Communication

Synthesis of Substituted 4-Aroyl-1-indanone and 5-Aroyl-1-tetralone

Meng-Yang Chang* and Nien-Chia Lee Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.

Received January 18, 2011; Accepted April 6, 2011; Published Online April 11, 2011

Several substituted 4-aroyl-1-indanones 2 and 5-aroyl-1-tetralones 3 were prepared in good yields from 1-indanones 1 via a series of reasonable transformations.

Keywords: Benzocycloalkanones; 4-Aroyl-1-indanone; 5-Aroyl-1-tetralone; Friedel-Crafts acylation.

INTRODUCTION

The bicyclic benzofused ring system, along with related structures such as indanone or tetralone, represents the structural motifs of benzocycloalkanones.¹ These cyclic systems incorporate two rings connected by a fused ring containing a benzene ring adjacent to the ring junction. This structural motif has been observed in a number of natural alkaloid products.² The structural frameworks of 1indanones and 1-tetralones present a particular challenge and their formation is the main focus of the research presented in this area.³ A number of unique approaches in regard to 1-indanones and 1-tetralones have been explored because it is an important intermediate for preparing natural products. Our interest is piqued by the synthesis of substituted 1-indanones and 1-tetralones with some different potential biological properties;⁴ a facile method for the regioselective synthesis of substituted 4-aroyl-1-indanones 2 and 5-aroyl-1-tetralones 3 from indanones 1 is described in Scheme I.

RESULTS AND DISCUSSION

Skeleton 1 was chosen as the starting materials for synthesizing substituted 4-aroyl-1-indanones 2 and 5-aroyl-1-tetralones 3, as shown in Scheme II. Initially, skeleton 2 was provided by the Grignard addition of ketones 1a ($R_1 = H$) and 1b ($R_1 = OMe$) with arylmagnesium bromide (1.0 M in tetrahydrofuran, Ar = Ph, 4-FPh, 4-MeOPh) at rt for 4~5 h, followed by boron trifluoride etherate-mediated de-

Scheme II Synthesis of 4-aroyl-1-indanones 2 and 5aroyl-1-tetralones 3

* Corresponding author. Tel: +886-7-3121101 ext 2220; Fax: +886-7-3125339; E-mail: mychang@kmu.edu.tw

Entry	2/3	R ₂ group	Ar group	Yield (%)
1	2a	Н	C ₆ H ₅	81
2	2b	Н	4-CH ₃ OC ₆ H ₅	55
3	2c	Н	$4-FC_6H_5$	62
4	2d	OH	C_6H_5	70
5	2e	OH	4-CH ₃ OC ₆ H ₅	61
6	3a	Н	C_6H_5	73
7	3b	Н	4-CH ₃ OC ₆ H ₅	59
8	3c	Н	$4-FC_6H_5$	68

Table 1. Synthesis of substituted 4-aroyl-1-indanones **2** and 5aroyl-1-tetralones **3**^a

^a The isolated products are > 95% pure as judged by ¹H-NMR analysis.

hydration of the resulting tertiary alcohol in dichloromethane at rt for 15~20 min. Without further purification, osmium tetroxide-mediated dihydroxylation reaction of the corresponding 1-arylindenes with N-methylmorpholine N-oxide in the co-solvent of t-butanol, tetrahydrofuran and water (v/v/v = 1/3/6) afforded vicinal diols at reflux temperature for 10~12 h, followed by sodium periodatemediated bond cleavage for 1~2 h to give skeleton 4. Compounds 4a~4e were isolated in 20~49% total yields of four steps.

Furthermore, Wittig olefination of the skeleton 4, subsequently followed by Jones oxidation, yielded ketoacids. Finally, five compounds 2a~2e were isolated from the ring-closure process via acylation of acids with thionyl chloride and Friedel-Crafts reaction with aluminum chloride in 55~81% yields of four-steps.⁵⁻⁶ With the results in hand, we envisioned that the demethylation should be induced via the chelated aluminum intermediate between the 1-carbonyl and 7-methoxy group during the Friedel-Crafts cyclization. To avoid demethylation, phorsphoryl trichloride was examined. When phorsphoryl trichloride-mediated the intramolecular ring-closure step of the model ketoacid ($R_1 = OMe$, Ar = 4-FPh) substrate, compound **2f** was achieved with 79% yield (three-steps) without the formation of demethylated product. The structural frameworks of compounds 2e and 2f were determined using single-crystal X-ray analysis.⁷

