Table II. Renin Inhibitory Potencies of the Stereoisomers^a

CH2 PhCH2CH2NHCCH2OHC II O	D-His-		$\mathrm{IC}_{50},\mathbf{M},$ against	${ m IC}_{50},{ m M},$ against human	
no.	*	**	human renin	plasma renin	
5 (KRI-1177) 12 ^b	+	R,S (7:3) R,S (7:3)	7.8×10^{-8} >10 ⁻⁴	9.0×10^{-8}	
13°	+	R	3.1×10^{-8}	7.7×10^{-8}	
14 ^d	+	S	1.3×10^{-6}		
$ \overset{CH_2 \longrightarrow CH_2CH_2CH(CH_3)_2}{\overset{CH_2 \longrightarrow CH_2CH(CH_3)_2}{\overset{CH_2 \longrightarrow CH_2CH(CH_3)_2}} IC_{50}, \mathbf{M}, \underset{against}{against} $					
no	*	**	human renin	plasma renin	
9 (KRI-1230) 15 ^e	- +	R,S (7:3) R,S (7:3)	2.5×10^{-8} >10 ⁻⁴	7.8×10^{-9}	

^aThe IC₅₀ values of the inhibitors against isolated human renin and human plasma renin were measured by the method described in Table I. Anal.: ${}^{b}(C_{37}H_{45}N_{5}O_{6}) C, H, N. {}^{c}(C_{37}H_{45}N_{5}O_{6}) C, H, N.$ ${}^{d}(C_{37}H_{45}N_{5}O_{6}) C, H, N. {}^{e}(C_{35}H_{47}N_{5}O_{7}){}^{1}/{}_{5}CHCl_{3}) C, H, N.$

Figure 4. Effect of intravenous injection of 9 on blood pressure. Frosemide was applied by the method described in Figure 3 to sodium-depleted male marmosets. A catheter was inserted under anesthesia into the femoral artery. The catheter was connected to the pressure transducer for measurement of blood pressure. After come out from under the anesthesia, compound 9 was injected into the femoral vein as 1 mL/kg aqueous solution.

idue was moderately stable in the same condition. Compound 9 was stable also in the human plasma.

Oral administration of 30 mg/kg of 9 to common marmosets resulted in a lowering of mean blood pressure accompanying a reduction of the plasma renin activity (Figure 3). Figure 4 shows changes in blood pressure after intravenous injection of 9 in doses of 1 or 5 mg/kg. The lowering effect of a 5 mg/kg injection was comparable to that of oral administration of a 30 mg/kg dose. In the case of intravenous injection, the hypotensive response was dose dependent, and the maximum response occurred within 10 min after injection. On the other hand, long-lasting hypotensive effect was found when 9 was orally administered. The maximum response occurred 1 h after the administration and both blood pressure and plasma renin activity recovered gradually. However, recovery of the blood pressure was very slow, and even after 7 h the blood pressure was significantly depressed (Figure 3).

In conclusion, the present study shows that norstatine is a useful component of the renin inhibitors compared with statine and KRI-1230 is one of the most compact and highly potent renin inhibitors.

[†]Kissei Pharmaceutical Co., Ltd. [‡]Kitasato University.

[§]Kvoto Pharmaceutical University.

Kinji Iizuka,*[†] Tetsuhide Kamijo,[†] Tetsuhiro Kubota[†] Kenji Akahane,[†] Hideaki Umeyama,[‡] Yoshiaki Kiso[§]

Division of Medicinal Chemistry Central Research Laboratories Kissei Pharmaceutical Co., Ltd. Nagano 399 Japan School of Pharmaceutical Sciences Kitasato Universitv Shirokane, Minato-Ku, Tokyo 108, Japan Kyoto Pharmaceutical University Yamashina-Ku, Kyoto 607, Japan Received August 3, 1987

