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S C A T T E R I N G  O F  A N  E L E C T R O M A G N E T I C  W A V E  I N  A O N E - D I M E N S I O N A L  

M E D I U M  W I T H  A N  A R B I T R A R Y  I N D E X  OF R E F R A C T I O N  

D. M. Sedrakian, A. H. Gevorgyan, and A. Zh. Khachatrian UDC: 524.1-65 

A new method of determining the amplitudes of scattering of a plane electromagnetic wave incident at an angle 
a onto an arbitrat3', isotropic, one-dimensionally inhomogeneous medium offinite thickness is developed. It is 
shown that this problem reduces to a Cauchy problem for a system of two first-ordo; linear differential equa- 
tions. 

1. Introduction 

It is well known that one of  the urgent problems of astrophysics is the determination of the amplitudes of transmis- 

sion and reflection of an electromagnetic wave by an inhomogeneous layer of a medium of finite thickness. In [1] V. A. 

Ambartsumian's method of "addition of a layer to a medium" [2] was used and differential equations were obtained 

describing the scattering of an electromagnetic wave in a one-dimensional, isotropic, inhomogeneous medium. However, the 

problem was solved for the case in which the wave's  electric vector is perpendicular to the plane of incidence, i.e., for a 

so-called s wave, and when the wave is incident perpendicularly onto the boundary of the medium. 

The purpose of the present work is to determine the amplitudes of transmission and reflection of an electromagnetic 

wave of arbitrary polarization and incident at an arbitrary angle a onto a one-dimensionally isotropic, inhomogeneous layer 

with an index of refraction n(x)= ~ .  All interference effects are taken into account exactly in the equations obtained. 

Let us consider light reflection from and transmission through a finite layer of a one-dimensionally isotropic, layered 

medium with an arbitrary dependence of  the dielectric constant, ~ = c(x) and a magnetic permeability ~t = 1, bounded on both 

sides by a homogeneous medium with an index of refraction n o. The plane of incidence of the wave coincides with the (x, y) 

plane, while the wave is incident at an angle a to the normal to the boundary of  the layer, which coincides with the (y, z) 

plane. In accordance with Maxwell 's  equations, the electric field /~ and the magnetic field / f  satisfy the wave equations 

[31 
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It follows from these equations that s and p waves satisfy different wave equations. In fact, whereas tot an s wave (the vector 

/~ is directed along the z axis) the electric field E satisfies the usual unifonn wave equation (1) without the right side, for 

a p wave, with the magnetic field directed along the z axis, the magnetic field H satisfies the wave equation (2) with a 

nonzero right side. The scatterings of the two polarizations will therefore differ fundamentally from each other. The case 

of normal incidence (~ = 0) was considered in [1]. As is well known, for an arbitrary wave with both polarizations present, 

the problem reduces to the separate consideration of  scattering for the s and p polarizations. We note that in the case of 
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p polarization, one can eliminate the magnetic field and express the solutions in terms of the electric field /~ but the 

equations for joining the electromagnetic fields at the boundaries of the layer will be different for the two polarizations. 

We resolve the components of the amplitudes of the electric field of the incident, reflected, and transmitted waves 

into projections parallel (p polarization) and perpendicular (s polarization) to the plane of incidence, 

E, . ,  = E;,. i~ + E!' fi,, (3) 

where the indices i, r, and t denote the incident, reflected, and transmitted waves, respectively, while #~ and / /  are the unit 

vectors of the s and p polarizations. We introduce the dimensionless amplitudes of transmission T "~ and reflection R 'p as 

follows: 

T ~'' E;~'" E ..... 
- and R ~'~- " . 

E"" E;" (4) 

T ~r and R s.~, will depend on the thickness d of the inhomogeneous layer and the law of variation of the index of refraction, 

iz = n(x), as well as on the angle of incidence ot and the index of refraction n 0. 

2. Recursive Equat ions  for T~'" a n d  R'~: ~ 

The method being proposed for solving the problem of the scattering of an electromagnetic wave with an arbitrary 

polarization consists in the following. We divide the layer of medium under consideration into a large number of thin layers 

with thicknesses di, d 2 . . . . .  d N. If their maximum thickness is small enough, we can assume that e is constant in each layer. 

Then, in accordance with [4-6], the problem of determining R and T comes down to the problem of calculating the product 

of second-order matrices 

lilt; -R',/r; fl( 1/, -,-*/, 
- R , I T  s 1/T, )=,,=N~-L, it,, ; ) t , " )  (5) 

where T N and R N are scattering parameters of the system, N is the number of homogeneous layers, and r and t are the 

scattering amplitudes of the nth homogeneous layer. 