According to the similar synthetic strategy of skeleton 2, skeleton 3 was also prepared from skeleton 4 via Wittig olefination, hydrogenation, base-induced hydrolysis and followed sequentially by Friedel-Crafts acylation with modest overall yields. The exhibited methodology could provide a new and efficient route for the preparation of various substituted 4-aroyl-1-indanones **2** and 5-aroyl-1-tetralones **3** by photolytic induced methodology, in search of useful compounds with potential biological activities.

In summary, we have successfully presented a convenient synthetic methodology for producing a series of 4aroyl-1-indanones and 5-aroyl-1-tetralones. Further studies on the biological evaluation of the available compounds are actively underway in laboratories.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science Council of the Republic of China for its financial support (NSC 99-2113-M-037-006-MY3). The project is also supported by a grant from the Kaohsiung Medical Research Foundation (KMU-Q100004).

REFERENCES

- 1. (a) Hong, B. C.; Sarshar, S. Org. Prep. Proced. Int. 1999, 31, 1. (b) Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.; Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine, N. H. J. Am. Chem. Soc. 1998, 120, 4550. (c) Clark, W. M.; Kassick, A. J.; Plotkin, M. A.; Eldridge, A. M.; Lantos, I. Org. Lett. 1999, 1, 1839. (d) Minatti, A.; Zheng, X. L.; Buchwald, S. L. J. Org. Chem. 2007, 72, 9253. (e) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482. (f) Kundu, K.; McCullagh, J. V.; Morehead, A. T. J. Am. Chem. Soc. 2005, 127, 16042. (g) Itoh, T.; Mase, T.; Nishikata, T.; Iyama, T.; Tachikawa, H.; Kobayashi, Y.; Yamamoto, Y.; Miyaura, N. Tetrahedron 2006, 62, 9610. (h) Shintani, R.; Takatsu, K.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 3735. (i) Brekan, J. A.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 1472. (j) Coyanis, E. M.; Panayides, J.-L.; Fernandes, M. A.; de Koning, C. B.; van Otterlo, W. A. L. J. Orgmet. Chem. 2006, 691, 5222.
- For studies on the synthesis of members of this family of natural products, see: (a) Lomberget, T.; Bentz, E.; Bouyssi, D.; Balme, G. Org. Lett. 2003, 5, 2055. (b) Banerjee, M.; Makhopadhyay, R.; Achari, B.; Banerjee, A. Kr. Org. Lett. 2003, 5, 3931. (c) Ito, T.; Tanaka, T.; Iinuma, M.; Nakaya, K.; Takahashi, Y.; Sawa, R.; Murata, J.; Darnaedi, D. J. Nat. Prod. 2004, 67, 932. (d) Nagle, D. G.; Zhou, Y.-D.; Park, P. U.; Paul, V. J.; Rajbhandari, I.; Duncan, C. J. G.; Pasco, D. S. J. Nat. Prod. 2000, 63, 1431.
- (a) Greene, A. E.; Coelho, F.; Barreiro, F. J.; Costa, P. R. R. J. Org. Chem. 1986, 4250. (b) Corey, E. J.; Behforouz, M.; Ishiguro, M. J. Am. Chem. Soc. 1979, 1608. (c) Girijia, T.; Shanker, P. S.; Subba Rao, G. S. R. J. Chem. Soc., Perkin Trans 1 1991, 1467. (d) Lauchli, R.; Schuler, G.; Boland, W. Phytochemistry 2002, 61, 807.
- 4. (a) Aono, T.; Kishimoto, S.; Araki, Y.; Noguchi, S. Chem.

