxel™.

Compound ED90 (mM)a

Paclitaxel™ <0.5

3 3 ± 0.6

17 7 ± 1.4

a ED90: Effective dose required to induce 90% tubulin assembly.18
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