Solving the problem of the scattering of an electromagnetic wave from a homogeneous layer of thickness d and an 

index of refraction iz, we obtain the following well-known expressions for t s, r ,  t ,  and r /  

X t = exp(ik, d) Icos(k  d ) - i  (k~'+k~)sin(k d) l  
' L ' ,. j ,  ( 6 )  

r,l ,~ = - i  exp(2 ik,,x )[ ~ s i n ( k , d  ) 3, (7) 

I t  =exp(ik,,d) c o s ( k d ) - i  ,7,, / % + [ ~ )  k~ 2ko k s in (kd  , 
, �9 ( 8 )  

I(" )2 2 -("" )' /] 
_iexp(Ziko,x)[kno ) .... ~ n ) k2 

rp t, = l 2k o k sin(k d , (9) 
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where k0. " = (m/c)nocos or, k = (m/c)ncos 13, x is the coordinate of the middle of the chosen layer, and ct and ct are the angles 

of incidence and refraction, respectively. It is assumed that each layer with an index of refraction n is bordered on both sides 

by a medium with an index of  refraction n 0. 

If we introduce the notation 

1/Ts -R2_,/Ts .-.( l/t2'; -,;;"/t2= I 
-R~_,/T~_, 1/T~, ) ) = l,l_,/- ,:, /r l / t  

and redefine 1/T N in terms of  D x and RN*/T / in terms of D,., then Eq. (5) takes the form 

-Ds  D,. -,2, tN I t , ,  -D21 , D~,  

which is equivalent to the following system of difference equations written for the s and p polarizations: 

D~:~ = r~7 D~, + 1 
t~ "~ t',: D2:~-" 

(10) 

( l l )  

(12) 

D~'' = 1, D~",+ ~ ,  D~"_,. (13) 
t~/' t~"' 

Note that Eqs. (12) and (13) with the initial conditions Di' -p = 1 and D,~" = 0 can be used to solve the problem of 

light scattering in a layered medium consisting of homogeneous layers. 

3. D i f f erent ia l  E q u a t i o n s  for T(x) a n d  R(x) 

We introduce the functions D(x,) = 1/T(x,) and /9(x, )=  R' (x , ) /T  {~~), where T(x,) and R(x,) are the amplitudes of 

wave transmission through and reflection from the part of the medium described by a dielectric constant c(x), given between 

the points 0 < x < x~ by 

8(.,,, x )=  8(x)0(x)0(x,-  x~ (14) 

where 0(x) is the Heaviside function. Then the function e(x, x, + &v,), i.e., the part of  c(x) included between the points x = 0 

and x = .v~ + &v~, where Av~ is a small quantity, will look like the function (14) with the addition of  a homogeneous layer 

with the parameters c(.v,) and Av I to its right side. 

For the amplitudes of  transmission and reflection of an infinitely narrow layer, from (6)-(9) we have 

[~o~ 'c~-"=' /1 
1 & = l - t  2n.  cosct A.~, | , (15) 

r t = - i  o3 A.v, exp(2ik,, .v , 
" ~ c 211,}co~ ' (16) 

1 t = 1 - i  {o ~ n- /A~  
P c 2 II a c o s o {  " .~ ' (17) 
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(, ,--  ,,,; / 
, ) , I t  =-iexp(2ik~, ,-) ~ \ n- / k  v, 

211 o COSO- (18) 

Substituting D': '' =D*"(x,+Ax,~ D~." ~-~D~q'(, 'I-~AxI) , and  D(.", =D~'"(.,-,~ D~7'~ =D*'"(x~) into (12) and (13), 

expanding the resulting equations with respect to the small quantity At j. and replacing .v~ by x, with allowance for (15)-(18) 

we obtain the following system of linear differential equations: 

dD' _ iV(x)(D '~- exp(2 ik 0 x ) D ~  (19) 
d x  

for the s polarization and 

dD" = i V ( , ) ( e x p ( -  2ik~, ,)D"- D" ) (20) 

d~.~( = iV (r ) [(a+ b )D" - (a- b)(exp(2 ik, x)D" 1. (21) 

dD" = - i V ( r ~ ( a - b ) ( e x p ( -  2ik,, x ) D ' - ( a + b ) D "  ], (22) 

Here 

v(.,) ~ < = a = cos%t, b = sin-~ot. (23) 
c 2 I1 o COS~ ' 11- 

T h e  uniqueness of solutions of the system (19)-(22) is provided by the appropriate initial conditions: 

D~"(x) ~=o = 1, D"~(x) =o =0. (24) 

for the p polarization. 