Pharm Bull. 1978, 26, 1776. (b) Aono, T.; Araki, Y.; Tanaka,
K.; Imanishi, M.; Noguchi, S. Chem. Pharm Bull. 1978, 26,
1511. (c) Schuler, G.; Gorls, H.; Boland, W. Eur. J. Org.
Chem. 2001, 1663. (d) Zhang, Z.-P.; Krumm, T.; Baldwin, I.
T. J. Chem. Ecology 1997, 23, 2777. (e) Akritopoulou-Zanze, I.; Albert, D. H.; Bousquet, P. F.; Cunha, G. A.; Harris, C. M.; Moskey, M.; Dinges, J.; Stewart, K. D.; Sowin, T.
J. Bioorg. Med. Chem. Lett. 2007, 17, 3136.

- For Friedel-Crafts acylation reaction, see: (a) Heaney, H. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 733. (b) Olah, G. A. *Friedel-Crafts Chemistry*; John Wiley and Sons: New York, 1973. For reviews on the intramolecular Friedel-Crafts acylation reaction, see: (c) Heaney, H. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 753. (d) Sethna, S. In *Friedel-Crafts and Related Reactions*; Olah, G. A., Eds.; Interscience: New York, 1964; Vol. 3, p 911. (e) Gore, P. H. *Chem. Rev.* 1955, 55, 229. (f) Johnson, W. S. *Org. React.* 1944, 2, 114.
- 6. For compound **2a**: HRMS (ESI, M^++1) calcd for $C_{16}H_{13}O_2$ 237.0916, found 237.0921; ¹H NMR (400 MHz): δ 7.95 (dd, J = 0.4, 7.6 Hz, 1H), 7.81-7.77 (m, 3H), 7.63 (tt, J = 1.2, 6.8Hz, 1H), 7.53-7.46 (m, 3H), 3.36-3.33 (m, 2H), 2.74-2.71 (m, 2H); ^{13}C NMR (100 MHz): δ 206.47, 196.16, 155.52, 138.28, 137.42, 135.78, 135.71 (2x), 133.13, 129.91 (2x), 128.58, 127.07, 126.82, 36.18, 25.83; Anal. Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.59; H, 5.23. For compound **2b**: HRMS (ESI, M⁺+1) calcd for C₁₇H₁₅O₃ 267.1021, found 267.1024; 1 H NMR (400 MHz): δ 7.92 (dd, J = 0.8, 7.6 Hz, 1H), 7.80 (d, J = 8.8 Hz, 2H), 7.74 (dd, J =1.2, 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 3.30-3.27 (m, 2H), 2.72-2.69 (m, 2H); ¹³C NMR (100 MHz): δ 206.56, 194.73, 163.78, 154.93, 138.10, 136.48, 134.99, 132.42 (2x), 129.93, 127.01, 126.23, 113.86 (2x), 55.54, 36.16, 25.49. For compound 2c: HRMS (ESI, $M^{+}+1$) calcd for $C_{16}H_{12}FO_2$ 255.0821, found 255.0822; ¹H NMR (400 MHz): δ 7.90 (dd, *J* = 0.8, 7.6 Hz, 1H), 7.83-7.78 (m, 2H), 7.72 (dd, J = 1.2, 7.6 Hz, 1H), 7.46 (dt, J = 0.8, 7.6 Hz, 1H), 7.18-7.12 (m, 2H), 3.31-3.28 (m, 2H), 2.70-2.67 (m, 2H); ¹³C NMR (100 MHz): δ 206.22, 194.44, 166.92, 164.38, 155.29, 138.24, 135.34, 133.56, 132.54, 132.45, 127.04, 126.76, 115.83, 115.61, 36.04, 25.64; Anal. Calcd for C₁₆H₁₁FO₂: C, 75.58; H, 4.36. Found: C, 75.72; H, 4.63. For compound 2d: HRMS (ESI, M^++1) calcd for $C_{16}H_{13}O_3$ 253.0865, found 253.0866; ¹H NMR (400 MHz): δ 9.73 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.74-7.71 (m, 2H), 7.62-7.57 (m, 1H), 7.52-7.47 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 3.46-3.43 (m, 2H), 2.79-2.76 (m, 2H); ¹³C NMR (100 MHz): δ 210.50, 195.24, 160.60, 158.47, 140.36, 138.29, 132.40, 129.52 (2x), 128.46 (2x), 126.81, 123.26, 113.27, 35.97,

