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The gas responsible for climate change, CO2, is the subject of
increased attention in both academic and industrial
research.[1] Since controlling anthropogenic CO2 emission
and further reducing the accumulation of CO2 is emerging as
an urgent and challenging research topic, extensive efforts are
being devoted to carbon capture and storage/sequestration
(CCS).[2] In this context, the invention and modification of
new chemicals that can efficiently, selectively, and econom-
ically absorb and separate CO2 from the exhaust formed from
the burning of fossil fuels appears essential to realize
a practical CCS process.

Conventional technology for the industrial capture of CO2

largely relies on employing aqueous solution of amines.[3] In
academic research, many amine-based scrubbing agents have
been developed for various technologies and processes.[4]

However, there are inherent drawbacks generally associated
with amine absorbents, namely the requirement of two amine
units to capture one CO2 molecule owing to the formation of
ammonium carbamate (Scheme 1a); this increases the energy
required for regeneration. This undesired 2:1 stoichiometry
would be a crucial barrier for improving the capacity of such
amine-based CO2 absorbents.

Several strategies have been proposed for the equimolar
chemisorption of CO2 with an amine absorbent. The groups
led by Jessop,[5] Dai,[6] and others[7] have developed reversible
CO2 capture utilizing a strong nitrogen-containing base in
conjunction with a proton donor. Meanwhile, amidophos-
phoranes were also proved to be capable of capturing one
equivalent of CO2 through the insertion of CO2 into a P�N
bond, resulting in the generation of carbamatophosphor-
anes.[8] Despite the high absorption capacity of amidophos-
phoranes at a 1:1 stoichiometry, additional inter-/intramolec-
ular functional groups such as hydroxy-, amino-, phosphorus-

containing species were essentially required to form the
carbamate/carbonate. Very recently, Brennecke and co-work-
ers[9] designed an ionic liquid (IL) comprising an amino-
functionalized anion and a long-chain alkyl phosphonium
cation to capture CO2 in favor of formation of carbamic acid;
they approached a high capacity of up to almost 1 mole of
CO2 per mole of IL. Despite such great advances, the
development of efficient CCS processes continues to be
appealing. The ultimate goal is a simple, easily prepared,
biocompatible/biodegradable absorbent with high CO2

capacity up to a 1:1 stoichiometry, and thus a lower energy
requirement in the desorption step. In this context, we found
that readily available amino acid salts with a bulky N sub-
stituent have an extremely high capacity approaching almost
equimolar absorption in poly(ethylene glycol) (PEG) solu-
tion (Scheme 1b). Steric-hindrance-controlled CO2 absorp-
tion is assumed to proceed via the carbamic acid rather than
the ammonium carbamate, thus resulting in equimolar
absorption and improved ease of desorption in comparison
with conventional amine absorbents. In particular, the
captured CO2 could be an activated species that could
undergo subsequent conversion to give valuable compounds
smoothly rather than going through a desorption cycle.

Sodium N-alkylglycinates and -alaninates[10] were inves-
tigated to test our proposal about steric-hindrance-controlled
CO2 absorption (Table 1). PEG was selected as a suitable
solvent because the flexible poly(ethylene oxide) chain could
coordinate with alkali-metal cations, thus leading to improved
capacity for counterions.[11] In particular, PEG150 (triethylene
glycol, Mw = 150 Da) showed poor CO2 sorption capacity
alone, implying that only physical interaction between PEG
and CO2 was observed (Table 1, entry 1). As expected,
nonmodified sodium glycinate captured CO2 in a manner
similar to aqueous amines, by forming the ammonium
carbamate in a stoichiometry of one CO2 molecule to two
amino groups (Table 1, entry 2); this salt was detected by

Scheme 1. a) Conventional amine-based scrubbing for CO2 capture
through the ammonium carbamate pathway; b) CO2 capture via the
formation of the carbamic acid rather than the ammonium carbamate
by sodium N-alkylglycinate in PEG.
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13C NMR spectroscopy.[12a] To our delight, introducing an
isopropyl substituent at the a-amino group greatly enhanced
the CO2 capacity, which approached the 1:1 stoichiometry
expected based on the theoretical arguments (Table 1,
entry 3). In this context, the 13C NMR evidence could exclude
the carbamate pathway.[12b] The CO2 absorption of N-n-propyl
glycinate was inferior to that of the N-isopropyl counterpart
(Table 1, entry 3 vs. entry 4). Increasing the size of the
N substituent did not improve the absorbance further
(Table 1, entry 5 vs. entry 3). Increased viscosity could have
a detrimental effect in the case of sodium N-cyclohexyl
glycinate (Table 1, entry 6). An additional methyl group at the
position a to the N atom could be interfere with the
interaction with CO2 (Table 1, entry 7). However, the tertiary
amino counterpart, which lacks an N�H group, demonstrates
low CO2 capacity (Table 1, entry 8). A substituted b-amino
acid salt showed lower CO2 capacity than its a-amino
analogue (Table 1, entry 9 vs. entry 3). The binding of CO2

through the weakly alkaline carboxyl group can be ruled out
because of the negligible absorption of NaOAc (Table 1,
entry 10). Furthermore, a 1:1 mixture of iPr2NH and NaOAc
captured 0.53 mole of CO2 per mole of amine, suggesting that
the carboxylate moiety could also contribute to stabilize the
carbamic acid species probably through an intramolecular
hydrogen bond upon complexation (Table 1, entry 11 vs.
entry 3).[9]

Cations of the ionic absorbents able to coordinate with
solvents like PEG could thereby have influence on CO2

capture. Indeed, of the cations tested (including potassium,
lithium, tetrabutylammonium/phosphonium, DBUH+ (1,8-
diazabicyclo[5.4.0]undec-7-enium), TBDH+ (1,5,7-triaza-
bicyclo[4.4.0]dec-5-enium), and TMGH+ (1,1,3,3-tetrame-

thylguanidium), the sodium cation gave the best capacity
(see Table S1 in the Supporting Information). The effect of
the molecular weight of the PEG solvent was also inves-
tigated by using sodium N-isopropylglycinate (Table S2).
PEG with a molecular weight deviating from 150 showed
less favorable promotion, indicating that a suitable PEG
chain length is required for coordination with sodium; PEG150

monomethyl ether also showed lower capacity in comparison
with PEG150 possibly because of its weakened solvation
power.

A further barrier to practical CCS would be high energy
requirements for the desorption process. To our delight, the
absorbed CO2 in the present system was easily removed at
temperatures as low as 40 8C by bubbling N2 through the
solution or at 90 8C in the absence of N2. Since higher
temperatures are required for CO2 removal from the conven-
tional amine-based absorption setup, this is an indication that
our system proceeds by the carbamic acid pathway (Sche-
me 1b). A negligible decrease in CO2 capacity was observed
after five consecutive absorption–desorption cycles (see Fig-
ure S1 in the Supporting Information).

To gain a deeper insight into the absorption mechanism
involving the formation of a carbamic acid intermediate,[13] we
studied the amino acid salts by in situ FTIR spectroscopy
under CO2 pressure (Figure 1). The IR spectra of sodium N-
isopropylglycinate in PEG150 before and after reaction with
CO2 are shown in Figure 1 a.[14] Firstly, the O�H and C�H
stretching bands at 3319 and 2873 cm�1, respectively, present

Table 1: CO2 absorption using various amino acid salts.[a]

Entry Absorbent t [min][b] CO2 absorption[c]

1 – 20 0.035[d]

2 NH2-GlyNa 20 0.43
3 iPrNH-GlyNa 25 0.91
4 nPrNH-GlyNa 30 0.59
5 tBuNH-GlyNa 25 0.85
6 CyNH-GlyNa 25 0.68
7 iPrNH-AlaNa 30 0.73
8 nPr2N-GlyNa 30 0.48
9 b-iPrNH-AlaNa 15 0.65
10 NaOAc 20 trace
11[e] iPr2NH/NaOAc 20 0.53

[a] Conditions: PEG150 (12 mmol), absorbent (3 mmol), 25 8C. [b] Time
required to reach absorption equilibrium. [c] Moles of CO2 captured per
mole of absorbent and absorption by PEG150 is subtracted. [d] Moles of
CO2 captured per mole of PEG150. [e] Conditions: PEG150 (12 mmol),
iPr2NH (3 mmol), NaOAc (3 mmol), 25 8C.

Figure 1. Results of in situ IR spectroscopy under CO2 pressure.
a) sodium N-isopropylglycinate in PEG150 before and after CO2 uptake
at 25 8C; b) spectra of the absorption mixture with reaction time.
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no change after CO2 uptake, indicating that PEG could be
chemically inert during the process. Secondly, distinct bands
corresponding to the ammonium cation between 2800–
3000 cm�1 and in the 2000–2800 cm�1 region are not observed
(new peak at 2338 cm�1 corresponds to physically dissolved
CO2).[15] Thirdly, since no peaks emerge at 1545 cm�1 and
835 cm�1, the formation of the carbamate and bicarbonate
anions is excluded.[7b] Finally, two characteristic peaks cen-
tered at 1644 and 1663 cm�1 can be assigned to asymmetric
(C=O) vibrations of the carboxylate anion and COOH moiety
of the carbamic acid, respectively. Figure 1b explicitly shows
the changes in the IR peaks with reaction time, as the
weakening of the signal of carboxylate anion of sodium N-
isopropylglycinate at 1596 cm�1 is accompanied with the
increase of the new peaks at 1644 and 1663 cm�1. Further-
more, the FTIR spectrum of the isolated absorption prod-
uct[16] (Figure S3 in the Supporting Information) indicates
that the N�H stretch at 3286 cm�1 significantly weakens upon
CO2 uptake.

Subsequent NMR investigations were performed to get
information about the formation of the carbamic acid product
(Figure 2). In the 1H NMR spectrum, the downfield shift of
the N-CH (2, from d = 2.81 to 3.13 ppm) and N-CH2 signals
(3, from d = 3.14 to 3.31 ppm) could indicate that CO2 is
chemically bound to the nitrogen center (Figure 2 a,b).
Simultaneously, the new peak at d = 161.4 ppm after CO2

uptake would support the formation of the carbamic acid
structure between the secondary amine and CO2 (Figure 2e),
since this chemical shift is close to previously reported
values.[9, 13, 17] In the 13C NMR spectrum, signals at d = 62.0,
71.3, and 73.5 ppm also indicate that PEG150 does not interact
chemically with CO2 (Figure 2d,e). The purified product was
then investigated by 1H and 13C NMR spectroscopy (Fig-
ure 2c,f). Only one additional carbonyl signal at d =

161.5 ppm was detected which is identical to that for the
crude product and in agreement with the formation of the
carbamic acid.

DFT-calculated enthalpy changes for the present equi-
molar CO2 capture also support formation of the carbamic
acid product (Figure 3). Following the prevalent mechanism
for the amine-based CO2 absorption, the amino acid salt with
PEG150 coordinated at the sodium cation (A) reacts with CO2

at the secondary amine to form the carbamic acid (B), which
is probably stabilized through an intramolecular hydrogen
bond with the carboxylate anion,[9] thus leading to enhanced
CO2 absorption capacity (Table 1, entry 3 vs. entry 11). This
interaction was detected by in situ FTIR spectroscopy under
CO2 pressure: the C=O vibration of the carboxylate shifted to
higher frequency upon introduction of CO2 (Figure 1).
Formation of the carbamic acid product B with a calculated
enthalpy change of �10.4 kcalmol�1 should be thermody-
namically favorable. In step II, B may further react with A to
generate the ammonium carbamate (C) and a 2:1 stoichiom-
etry would result accordingly. However, such a step is
endothermic presumably because of the steric repulsion of
the isopropyl substituent at the nitrogen center of A with the
approaching B. On the other hand, the concerted path (III)
for carbamate formation is also thermodynamically unfavor-
able. As a consequence, the proposed formation of the

carbamic acid is rational, thus leading to equimolar CO2

capture. In contrast, external energy input would be required
for the generation of the ammonium carbamate.

The high energy requirements of CO2 desorption, com-
pression, and transportation could be critical problems in
current CCS processes. Meanwhile, the development of the
catalytic transformation of CO2 into value-added compounds
is also confronted with problems related to energy input for
CO2 activation.[4e,g,18] Therefore, the challenge is to develop
alternative protocols to integrate the energy input for both
CCS and chemical transformation, hence circumventing the
high energetic cost. We propose that the captured CO2 in the
form of the carbamic acid could be more reactive in lieu of
free CO2, thus rather than desorption of CO2 the subsequent

Figure 2. 1H and 13C NMR spectra (CD3OD) of sodium N-isopropylglyci-
nate in PEG150 (a, d), the resultant mixture after CO2 absorption (b,e), and
the isolated absorption product (c, f).
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conversion would produce chemicals. The strategy for carbon
capture and utilization (CCU) was validated by reacting the
absorbent amino acid salt after CO2 uptake (1 atm) with
a substrate in the presence of a catalyst. Oxazolidinones can
be synthesized in high yields from the reaction of the captured
CO2 with either aziridine or propargyl amine (Scheme 2).

In summary, readily prepared sodium N-isopropylglyci-
nate was found to be the best absorbent for the rapid and
reversible capture of CO2 at a stoichiometry of almost one
molecule of CO2 per amino group. This is the first example of
steric-hindrance-controlled CO2 absorption, thereby leading
to equimolar CO2 absorption and ready desorption. This
process, which is assumed to proceed via the carbamic acid
rather than the ammonium carbamate, was studied by NMR
and in situ FTIR spectroscopy and computational calcula-
tions. Furthermore, the capture of CO2 could simultaneously

result in its activation, such that subsequent conversion into
valuable compounds may be more favorable than the
desorption process.
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