β -Substituted Phenethylamines as High-Affinity Mechanism-Based Inhibitors of Dopamine β -Hydroxylase

Sir:

Dopamine β -hydroxylase (DBH; E.C. 1.14.17.1) presents an appealing target for the design of inhibitors as potential new cardiovascular agents. We have recently reported potent, reversible inhibitors of DBH that are effective antihypertensive agents¹⁻⁴ and, in an alternative approach, have described several structurally simple mechanismbased inhibitors of DBH.^{5,6} Whereas a multitude of other mechanism-based inhibitors of DBH have been reported previously,⁷⁻¹⁴ the high, millimolar $K_{\rm m}$ for dopamine substrate makes critically important the design of k_{cat} inhibitors with enhanced binding to DBH. To date, only one class of mechanism-based inhibitors, some heterocyclic allylamines, appear to fulfill this criterion.¹⁴ In this paper we describe a simple ethynyl-substituted tyramine that is an effective mechanism-based inhibitor of DBH; it binds enzyme in the micromolar range, nearly 100-fold more

- (1) Kruse, L. I.; Kaiser, C.; DeWolf, W. E., Jr.; Frazee, J. S.; Erickson, R. W.; Ezekiel, M.; Ohlstein, E. H.; Ruffolo, R. R., Jr.; Berkowitz, B. A. J. Med. Chem. 1986, 29, 887.
- Kruse, L. I.; Kaiser, C.; DeWolf, W. E., Jr.; Frazee, J. S.; Garvey, E.; Hilbert, E. L.; Faulkner, W. A.; Flaim, K. E.; Sawyer, J. L.; Berkowitz, B. A. J. Med. Chem. 1986, 29, 2465.
- Kruse, L. I.; Kaiser, C.; DeWolf, W. E., Jr.; Frazee, J. S.; Ross, (3)S. T.; Wawro, J.; Wise, M.; Flaim, K. E.; Sawyer, J. L.; Erickson, R. W.; Ezekiel, M.; Ohlstein, E. H.; Berkowitz, B. A. J. Med. Chem. 1987, 30, 486.
- (4) Kruse, L. I.; DeWolf, W. E., Jr.; Chambers, P. A.; Goodhart, P. J. Biochemistry 1986, 25, 7271.
- DeWolf, W. E., Jr.; Goodhart, P. J.; Kruse, L. I. Fed. Proc., (5)Fed. Am. Soc. Exp. Biol. 1986, 45, 1537.
- Goodhart, P. J.; DeWolf, W. E., Jr.; Kruse, L. I. Biochemistry 1987, 26, 2576.
- (7) Klinman, J. P.; Krueger, M. Biochemistry 1982, 21, 67.
 (8) May, S. W.; Mueller, P. W.; Padgette, S. R.; Herman, H. H.; Phillips, R. S. Biochem. Biophys. Res. Commun. 1983, 110, 161.
- Rajashekhar, B.; Fitzpatrick, P. F.; Colombo, G.; Villafranca, (9) J. J. J. Biol. Chem. 1984, 259, 6925.
- (10) Mangold, J. B.; Klinman, J. P. J. Biol. Chem. 1984, 259, 7772.
- (11) Colombo, G.; Villafranca, J. J. J. Biol. Chem. 1984, 259, 15017.
- Padgette, S. R.; Wimalasena, K.; Herman, H. H.; Sirimanne, (12)S. R.; May, S. M. Biochemistry 1985, 24, 5826.
- (13) Fitzpatrick, P. F.; Villafranca, J. J. J. Biol. Chem. 1986, 261, 4510.
- (14) Bargar, T. M.; Broersma, R. J.; Creemer, L. C.; McCarthy, J. R.; Hornsperger, J.-M.; Palfreyman, M. G.; Wagner, J.; Jung, M. J. J. Med. Chem. 1986, 29, 315.