26.95; Anal. Calcd for C₁₆H₁₂O₃: C, 76.18; H, 4.79. Found: C, 76.51; H, 4.98. For compound **2e**: HRMS (ESI, M⁺+1) calcd for C₁₇H₁₅O₄ 283.0970, found 283.0972; ¹H NMR (400 MHz): 8 9.65 (br s, 1H), 7.77-7.73 (m, 3H), 6.99-6.95 (m, 2H), 6.82 (d, *J* = 8.8 Hz, 1H), 3.89 (s, 3H), 3.39 (dt, *J* = 3.2, 5.6 Hz, 2H), 2.76 (dt, J = 3.2, 5.6 Hz, 2H); ¹³C NMR (100 MHz): 8 210.47, 193.91, 163.28, 160.16, 157.76, 139.63, 132.06 (2x), 130.68, 127.45, 123.16, 113.75 (2x), 113.14, 55.51, 35.96, 26.58; Anal. Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.65; H, 4.78. Single-crystal X-Ray diagram: crystal of compound 2e was grown by slow diffusion of ethyl acetate into a solution of compound 2e in dichloromethane to yield colorless prism. The compound crystallizes in the monoclinic crystal system, space group P 1 21/c 1, a =10.8910(19) Å, b = 11.973(2) Å, c = 10.0539(17) Å, V =1310.0(4) Å³, Z = 4, dcalcd = 1.431 g/cm³, F(000) = 592, 20 range 1.87~26.45°, R indices (all data) R1 = 0.0581, wR2 = 0.1540. For compound **3a**: HRMS (ESI, M^++1) calcd for C₁₇H₁₅O₂ 251.1072, found 251.1077; ¹H NMR (400 MHz): δ 8.21 (dd, J=1.6, 8.0 Hz, 1H), 7.82-7.78 (m, 2H), 7.61 (tt, J= 1.6, 8.0 Hz, 1H), 7.52-7.45 (m, 3H), 7.40 (t, *J* = 8.0 Hz, 1H), 2.92 (t, J = 6.0 Hz, 2H), 2.68 (dd, J = 6.0, 7.2 Hz, 2H), 2.11-2.05 (m, 2H); ¹³C NMR (100 MHz): δ 197.68, 197.49, 142.71, 138.65, 137.10, 133.64, 133.31, 132.84, 130.04 (2x), 129.31, 128.65 (2x), 126.01, 38.82, 27.37, 22.83; Anal. Calcd for C₁₇H₁₄O₂: C, 81.58; H, 5.64. Found: C, 81.90; H, 5.87. For compound **3b**: HRMS (ESI, M^++1) calcd for C₁₈H₁₇O₃ 281.1178, found 281.1180; ¹H NMR (400 MHz): δ 8.17 (dd, J = 1.6, 7.6 Hz, 1H), 7.79-7.76 (m, 2H), 7.47 (dd, J = 1.6, 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 6.95-6.92 (m, 2H), 3.87 (s, 3H), 2.88 (t, J = 6.4 Hz, 2H), 2.66 (t, J = 6.4 Hz, 2H), 2.09-2.03 (m, 2H); ¹³C NMR (100 MHz): δ 197.74, 196.10, 164.05, 142.26, 139.19, 133.20, 132.44 (2x), 132.34, 129.94, 128.83, 125.98, 113.89 (2x), 55.52, 38.84, 27.24, 22.82. For compound **3c**: HRMS (ESI, M^++1) calcd for C₁₇H₁₄FO₂ 269.0978, found 269.0981; ¹H NMR (400 MHz): δ 8.19 (dd, J = 1.2, 7.6 Hz, 1H), 7.85-7.80 (m, 2H), 7.48 (dd, *J* = 1.2, 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.17-7.11 (m, 2H), 2.90 (t, J = 6.0 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H), 2.10-2.04 (m, 2H); ¹³C NMR (100 MHz): δ 197.51, 195.84, 167.29, 164.74, 142.58, 138.33, 133.36, 132.76, 132.66, 132.59, 129.37, 126.05, 115.97, 115.75, 38.77, 27.30, 22.77; Anal. Calcd for C₁₇H₁₃FO₂: C, 76.11; H, 4.88. Found: C, 76.29; H, 5.02.

CCDC 802675 (2e) and CCDC 805713 (2f) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk)