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ABSTRACT: An efficient method to prepare 3-functionalized
oxetanes and azetidines has been realized by fluorocyclization of
readily available 2-azidoallyl/2-alkoxyallyl alcohols and amines.
Notably, this is the first example applying the fluorocyclization
strategy to construct four-membered heterocycles. The pendant
electron-donating group (−N3 or −OR) plays a crucial role in
polarizing the CC double bond and facilitating the cyclization
process, as verified by DFT and experimental studies.

Strained small-ring heterocycles are of significance in drug
candidates, bioactive natural products, and as useful

intermediates in organic synthesis.1 The utmost importance
in current medicinal chemistry research is given to the
saturated 3-substituted four-membered heterocycles, such as
oxetanes and azetidines, which are ubiquitous core structures
of many bioactive natural products and pharmaceuticals and
have become an essential part of standard toolbox of the
medicinal chemists (Figure S1).2 Despite there being a number
of methods for preparing saturated four-membered hetero-
cycles,2a,3 the development of cyclization approaches for
forming saturated 3-functionalized four-membered hetero-
cycles, especially medicinally relevant 3-fluoro and 3-azido
derivatives, remains problematic mainly due to the poor
kinetics of cyclization (the order is 5 > 3 > 6 > 7 > 4).4

Consequently, the synthesis of these compounds largely relied
on the functional group interconversion of 3-functionalized
parent four-membered heterocycles,2 which apparently are not
cost-effective and could not be enough to meet demands in
drug discovery. In contrast, cyclization from acyclic precursors
remains a preferable strategy, providing the desired functional
groups could be properly installed in the starting materials.
Intramolecular nucleophilic displacement cyclization repre-

sents a classical approach to access saturated four-membered
ring frameworks (Figure 1A).2a,5 The need for a starting
material with both a nucleophilic center and a leaving group
poses obvious constraints. Moreover, to make 3-functionalized
four-membered rings, a trifunctional acyclic molecule is
needed, and therefore, this method has been rarely exploited
in the synthesis of such heterocycles.2 We envision whether the
required leaving group and functional group could be

generated at once by difunctionalization of alkenes (Figure
1B).6 In recent years, the fluorocyclization of alkenes has
emerged as a useful method for the preparation of saturated
fluorinated heterocycles from the addition of fluoride on
alkenes, with a hypervalent iodine moiety acting as a leaving
group formed in situ. This strategy has been successively
explored by Gouverneur, Szabo,́ Nevado, Jacobsen, and others
in the construction of five-, six-, seven-, and even three-
membered heterocycles (Figure 1C).7 Nevertheless, such a
state-of-the-art strategy has not yet been implemented in the
formation of four-membered rings, which could be ascribed to
its aforementioned poor cyclization kinetics.4 Recently, α-vinyl
azides have emerged as a class of viable reaction partners in
terms of iodine−fluorine chemistry as well as radical chemistry
and exhibit distinctive reactivity.7b,8 Herein, we report a four-
membered cyclization of the easily available 2-azidoallyl
alcohols and amines by using difluoroiodobenzene (PhIF2)
generated in situ from iodobenzene diacetate (PIDA) and
HF.9 This strategy represents the first example that applying
fluorocyclization of alkenes in the formation of four-membered
rings (Figure 1D).7a Notably, the azido and alkoxy group at α-
position of allyl alcohol enable the initial electrophilic addition
of hypervalent iodine reagents10 and also retained in the final
product as a useful handle.11 The obtained oxetane and
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azetidine derivatives belong to a class of newly synthesized 3-
fluoro-functionalized four-membered heterocycles that are
inaccessible by other synthetic methods.5d