^a Reagents and conditions: (a) TMSC==CMgBr, then HCl; (b) NaOH, $H_2O/EtOH$, reflux, then HCl; (c) H_2O/C_5H_5N , 100 °C, then HCl; (d) KF, DMF, 50 °C, then HCl; (e) (PhO)₂PON₃, NEt₃, PMBOH, toluene, 100 °C; (f) HCl, $Et_2O/EtOAc$; (g) H_2 , Pd/BaCO₃, CH₂Cl₂.

tightly than dopamine substrate.

Chemistry.¹⁵ Compounds 1-6 were prepared by the route outlined in Scheme I. The conjugate addition of (trimethylsilyl)ethynyl Grignard to diesters 7a-c yielded 8a (60%), 8b (47%), and 8c (100%). Saponification followed by decarboxylation provided the acetylenic acids 9a (58%), 9b (43%), and 9c (44%) from 8a-c. The reaction of carboxylic acids 9a-c with diphenyl phosphorazidate and 4-methoxybenzyl alcohol in a modified Curtius procedure¹⁶ afforded carbamates 10a (52%), 10b (50%), and 10c (62%). The deprotection of 10a-c with HCl in ether/ethyl acetate mixtures provided crystalline hydrochloride salts of 1-3. Controlled hydrogenation¹⁷ of 10a-c afforded the corresponding olefins that were deprotected by HCl treatment to give the corresponding β -vinyltyramines 4-6. The use of the 4-methoxybenzyl (PMB) group to protect the phenolic hydroxyl and carbamate groups was critical to the success of the synthetic scheme. A resolution of the acetylenic inhibitor 3 was accomplished by fractional crystallization (48% yield) of the (1R,2S)- and (1S,2R)-2amino-1-(4-nitrophenyl)-1,3-propanediol salts of intermediate 9c from 2-PrOH: (+)-9c, $[\alpha]^{25}_{D}$ +19.0° (c 1.5, DMF); (-)-9c, $[\alpha]^{25}$ -19.4° (c 1.5, DMF). Curtius rearrangement of (+)-9c and (-)-9c yielded the chiral carbamates: (+)-10c, $[\alpha]^{25}_{D}$ +25.4° (c 1.5, DMF); (-)-10c, $[\alpha]^{25}_{D}$ -26.5° (c 1.5, DMF). Deprotection yielded the enantiomers of 3: (+)-3, $[\alpha]^{25}_{D}$ +14.1° (c 1.5, DMF); (-)-3, $[\alpha]^{25}_{D}$ -17.1° (c 1.5, DMF). The absolute configuration of 3 was determined by chemical degradation (Scheme II) of the inter-

- (15) All new compounds were characterized by IR, NMR, and mass spectrometry and had C, H, and N microanalyses within $\pm 0.4\%$ of the theoretical values.
- (16) (a) Shiori, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc.
 1972, 94, 6203. (b) Ninomiya, K.; Shiori, T.; Yamada, S. Tetrahedron 1974, 30, 2151.
- (17) Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis; Wiley: New York, 1967; Vol. 1, pp 566-567.

Scheme II^a

 aReagents and conditions: (a) $H_2,\ Pd/C,\ EtOH;$ (b) $RuCl_3,\ NaIO_4,\ MeCN/H_2O/CCl_4.$

Table I. DBH Inhibitory Properties of Some β -Substituted Tyramines

			*		
no.	X	R	K_{is} , ^{a,b} $\mu\mathrm{M}$	K_{I} , ^{b,c} $\mu\mathrm{M}$	k_{inact} , d min ⁻¹
1	Н	HC≡C	160 ± 10	е	е
2	3-OH	HC≔C	190 ± 5	e	е
(±)-3	4-0H	HC=C	13.6 ± 0.8	15.7 ± 2.3	0.023 ± 0.001
(+)-3	4-0H	HC≔C	7.9 ± 0.3	е	е
(-)-3	4-0H	HC≡C	33.9 ± 1.4	57 ± 8	0.184 ± 0.015
4	H	$H_2C = CH$	670 ± 70	е	е
5	3-OH	$H_2C = CH$	1270 ± 80	е	е
6	4-0H	$H_2C = CH$	82 ± 5	е	е

