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ABSTRACT: We report in this communication the first example 
of catalytic alkyne metathesis reactions mediated by well-defined 
non-d0 alkylidyne complexes. The air-stable d2 Re(V) alkylidyne 
complex Re4, bearing two PO-chelating ligands and a labile pyri-
dine ligand, could catalyze homo-metathesis of internal alkynes 
with a broad substrate scope, including alcohols, amines and even 
carboxylic acids. The catalyst can tolerate heating, air and moisture 
in both solid and solution states and the catalytic metathesis reac-
tions could proceed normally in wet solvents. 

Alkyne metathesis has shown great potential in synthesis of 
natural products, 1  functional polymers 2 , 3  and supramolecular 
materials.4 Classical homogeneous alkyne metathesis catalysts could 
be classified into two categories: the “in situ” catalytic system based 
on Mo(CO)6/phenol or “Mortreux catalyst” (e.g. Scheme 1, A)5, 6 
and well-defined  high valent d0 Schrock-type alkylidyne complexes 
(e.g. Scheme 1, B). 7  The former has the advantage of user-
friendliness. The latter displays remarkable efficiency and a broader 
substrate scope, which was more commonly used and studied in 
the past 4 decades.8 Modifications on Schrock-type alkylidyne cata-
lysts have been carried out continually aiming to obtain more ro-
bust systems with high efficiency and broader substrate scope to 
benefit the wide popularity of alkyne metathesis.9 Many valuable 
ideas emerged during this period and remarkable improvements in 
the efficiency and stability of alkyne metathesis catalysts based on 
high valent d0 alkylidyne complexes have been achieved. Examples 
of the newly developed novel systems include Mo(VI) alkylidyne 
catalysts with tridentate ligands,10, 11, 12, 13,14 ,15 pyridine or phenan-
throline stabilized bench-stable Mo(VI) precatalysts, 16 , 17 , 18  silica 
supported heterogeneous Mo(VI) alkylidyne catalysts, 19 , 20  and 
Mo(VI) or W(VI) alkylidyne complexes bearing imidazolin-2-
iminato ligands,21 NHC ligands22 or silyloxy ligands.23  Some of the 
systems can even efficiently promote the metathesis of challenging 
terminal alkynes.24 

Although alkyne metathesis reactions mediated by high valent 
d0 alkylidyne complexes are now well established and many non-d0 
alkylidyne complexes are known,25, 26 to the best of our knowledge, 
catalytic alkyne metathesis reactions mediated by well-defined non-
d0 alkylidyne complexes have not been reported yet. In contrast, 
olefin metathesis could be promoted by both d0 metal (e.g. Ta(V), 
Mo(VI)) alkylidenes and d4 Ru(IV) carbenes (a carbene ligand is 
viewed as a dianionic ligand).27 Herein, we report the first example 
of alkyne metathesis reactions catalyzed by a non-d0 metal alkyli-
dyne complex, specifically, the d2 Re(V) alkylidyne complex Re4 
(Scheme 1, C). 

Scheme 1. Selected Homogeneous Transition Metal Catalysts for 
Alkyne Metathesis Reactions. 

 

It was recently reported that the air stable d2 Re(V) alkylidyne 
complexes Re(≡CR')Cl2(PR3)3 (R' = aryl, alkyl; PR3 = PMePh2, 
PMe2Ph) could undergo stoichiometric metathesis reactions with 
alkynes.28, 29 The interesting observation promoted us to explore the 
potential of Re(V) alkylidyne complexes for catalytic alkyne me-
tathesis reactions.  

The catalytic property of Re(≡CCH2Ph)Cl2(PMePh2)3 (Re1, 
Scheme 2) was firstly evaluated by using the self-metathesis reaction 
of p-tolyl-1-propyne (1a) as the model reaction. The complex Re1 
only showed marginal activity at 150 oC with neat 1a or very poor 
activity at 100 oC in 0.1 M toluene (Table 1, entries 1, 2). The 
complex Re[≡CCH2(o-C6H4Br)]Cl2(PMe2Ph)3 behaved similarly 
(Table S1, entry 2).  