After careful screening of the reaction conditions (for details,
see Table S1), the conditions (2-azidoallyl alcohols (1.0
equiv), Py·HF (1.5 equiv), PIDA (1.5 equiv), CH2Cl2 (0.1 M)
at −45 °C) were chosen for the substrate scope and functional
group tolerance studies. First, a variety of cyclic alcohols
tethered with different functional groups undergo the desired
fluorocyclization with good to excellent yield (2−11, 80−93%
yields) (Figure 2A). Note that spiro[3.5]- or spiro[3.6]oxetane
motifs represent the core structural units in the inhibitors of β-
secretase and anticancer agents.12 Also, the use of a
tetrahydropyran derivative led to product 12 in a 84% yield.
Furthermore, 7−15-membered macrocyclic compounds were
efficiently converted into the corresponding oxetanes (13−
16). Fluorenone derivatives also participated in this trans-
formation and could convert to the consistent oxetanes in good
yield (17, 18; 82%, 78% yield, respectively). Strikingly, a wide
variety of acyclic alcohols successfully converted into oxetane
derivatives with almost identical efficiency to cyclic alcohols
(19−37). Starting from the simplest acetone structure, the
target product 19 could be obtained in 87% yield. Dialkyl
alcohols were smoothly transferred into oxetanes with 83−96%
yield (20−22). Diaryl groups furnished the 2,2-diaryloxetanes
in good to high yield (23−30, 57−84% yield); note that these
products have a similar quaternary carbon center in
biodegradable insecticide EDO (Figure S1).13 A modest
drop in the yield was observed for the substrates with
electron-withdrawing groups on the benzene ring (25−27, 29,
30). Further, ethisterone could be converted to the
corresponding oxetane derivative 31 in 69% yield via a two-
step operation. Monosubstituted and unsymmetrical aryl
alcohol derivatives also proved to be effective substrates,
although they afforded a diastereomeric mixture of products
(32−37, 77−95% yield, dr = 1.1:1 to 4.9:1).
Aldehydes and ketones are basic organic synthetic feedstock.

We therefore envisage that developing a one-pot multistep
method to prepare 3-functionalized oxetanes directly from
aldehydes and ketones should be feasible and more syntheti-
cally practical. Observing efficient performance in each step, we

eventually achieved this and efficiently obtained 3-function-
alized oxetanes from ketones via a cascade alkynylation
hydroazidation and fluorocyclization sequence (Figure 2B).
Both cyclic and acyclic ketones were equally converted into
corresponding 3-functionalized oxetanes. This conversion
integrates the universality of carbonyl compounds with the
3-functionalized oxetanes, which greatly improves the
possibility of its abundant applications in the field of medicinal
chemistry. In addition to the modification of ethisterone, the
late-stage diversification of citronellal 38 was also realized in
66% yield through the sequential three-step operation.
Next, we speculated that such a fluorocyclization strategy

could also be extended to the synthesis of azetidine scaffolds.
While monitoring the fluorocyclization reaction, progress was
sluggish at −45 °C; thus, we performed the reaction at 25 °C.
To our delight, a variety of N-protected (sulfonyl or acyl) 2-
azidoallyl amines was successfully applied in the fluorocycliza-
tion (Figure 2C). Except for the 4-NO2 group (43), the
electronic nature and position of substituents on the benzene
ring nearly did not influence on the efficiency of azetidine
formation (39−50). The azetidine structure was unambigu-
ously confirmed by single-crystal X-ray diffraction analysis of
41 (CCDC No. 1943313). The aryl sulfonyl group could be
replaced with an alkyl sulfonyl group without affecting the
reaction outcome (52, 53). Such an efficient construction of
alkylsulfonyl-protected azetidine represents a possible techni-
que for the synthesis of Olumiant (marketed drug for the
treatment of rheumatoid arthritis).14 Furthermore, the acyl-
protected α-amino vinyl azides also delivered desired products
in good to high yield (54−64, 59−88% yields). Note that the
acyl-protected azetidine structural unit occurs in several
pharmaceuticals, for instance, Cobimetinib, a high-profile
drug for the treatment of melanoma.15 Finally, the reaction
of the amine attached to the secondary or tertiary carbon
proceeded as well and afforded the cyclized products in high
yield (65−67, 82−93% yields).
Considering the azido group with many possibilities for

further modification and the potency of a fluorine atom to
modulate chemical and biological properties of molecules,16 we
expect such derivatives would constitute a new chemical space
for exploration in the drug discovery. To demonstrate the