^a K_{is} values (mean \pm SEM) were determined vs tyramine substrate in the absence of fumarate with the use of homogeneous bovine DBH (sp act. 30-42 units/mg at pH 5.0). Inhibition constants were determined by using the computer programs of Cleland (Methods in Enzymology; Purich, D. L., Ed.; Academic: New York, 1979; Vol. 63, pp 103-138). ^bExperimental conditions: pH 5.0; ionic strength, $\mu = 0.2$; 50 mM sodium acetate buffer; 1 mg/ mL bovine catalase; 10 μ M Cu²⁺; 10 mM ascorbic acid; 37 °C. $^{\circ}K_{I}$ and k_{inact} values (mean ±SEM) were determined from plots of 1/ k_{inact} (observed) vs 1/[inhibitor] for a minimum of four inhibitor concentrations. Values of k_{inact} (observed) were determined from a plot of log (percent enzyme activity remaining) vs times. As determined here, the K_{I} value may not be a true dissociation constant since, under the conditions similar to those used here, a substantial commitment to catalysis has been shown for several tyramine substrates (Miller, S. M.; Klinman, J. P. Biochemistry 1985, 24, 2114). ^d These are k_{inect} (apparent) values since the concentration of oxygen cosubstrate was held constant at 0.24 mM. e Minimal time-dependent inactivation was observed under the experimental conditions.

mediate (+)-9c to (S)-(-)-ethylsuccinic acid [mp 94–95 °C, $[\alpha]^{25}_{\rm D}$ -24.5° (c 3.0, acetone) (lit.^{18a} mp 94–96 °C, lit.^{18b} $[\alpha]^{25}_{\rm D}$ -24.0° (c 3.0, acetone))] of known absolute configuration.^{18c} This chemical correlation establishes the absolute configuration of the mechanism-based inactivator (-)-3 as S (Scheme II).

Biochemistry. Kinetic experiments were conducted with homogeneous bovine DBH¹⁹ (sp act. 30–42 units/mg at pH 5.0) under the conditions defined in Table I by using the previously described assay.² All of the compounds are competitive inhibitors vs tyramine substrate and show a considerable affinity for DBH, as judged from K_{is} values. A 4-hydroxyl group enhances binding (cf. 3 vs 1 and 6 vs 4) whereas a 3-hydroxy group decreases binding (cf 2 vs 1 and 5 vs 4) relative to the unsubstituted parent phenethylamines. A similar general trend is observed for simple tyramine substrates.²⁰ The presence of a β -vinyl (4–6) and to a greater extent a β -ethynyl (1–3) group substantially

(20) Miller, S. M.; Klinman, J. P. Biochemistry 1985, 24, 2114.

^{(18) (}a) Baldwin, J. E.; Barton, D. H. R.; Sutherland, J. K. J. Chem. Soc. 1965, 1787. (b) Bettoni, G.; Cellucci, C.; Berardi, F. J. Heterocycl. Chem. 1980, 17, 603. (c) Listowsky, I.; Avigad, G.; Englard, S. J. Org. Chem. 1970, 35, 1080.

⁽¹⁹⁾ DeWolf, W. E., Jr.; Kruse, L. I., unpublished results.

 Table II. Comparison of Kinetic Parameters for (-)-3 with

 Other Reported Mechanism-Based DBH Inhibitors

compd	$K_{\rm I},\mu{ m M}$	$k_{ m inact}$, min ⁻¹	$k_{ m inact}/K_{ m I}, \ { m M}^{-1}~{ m min}^{-1}$
HO	12000ª	1.8^{a}	150
HO NH2	520 ^b	0.81 ^b	1560
S-C-NH2	35°	0.124^{c}	3540
(-)-3	57^d	0.184^{d}	3230

^a Apparent values at pH 5.5, 1.21 mM O_2 ; data from Fitzpatrick, P. F.; Villafranca, J. J. J. Am. Chem. Soc. **1985**, 107, 5022. ^b Apparent values at pH 5.0, 0.24 mM O_2 ; data from ref 12. ^c Apparent values at pH 5.0, 0.24 mM O_2 ; data from ref 14. ^d Apparent values.

Figure 1. Effect of (-)-3, 100 mg/kg, ip, on mean arterial blood pressure of conscious spontaneously hypertensive rats (mean \pm SEM).

increases binding to enzyme relative to p-tyramine ($K_m = 1-2 \text{ mM}$). Of the inhibitors in Table I, 3 demonstrates both the highest affinity for the enzyme and an efficient time-dependent inactivation. Interestingly, both (+)-3 and (-)-3 inhibitors bind to DBH much more tightly than p-tyramine substrate, but time-dependent inactivation occurs only with the (-)-3 isomer. The S absolute configuration of (-)-3 retains the pro-R benzylic hydrogen of dopamine substrate which normally undergoes oxidation.²¹

This implies support for time-dependent inactivation that arises from an abortive benzylic oxidation. The time-dependent inactivation of DBH by (\pm) -3 is, as expected, considerably slower than that observed for (-)-3 since, in the racemate, the competitive inhibitor (+)-3 partially protects enzyme from time-dependent inactivation by the (-)-3 isomer.²² The time-dependent inactivation of DBH by (-)-3 is irreversible, as evidenced by a failure to reactivate upon prolonged dialysis of enzyme, and is strictly dependent upon oxygen and ascorbate cosubstrates. A comparison of kinetic constants for (-)-3 with the kinetic constants reported by others for representatives of various classes of DBH inactivators (Table II) shows (-)-3 to be exceptionally effective. Inhibitor (-)-3 combines a good rate of inactivation, $k_{\text{inact}}(\text{app})$, with a very high affinity for enzyme, $K_{\text{I}}(\text{app})$. Thus (Table II), of the numerous inactivators of DBH reported to date,⁷⁻¹⁴ only one class of heterocyclic allylamines¹⁴ is of comparable or greater effectiveness, as judged by the pharmacologically relevant ratio $k_{\text{inact}}/K_{\text{I}}$. Of equal importance is the observation that inactivation of DBH by (-)-3 occurs with a partition ratio of <5:1.¹⁹

Pharmacology. The ip administration of (-)-3, 100 mg/kg, to spontaneously hypertensive rats in the previously defined protocol^{1,3} produced a significant reduction (11%) in mean arterial blood pressure from the 150 mmHg level prior to drug dosing (Figure 1).

This paper establishes the ethynyltyramine (-)-3 as an effective time-dependent inactivator of DBH that has a considerable affinity for enzyme. The tyramine structure of 3 may lead in vivo to an active uptake and concentration of inhibitor in the target organelle, the chromaffin vesicle.

[†]Address correspondence to this author at SK&F Research Limited, The Frythe, Welwyn, Hertfordshire, England, AL6 9AR. [‡]Department of Pharmacology.

- (21) The apparent change in absolute configuration results from a change in substituent priorities at the benzylic carbon.
- (22) Cleland, W. W.; Gross, M.; Folk, J. E. J. Biol. Chem. 1971, 248, 6541.

Lawrence I. Kruse,*[†] Carl Kaiser Walter E. DeWolf, Jr., Pamela A. Chambers Paula J. Goodhart, Mildred Ezekiel,[†] Eliot H. Ohlstein[†] Departments of Medicinal Chemistry and Pharmacology Research and Development Division Smith Kline & French Laboratories 709 Swedeland Road Swedeland, Pennsylvania 19406 Received November 30, 1987