In an alternative way to modify the catalytic property of Re(V) 
alkylidyne complexes, the ligand substitution reaction of Re1 with 
the bidentate ligand, (2-hydroxyphenyl)diphenyl phosphine 
(Scheme 2, L1) was carried out to obtain the Re(V) alkylidyne 
complex Re2 with two PO bidentate ligands. Subsequent experi-
ments showed that the complex Re2 displayed significantly im-
proved catalytic activity in self-metathesis reaction of 1a (Table 1, 
entry 3). Re2 also has appreciable activity in promoting the model 
reaction in a toluene solution at 100 oC (Table 1, entry 4).  

It was suspected that association of the mono phosphine ligand 
PMePh2 in Re2 may increase the reaction barrier for the catalytic 
metathesis reaction. Thus, catalytic reactions in the presence of CuI 
(which could act as a phosphine sponge) were performed. As ex-
pected, the Re2-catalyzed self-metathesis reaction of p-tolyl-1-
propyne (1a) was accelerated in the presence of CuI. After heating 
of neat 1a at 100 oC for 8 h in the presence of 2 mol% of Re2 and 
2 mol% of CuI, the conversion reached to 47% (Table 1, entries 5, 
6).  

Scheme 2. Synthesis of Rhenium (V) Alkylidene Catalysts. 
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The above observation hinted that analogs of Re2 free of 
PMePh2 ligand may be catalytically more active. Attempts have 
been made to prepare the pyridine (py) complex 
Re(≡CCH2Ph)Cl2(o-OC6H4-PPh2)2(py) complex by reacting Re2 
with pyridine in the presence of CuI. The in-situ NMR experi-
ments indicated that the desired pyridine complex might be 
formed.30  Unfortunately, pure samples of the desired alkylidyne 
complex from the reaction could not be obtained due to the diffi-
culty in completely removing the Cu-containing side product. 

To facilitate the isolation of pyridine-coordinated alkylidyne 
complexes,  the PO ligand was modified by introducing two CF3 
groups to the phenyl groups (Scheme 2, L2), which was expected to 
differentiate the solubility of the pyridine-coordinated alkylidyne 
complex from CuI(PMePh2) in non-polar solvents. The reaction of 
Re1 with the modified ligand [bis(3,5-bis(trifluoromethyl)-
phenyl)phosphanyl] phenol (L2) at 100 oC for 3 h gave a mixture of 
isomers cis-Re3 and trans-Re3, which can be separated by recrystal-
lization. The isomers cis-Re3 and trans-Re3 can interconvert with 
each other when heated above 80 oC in toluene, giving an equilib-
rium mixture with a molar ratio of 3 : 2. Subsequent ligand ex-
change reaction of Re3 with pyridine in the presence of CuI pro-
duced the desired pyridine supported complex Re4, which could 
then be easily separated from the Cu-containing side product 
CuI(PMePh2) by diethyl ether extraction. The complex Re4 has 
been characterized both spectroscopically and crystallographically. 
It is an air-stable golden-yellow solid that can be stored in air for 
months in the solid state and for weeks in solutions without appre-
ciable decomposition. In addition, the complex Re4 remain un-
changed after heating in wet degassed toluene-d8 at 100 oC for 16 
hours as indicated by in-situ NMR spectroscopy. 

Subsequent experiments showed that the performance of Re3 
in catalytic self-metathesis reaction of p-tolyl-1-propyne (1a) is simi-
lar to that of Re2 (Table 1, entry 7). On the other hand, the pyri-
dine complex Re4 has a significantly improved activity compared 
with Re1 - Re3. The model reaction of 1a was essentially completed 
within 8 hours at 100 oC in toluene solution with 2 mol% of Re4 
(Table 1, entry 8).  

Table 1. Rhenium (V) Alkylidenes Catalyzed Homo-metathesis of 
p-Tolyl-1-propyne 

 

entry catalyst(s) solvent 
T 

(oC) 
t 

(h) 
yield[d] 

(%) 
1[a] Re1 neat 150 8 19 

2[b] Re1 toluene 100 8 trace 

3[a] Re2 neat 150 2 60 

4[b] Re2 toluene 100 8 15 

5[a] Re2 neat 100 8 21 

6[a] Re2/CuI neat 100 8 47 

7[b] Re3 toluene 100 8 11 

8[b] Re4 toluene 100 8 98 

9[b] Re4 1,4-dioxane 100 20 82 

10[b] Re4 iBuOH 100 20 85 

11[c] Re4 wet toluene reflux 48 95 

12[c] Re4 wet iBuOH reflux 48 96 

[a]Condition: alkyne (0.2 mmol), catalyst (2 mol%), without 5 Å  MS; 
[b]Condition: alkyne (0.2 mmol), catalyst (2 mol%), 5 Å  MS (250 
mg), 0.1 M; [c]Condition: alkyne (0.2 mmol), catalyst (2 mol%), 
without 5 Å  MS, wet31 solvents, 0.1 M, refluxed under N2; 
[d]Conversions were determined by 1H NMR using CH2Br2 as the 
internal standard. 

The higher activity of the pyridine-coordinated complex Re4 
compared with that of the corresponding PMePh2 analog can be 
attributed to the relative lability of pyridine and PMePh2 for substi-
tution reactions. This hypothesis was supported by ligand exchange 
reactions of Re4 and cis-Re3 (Scheme 3). The ligand exchange 
reaction of Re4 with trimethylphosphine (PMe3) (10 equiv.) oc-
curred at 60 oC and was completed at 80 oC within 6 hours to give 
the PMe3-coordinated complex Re4’ (Figure S1). On the other 
hand, the ligand substitution reaction of cis-Re3 with PMe3 (10 
equiv.) could only slowly take place at 100 oC and proceeded with 
an appreciable rate at 120 oC (Figure S2).  

Scheme 3. Ligand Exchange Experiments of Re4 and cis-Re3. 

 

The Re4-catalyzed reaction could proceed in strongly coordi-
nating solvents like 1,4-dioxane with only slight decrease in the 
reactivity (Table 1, entry 9). Furthermore, the metathesis reaction 
promoted by Re4 can tolerate protic solvents like isobutanol with-
out significant decline in yield (Table 1, entry 10). Most interesting-
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ly, the catalytic metathesis reactions in wet31 toluene or isobutanol 
could also take place (Table 1, entries 11, 12). Control experiments 
indicate that the catalyst Re4 has nearly equal activity in wet and 
dry toluene. After refluxing the reaction mixtures containing 1a 
and 2 mol% of Re4 for 16 hours, the one in wet toluene gave 73% 
of NMR yield, while the one in dry toluene gave 77% of NMR 
yield (Table S1, entries 12, 13). The Re(V) alkylidyne catalytic sys-
tem represents the first example of air and moisture stable alkyli-
dyne catalysts with demonstrated metathesis activity for unstrained 
alkynes.32  

The outstanding air and moisture stability of Re4 hints that 
the catalyst has the potential to promote metathesis of substrates 
containing coordinating, polar or protic functional groups.  The 
substrate scope of metathesis reactions mediated by Re4 was next 
investigated, especially for substrates with potential problematic 
functional groups (Chart 1). In most cases, the catalytic reactions 
were conducted in dry toluene with 2 mol% of the catalyst and 
activated 5 Å  MS as butyne absorber. Some reactions were carried 
out in wet toluene (e.g. 1k, 1o). For those substrates with strong 
coordination ability, higher catalyst loading (3 mol%) and pro-
longed reaction time (16 h) were employed.  

Chart 1. Scope of Metathesized Alkynes Promoted by Re4. 

 

[a]Conditions: alkyne (0.2 mmol), Re4 (2 mol%), 5 Å  MS (250 mg), 
dry toluene (2 mL), 100 °C, 8 h; [b]Conditions: alkyne (0.2 mmol),  
Re4 (3 mol%), 5 Å  MS (250 mg), dry toluene (2 mL), 100 °C, 16 h. 
[c]Conditions: alkyne (0.2 mmol), Re4 (3 mol%), wet31 toluene (2 
mL), reflux, 48 h. Conversions were determined by 1H NMR using 
CH2Br2 as the internal standard. Isolated yields are given in paren-
theses. Only isolated yields are provided for products with poor 
solubilities.  