Figure 1. Synthetic strategies for 3-functionalized four-membered heterocycles. (A) Intramolecular cyclization strategy for 3-substituted four-
membered heterocycles. LG: Leaving group; FG: functional group. (B) Our proposal: in situ incorporation of a leaving group followed cyclization.
(C) Fluorocyclization: previous studies. (D) Fluorocyclization of 2-azidoallyl/2-alkoxyallyl alcohols and amines.
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practicality of the method, a gram-scale synthesis was
performed for oxetane 2 and azetidine 40, respectively, and
they were obtained in a little decreased high yield compared
with the small-scale reaction (2, 1.5 g, 81%; 40, 2.1 g, 77%)
(Figure 3). We further exploited these compounds as the
synthetic intermediates, regarding the ring-opening reaction of
four-membered heterocycles and the versatile nature of the
azido group in organic synthesis. For instance, products 2 and
40 were readily converted to the amines 68 and 72,
respectively, by reduction with LiAlH4,

17 along with the
removal of fluorine; the azido group in 2 and 40 was easily

converted to 1,2,3-triazole through base-mediated 1,3-dipolar
cycloaddition with alkynes (69,18 70,19 7318); moreover,
treatment of 40 by submission of tetra-n-butylammonium
bromide (TBAB) led to the corresponding ring-opening
product of azetidine 74 in 88% yield.20

We designed and performed some control experiments to
gain mechanistic insights (for details, see Figure S2). First, we
prepared PhIF2 separately and applied it in the reaction with
substrate 1 under similar conditions, which resulted in the
target product in 92% yield, thus suggesting that the
intermediate PhIF2 was involved in the reaction (Figure 4a).

Figure 2. Synthesis of oxetanes and azetidines.
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While the 2-azidoallyl alcohol 32s and 2-ethoxyallyl alcohol
75s gave the expected oxetane 32 and 75 in 90% yields under
the standard conditions, no reaction was observed for allyl
alcohol 76s and 2-cyanoallyl alcohol 77s, which were all
recovered after the reaction (Figure 4b). Natural population
analysis (NPA) charge analysis was also performed and
displayed the different degrees of polarization of the CC
double bond on 32s, 75s, 76s, and 77s (Figure 4c; for details,
see Figures S4−S7). Therefore, the role of the azido group as
well as the ethoxy group is ascribed to its strong polarization
effect that facilitates the initial electrophilic attack of the CC
double bond by the hypervalent iodine moiety.
To gain more mechanistic insights into the four-membered

fluorocyclization of alkenes, DFT calculations were performed
(for details, see Figure S2). Indeed, after the formation of
iodonium ion intermediate II, the fluorination of 32s via a six-
membered ring transition state (TS-I) is 12.1 kcal/mol more
favorable over the fluorination of 76s (TS-IA), thus ruling out
the fluorocyclization feasibility of allyl alcohol 76s, which is in
line with aforementioned experimental results (Figure 4b).

During the formation of iodonium ion, it is worth noting that
two molecules of HF as the Brønsted acid are found to most
favor the activation of the hypervalent iodine reagent, which is
consistent with the reported calculation results by Houk and
Xue.21 For 2-azidoallyl alcohol 32s, the fluorination step is
facile and highly exergonic, as the formed fluorinated
intermediate IV is −26.6 kcal/mol in free energy. Following
the step of fluorination, the cyclization subsequently occurs via
intramolecular nucleophilic attack of the hydroxyl group to the
C−I bond of fluorinated intermediate IV via transition state
TS-II, thereby leading to final fluorocyclization product 32.
Note that in TS-II both the nucleophilic hydroxyl group and
the fluorine group on iodine center are activated by HF
molecule, as similar to the report by Liu et al.22 In the reaction
pathway of 32s, the fluorination step is the rate-determining
step (TS-I, 3.8 kcal/mol), and these calculation results are in
accordance with the observed experimental results.
In conclusion, we have for the first time realized the

formation of four-membered heterocycles through the alkene
fluorocyclization strategy, starting from the readily available 2-
azidoallyl/2-alkoxyallyl alcohols/amines. Combined experi-
mental and computational studies revealed that the strong
electron-donating group plays a critical role to polarize the
CC double bond and facilitate the kinetically unfavorable
intramolecular cyclization. Given the relevance of C-3
functionalized oxetanes and azetidines in medicinal research
and the rich chemistry of the azido group in organic synthesis
as well as the modulating effect of molecular properties by
fluorine, the work described here would benefit the drug
discovery.
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