(25) 

Introducing the notation 

(26) 

(27) 

(28) 

For convenience, we omit the indices s and p below. We seek 

F "'~ = D ''p exp(- ik  o x ) -  D ~'' exp(ik o x ~  

O ~'" = i(D ''p exp(- ik o,x)+ D ~~' exp0ko x)~ 

we can write the system (19)-(22) in compact form: 

dF*" = (2 A,,,,V_ k,h )aO<, ' 
dx 

d qb ~" = -(2 B<'V - k,~ )F 'p , 
dx 

A*=0 ,  A " = a ,  

B'=I ,  B ' = b .  

Let us turn to the solution of the system (26), (27). 

the solution of these equations in the form 

F =H,+iH~, 
do = N, + iN, .  (29) 

Since the coefficients of Eqs. (26) and (27) are real in the absence of absorption, the pairs of real functions H~, N, and H 2, 

N 2 will satisfy the same system of equations, 

d H : ( 2 a V - k o  )N, 
d x  

dU = - ( 2 B V -  ko~ )H, (30) 
dx 
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although the initial conditions for these pairs will be different. 

point x =  0 have the values 

H,(0)= 1 and Xl(0)= 0 

for the first pair and 

In fact, as follows from (24), the functions H and N at the 

(31) 

(32) H=(0)=0 and N , ( 0 ) = I  

for the second pair�9 

The problem of determining the amplitudes R and T of light scattering for oblique incidence onto a layer with an 

arbitrary index of refraction n = n(x) and a thickness d is thus reduced to the integration of the system (30) with the initial 

conditions (31) and (32). 

From (29) and (25) we can obtain equations for R and T that express them in terms of the values of the functions 

Nk2 and HL2 at the point x = d. We thus have 

1 
1T = 7 exp(ik. ,d)[(H, + N= 1 - i ( N , -  H 21], (33) 

1 )-i(N,+H=)], (34) T R _  .~exp(ikod)[(H_N ~ 

T =  2 exp[i(%-k, ,  d)], (35) 
P, 

R= -9~ e x p [ i ( % - % ) ] ,  (36) 
P, 

or 

where 

energy, 

�9 [Na(d)-H,(d)7 
P, = ~[H,(d)+N:(d)]:+[N,(d)-H:(d)] z, % =arctgLN:(d)+Hi(d) ~, (37) 

[N,(d)+H~(d) 1 
p~ = ~/[H,(d)-N,(d)~ +[N,(d)+H,(d)~. r =arctg H,(d)-N=(d)J" (38) 

We finally show that the solutions obtained satisfy the condition of conservation of flux density of electromagnetic 

R2 + T : = 1, (39) 

In fact, substituting the solutions (35) and (36) into (39), with allowance for (37) and (38) we can write it in 

H~ (d )X,_ (d )-  H 2 (d )U, (d )= 1. (40) 

for any d. 

the form 

It follows from the initial conditions (31) and (32) that the condition (40) is satisfied at the point x = 0. On the other 

hand, in accordance with Eq. (30), the derivative of the expression H~(x)N 2- H2(x)N~(x) vanishes. The condition (40) is 

therefore satisfied at the point x =  d. 

4. Conclusion 

As an example of the application of the proposed method, let us consider the case of detennining the amplitudes of 

scattering of an electromagnetic wave in an isotropic homogeneous layer of finite thickness d. 

If we assume that we have the equation 

(2 AV-  k,,, X 2 BV-  k0, ) = k~, (41) 
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for both polarizations of the electromagnetic wave, and that the coefficients of  the system (30) are constants, then for the 

case under consideration we can, instead of Eqs. (30), obtain the same equations for N and H, 

which coincide with the wave equation for the homogeneous medium under consideration. Solutions of  Eqs. (42) satisfying 

the initial conditions (31) and (32) have the form 

H~(x)=cos(k.v~ H_~(x)= 2 A V - k D  " " �9 k ~ sin(k x), 

S , ( x ) = - 2 B l / ' - k ~  sin(kx), X,_ (x ) :  cos(k x ). (43) 
k 

Substituting the values of the functions H and N at the point x = d into Eqs. (33) and (34), we obtain the amplitudes 

of transmission and reflection for the s and p polarizations, which coincide with Eqs. (6)-(9). 

To end with, we note a fundamental advantage of our proposed method over the well-known methods. In our case 

the problem of the scattering of  an electromagnetic wave in a one-dimensional, inhomogeneous medium is reduced to the 

solution of a system of two first-order, linear differential equations with given initial conditions. It is far more productive 

to use these equations when they have analytical solutions or when one must perform numerical integrations than to use 

special programs that are required to apply the matrix transfer method or the dynamical theory of scattering of electromag- 

netic waves. We note that such simplification is achieved because the boundary conditions of the scattering problem in our 

method are contained in the proposed system of equations, written directly for scattering amplitudes, and the problem of 

finding them is reduced to a Cauchy problem for those equations with given initial conditions. 

The authors wish to thank D. Badalyan and O. Eritsian for a discussion of the results obtained. 
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