As shown in Chart 1, a variety of alkyne products can be ob-
tained by Re4-promoted self-metathesis of internal alkynes. All of 
the products were isolated in moderate to excellent yields. The 
complex Re4 is compatible with substrates containing functional 
groups such as ether (1c), ketone (1d), ester (1f) and tertiary amine 

(1g). The metathesis reaction of the more challenging substrate, 2-
propynylthiophene (1h), also proceeded well and produced 2h in 
excellent yield. 4-Propynylbenzaldehyde (1i), a tough substrate that 
was well-known to destroy some high valent d0 alkylidyne cata-
lysts,11 could be metathesized by Re4 efficiently to give 2i in excel-
lent yield.  

Apart from aryl alkynes, metathesis reactions of alkyl alkynes 
were also tested. For example, the popular alkyl alkyne substate 1l 
was metathesized by Re4 to give 2l in high isolated yield. Propar-
gylic alcohol derivatives are another class of problematic sub-
strates.33 To the best of our knowledge, the self-metathesis reaction 
of the propargylic alcohol derivative 1m has never been reported. 
With Re4 as the catalyst, the substrate 1m could be metathesized to 
give 2m in moderate yield. 

The metathesis of alkyne substrates with protic groups, such as 
hydroxy and amino groups, was well-recognized as a challenging 
task for high valent d0 alkylidyne catalysts. Most catalytic systems 
reported before are either incompatible with such groups or show 
low efficiency. In contrast, the non-d0 alkylidyne catalyst Re4 is 
inherently tolerant to protic environments, and promotes self-
metathesis reactions of protic substrates like 4-propynylphenol (1j) 
and 4-propynylaniline (1k) smoothly to give corresponding prod-
ucts in good isolated yields with only 3 mol% of catalyst loading. 
Moreover, the alkyl alkyne substrate 1n with an “unhindered pri-
mary alcohol”15 could also be metathesized normally by Re4 to give 
the product 2n in excellent yield. Encouraged by these successes, 
we extended the substrate scope to the unprotected carboxylic acid 
substrate 1o. Surprisingly, the self-metathesis product 2o was 
formed either in dry or wet toluene and isolated in good yields. To 
the best of our knowledge, Re4 is the first catalyst with demon-
strated metathesis activity for substrate with a carboxylic acid func-
tional group. 

The alkyne metathesis reaction mediated by Re4 presumably 
proceeds through ligand dissociation, reversible cycloaddition of 
Re(V) alkylidyne intermediate with alkyne, and re-association of 
ligand.28, 34 Consistent with the proposed mechanism, the in-situ 
31P{1H} NMR spectra after catalytic reactions showed signals assign-
able to new Re(V) alkylidyne complexes analogous to Re4. For 
instance, Re5 was isolated in 80% yield in the reaction of Re4 with 
5 equiv. of 2-propynylthiophene (1h), the structure of which was 
confirmed by X-ray diffraction (Scheme 4). The isolated complex, 
Re5, was found to be equally active as Re4 for catalytic self-
metathesis reaction of 2-propynylthiophene. 

Scheme 4. Stoichiometric alkyne metathesis of Re4 with 2-
propynylthiophene (1h).  

 

In summary, this communication demonstrated the first exam-
ple of alkyne metathesis reactions promoted by non-d0 transition 
metal alkylidyne complexes. The d2 Re(V) alkylidyne complex Re4 
prepared in this work has remarkable stability to both air and mois-
ture and can effect metathesis of alkynes with a broad substrate 
scope, including alcohols, amines and even carboxylic acids. The 
results indicated that development of non-d0 alkylidyne-based cata-
lysts can provide an alternative approach toward user-friendly al-
kyne metathesis reactions. Fine-tuning of catalyst activity and elab-
oration of the mechanistic features of these systems are in progress. 
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